EP 393 - Spaceflight Dynamics
Embry-Riddle University
Fall 2009
M. Anthony Reynolds



  Satellite finder -- Heavens Above 

INFORMATION

This is a junior-level orbital mechanics course.  The required prerequisite is Dynamics.  We will cover basic topics in analytical dynamics, two body orbits and the initial value problem, the two body orbital boundary value problem, Earth coverage and space mission geometry, non-Keplerian effects, orbital maneuvers and rendezvous, and interplanetary transfer; fundamentals of ascent flight mechanics, launch vehicle selection, and fundamentals of entry flight mechanics. 

Required Text: Orbital Mechanics for Engineering Students, by Curtis

Recommended Texts: Mechanics, by Symon   QC 125 .S98 1971
                                        Solar System Dynamics, by Murray & Dermott   QB 500.5 .M87 1999

                                        Orbital Mechanics,
by Lodgson   TL 1050 .L59 1998
                                        Celestial Mechanics, by Moulton (Reynolds' office)
Supplementary books:  Amospheric and space flight dynamics, by Tewari  TL 1050 .T49 2007
                                         Rocket science in the second millenium, by Zaehringer  TL 782 .Z29 2004
                                        Theory of Orbital Motion, by Tan  QB 355 .T36 2008
                                        Fundamentals of Celestial Mechanics, by Danby  QB 351 .D3
Collateral reading:        The Physics of Solar SailsNASA CD-ROM  Oct 2003 Disc 2 (Special collections)
                                        Newton's clock: Chaos in the solar system, by Peterson  QB 351 .P48 1993
                                        Analytical Mechanics of space systems, by Schaub  QB 350.5 .S33 2003 (with CD-ROM)
                                        Methods of Celestial Mechanics, by Brouwer  QB 351 .B7 1961
                                        Methods of orbit determination for the microcomputer, by Boulet  QB 355 .B68 1991
                                        The determination of orbits, by Dubiago  QB 355 .D813 (Special Collections)
                                        Orbital motion, by Roy  QB 355 .R69 2005
                                        Adventures in Celestial Mechanics, by Szebehely  QB 355 .S974 1998
                                        The physics of stars simulated in three dimensions, by LLNL  QB 460 .L39 2002
                                        World geodetic system, 1984 (WGS-84) manualQB 275 .W67
                                        Geodesy for the layman, by Burkard  QB 281 .G46 1968 (download here)


Recommended Hypertext:  Hyperphysics


See the syllabus for more detailed information.

What is physics?
What is required to succeed in physics?
What should you be able to do after this course?
How to study - by students, by Carl Wieman, Nobelist

How to read textbooks - LangSivjee 

How to solve problems - Hubsch, Reynolds  - see Sample Solution below

How to take tests 

How to get a good grade  - Wiesenfeld

  Revised Schedule of problem sets 

NUMERICAL PROJECT
1. Read "The restricted 3-body problem (2D)"
2. Download  restricted2d.m  and  fnewton.m 
3. Follow the instructions here 

You should finish parts 1-4 by the end of October.
Parts 5 and 6 are more involved, and you can spend November working on those and writing up your report.

MATLAB
short tutorial 
 fixed point iteration 

Root-finding in Excel 

Algorithms from Appendix D of Curtis:
App D.2
  kepler_E.m 
  Example_3_02.m 
App D.3
  kepler_H.m 
  Example_3_05.m 
App D.4
  stumpS.m 
  stumpC.m 
App D.5
  kepler_U.m 
  Example_3_06.m   Algorithm_3_03.m 
App D.6
  f_and_g.m 
  fDot_and_gDot.m 
App D.7
  rv_from_r0v0.m 
  Example_3_07.m    Algorithm_3_04.m 
App D.8
  coe_from_sv.m 
  Example_4_03.m    Algorithm_4_01.m 
App D.9 
  sv_from_coe.m 
  Example_4_05.m    Algorithm_4_02.m 
App D.10
  gibbs.m 
  Example_5_01.m 
App D.11
  lambert.m 
  Example_5_02.m 
App D.12
  J0.m 
  Example_5_04.m 
App D.13
  LST.m 
  Example_5_06.m 
App D.14
  rv_from_observe.m 
  Example_5_10.m 
App D.15
  gauss.m  
  Example_5_11.m 




COURSE LINKS


NASA's Horizons  System 
NASA's  STEREO  mission -  orbit movies  
Orbit diagrams for all asteroids and comets 
The Full Moon atlas   (orientation map)  Tour the moon with "Google Moon
Determination of the geocentric gravitational constant  (a more recent value here)
Nice graphic of all of man's spacecraft 

Mathematical References
Symon, "Mechanics" Chapter 7 - Moving Coordinate Systems 
Kline, "Mathematical Thought," Chapter 23 -  Plane and Space Curves - osculating planes 
Reynolds,  Conic sections 
Shanks, "Precalculus," Chapter 18 -  Conic Sections  
Reynolds, Binary star orbits 

Earth's Oblateness
  Newton's shell theorems 
  A Field Theory Primer 
  The Earth's Gravitational Field 
 
Earth's J2 is changing!  ( Post Glacial Rebound of the Earth's crust)
  Regression of nodes video  -  sun-synchronous video 
  What is the geoid? 


Miscellaneous Links
Definition of different frames of reference 
Cool n-body orbits here (Cris Moore, Santa Fe Institute) and here (Michael Nauenberg, Univ California, Santa Cruz)

The Earth's seasons: equinoxes and solstices 
Lecar, et al., Chaos in the Solar System, ARAA 2001.

Time
  Julian Date Calendar  from "Observing Variable Stars," by David H. Levy (Cambridge U Press, 1989)
  Julian Date converter  from the US Naval Observatory
  Excerpts from The Observer's Handbook, 1990 


Mars Odyssey transfer orbit
   A Type I trajectory  -  plot 
   aerobraking 
   more videos  -  interplanetary trajectories   -   Trajectory analysis 


Mariner 10 trajectory


Similar courses at other universities

Virginia Tech --- Spacecraft Dynamics and Control  
Univ Minnesota --- Notes by Willard Miller 


Articles
  The method of least squares to invert an orbit problem, Am J Phys 71(12) 1268-1275 (2003)