
PS 320 - Classical Mechanics
Reynolds problems

1. Rope

A uniform rope of length L and mass M rests on a table.

(a) If you lift one end of the rope upward with a constant speed v, show that the
vertical position of the rope’s instantaneous center of mass moves upward with constant
acceleration, and determine its value. That is, show that the vertical component of
the acceleration of the center of mass is constant. NOTE: The shape of the portion of
the rope left on the table is unimportant.

(b) Next, suppose you hold the rope suspended in air, with its lower end just touching
the table. If you now lower the rope with a constant speed v onto the table, show that
the rope’s center of mass has precisely the same upward, constant acceleration as in
part (a).

2. Rotating spring and bob

A bob of mass m is attached to a spring having spring constant k, and the system
is whirled around in a horizontal circle at angular velocity ω. In the initial (relaxed)
condition the distance of the center of mass of the bob from the axis of rotation is r0.
Find the steady-state distance, r, of the bob from the axis of rotation as a function of
the imposed value of ω. Interpret the mathematical result by describing the physical
effects predicted.

3. Pedagogical machine I

Consider the “pedagogical machine” shown below. Mass 2 and mass 3 are connected
by a rope that is hung over a pulley, and mass 1 is free to move horizontally on the
table. All the surfaces are frictionless, and mass 3 does not touch mass 1. Find the
initial acceleration of mass 1.

4. Pedagogical machine II

Consider the “pedagogical machine” shown below. Mass 2 and mass 3 are connected
by a rope that is hung over a pulley, and mass 1 is free to move horizontally on the
table. All the surfaces are frictionless, and mass 3 is confined to a frictionless channel
in mass 1. Find the acceleration of mass 1.
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5. Traffic

A motorist is approaching a green traffic light with speed v0 when the light turns to
amber.

(a) If his reaction time is τ , during which he makes his decision to stop and applies his
foot to the brake, and if his maximum braking deceleration is a, what is the minimum
distance smin from the intersection at the moment the light turns to amber in which
he can bring his car to a stop?

(b) If the amber light remains on for a time t before turning to red, what is the
maximum distance smax from the intersection at the moment the light turns to amber
such that he can continue into the intersection at speed v0 without running the red
light?

(c) Show that if his initial speed v0 is greater than

v0,max = 2a(t− τ),

there will be a range of distances from the intersection such that he can neither stop
in time nor continue through without running the red light.

(d) Make some reasonable estimates of τ , t, and a, and calculate v0,max in miles per
hour. If v0 = 2

3
v0,max, calculate smin and smax.

6. Attractive potential well I

A particle of mass m has speed v = α/x, where x is its displacement. Find the force
F (x) responsible for this motion, and the potential energy function U(x) responsible
for this force.

7. Two masses, one swinging

The equations of motion for two masses, one swinging, are given by Morin on page 15,
Eqs. (1.16)

2r̈ = rθ̇2 − g(1− cos θ),

θ̈ = −2ṙθ̇

r
− g sin θ

r
.

Linearize these equations for small θ and small ε, where r = r0 + ε (r0 is a constant).
Retain only linear terms, i.e., only those to the first power in any combination of θ and
ε and their time derivatives. What type of system does this describe?
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8. Weight on a sliding scale

A person of mass m stands on a platform (of mass M) that is sliding down a frictionless
inclined plane, as in the figure. What is the weight that would be recorded by a scale
on the platform? That is, calculate the normal force between the platform and the
person. Of course, there must be static friction between the platform and the person
in order for the person to remain stationary with respect to the platform. HINT: Draw
free body diagrams for the person and the platform, and solve for the acceleration and
the various normal forces and friction forces.

9. Water droplet I

Solve the equation for the velocity of a raindrop

dv

dt
= g − kv2

that results from assuming that it collects water at a rate proportional to both its mass
and velocity (ṁ = kmv). This nonlinear, ordinary differential equation is known as
a Riccati equation, after the man who developed a method to solve equations of this
type. His method is to transform it into a linear equation, solve this linear equation,
and finally make the inverse transformation. Use the following transformation

z(t) =
1

v(t)−
√
g/k

to obtain a differential equation for z(t). It is a linear equation, so you can solve it.
Then apply the inverse transformation

v(t) =
1

z(t)
+
√
g/k

to obtain v(t).

10. Water droplet II

A water droplet falling in the atmosphere is spherical. Assume that as a spherical
water droplet passes through a cloud, it acquires mass at a rate proportional to kA
where k is a positive constant and A is its cross-sectional area. Consider a droplet of
initial radius r0 that enters a cloud with velocity v0. Assume no resistive force. Show
(a) that the radius increases linearly with time, and (b) that if r0 is negligibly small
then the speed increases linearly with time within the cloud.
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11. Attractive potential well II

Consider a particle moving in the region x > 0 under the influence of the potential
energy function

U(x) = U0

(
a

x
+
x

a

)
,

where U0 and a are positive constants. Plot the potential (without your graphing
calculator!), find the equilibrium points, and determine whether they are maxima or
minima.

12. Three superballs

Solve the superball problem, but this time use three balls. If the masses satisfy the
inequality

m1 � m2 � m3,

and if the heaviest ball (m1) is on the bottom with the lightest ball (m3) on top, find
(approximately) the height that m3 bounces to. Assume that the balls have negligible
radii, and that the initial height is h. State clearly all the approximations that you
use.

Extra credit: Can you find the height that the top ball bounces to if there are N
superballs? Assume that the masses satisfy the inequality as above.

13. Rocket

A rocket starts from rest in free space by emitting mass. At what fraction of the initial
mass is the momentum a maximum?

14. Chain and scale

A chain of mass M and length L is suspended vertically with its lowest end touching
a scale. The chain is released and falls onto the scale. What is the reading of the scale
(i.e., the force that the scale must exert upward) when a length of chain, x, has fallen
(i.e., as a function of time)? (Hint: Consider the change in momentum when a length
of chain dx falls on the scale in a time dt, and don’t forget about the portion of the
chain that is alreadly lying on the scale. The maximum reading of the scale is 3Mg.)

15. Drag on an angled, flat surface

Show that the drag force experienced by a flat surface of cross-sectional area A moving
through air of density ρ with speed V is given by

Fd = (1 + cos 2θ)AρV 2,

where the surface is inclined at an angle θ with respect to the direction of motion, i.e.,
θ = 0 denotes a surface perpendicular to the direction of motion. Assume that the gas
particles are initially motionless, and that the collisions between the gas particles and
the sphere are perfectly elastic. Note: For each collision there will be a component of
∆p perpendicular to the direction of motion, but these will all cancel for a symmetric
object. We are only interested in the component of ∆p parallel to the direction of
motion because that is what causes drag.
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16. Drag on a sphere

Show that the drag force experienced by a sphere of cross-sectional area A moving
through air of density ρ with speed V is given by

Fd = AρV 2.

Assume that the gas particles are initially motionless, and that the collisions between
the gas particles and the sphere are perfectly elastic. To show this, I suggest using
the result that the drag force on an angled flat surface is Fd = (1 + 2 cos 2θ)AρV 2,
where θ is the angle with respect to the direction of motion, and then breaking up
the front surface of the sphere into concentric rings that have the same angle of attack
(relative to the direction of motion). Finally, integrating over all concentric rings will
result in the total drag force. Note: For each collision there will be a component of
∆p perpendicular to the direction of motion, but these will all cancel for a symmetric
object. We are only interested in the component of ∆p parallel to the direction of
motion because that is what causes drag.

17. Neutron star

A neutron star is a collection of neutrons bound together by their mutual gravitation
with a density comparable to that of an atomic nucleus (approximately 1012 g/cm3).
Assuming that the neutron star is a sphere, show that the maximum frequency with
which it may rotate (if mass is not to fly off at the equator) is f = (ρG/3π)1/2, where
ρ is the density. Calculate f for a density of 1012 g/cm3. It is now accepted that
pulsars, which emit regular bursts of radiation at repetition rates up to about 30/sec,
are rotating neutron stars.

18. A massive sphere

Consider a sphere of mass M where the gravitational field vector g is independent of
the the radial position r within the sphere (of course it falls of like r−2 outside the
sphere). Find the function describing the mass density ρ(r) as a function of radial
position. Note: There is spherical symmetry so that ρ does not depend on either of
the other two spherical coordinates, θ and φ. (answer: ρ(r) = M/(2πR2r))

19. Sheet and sphere

A uniform solid sphere of mass M and radius R is fixed a distance h above a thin
infinite sheet of mass density σ (mass per unit area). With what force does the sphere
attract the sheet? (answer: 2πGMσ)

20. Self-gravitating cloud

Show that the gravitational self energy (i.e., the energy of assembly piecewise from
infinity) of a uniform sphere of mass M and radius R is

U = −3

5

GM2

R
.

5



HINT: Calculate the work done to bring a mass dm in from infinity and spread it
uniformly over the surface of the mass m that is already assembled. Then integrate
over the entire mass M .

21. The proto-sun and Kelvin

The gravitational self-energy is the amount of energy released when a cloud of gas
and dust contracts (gravitationally) into a protostar. This gravitational energy is
ultimately converted into light, and is what allows protostars to shine before the density
and temperature at their center are large enough to trigger nuclear reactions. In the
mid-nineteenth century, nuclear reactions were not known, and Lord Kelvin (William
Thomson) calculated the lifetime of the sun in the following manner.

(a) Given the Sun’s current luminosity (rate of energy release in the form of radiation),
calculate the rate at which its radius should decrease (assume that no mass is lost).
HINT: Find the relation between dU/dt and dR/dt from your result in the “Self-
gravitating cloud” problem. Would it be possible for us (with current technologies) to
observe such a radius change? You might have to look up some numbers in the library
for this part.

(b) Assume that the Sun in the past has been shining with its current luminosity. How
long can it have been shining if all that energy had been released during its gravitational
collapse from “infinity” (i.e., a very large interstellar cloud). (answer: about 20 million
years)

Note: The above estimates are incorrect, because there is a theorem of classical me-
chanics known as the “virial theorem,” which says that half of any gravitational energy
released must go into heating the cloud, and the other half can be radiated away. How-
ever, the above estimates were good enough to show that the “Kelvin” time scale is
much shorter than the geologic time scale, and, since the Earth cannot be older than
the Sun, there must be another energy supply for the Sun besides gravitational energy.

“The sun must, therefore, either have beencreated as an active source of heat at some
time of not immeasurable antiquity, by an over-ruling decree; or the heat which he
has already radiated away, and that which he still possesses, must have been acquired
by a natural process, following permanently established laws. Without pronouncing
the former supposition to be essentially incredible, we may safely say that it is in the
highest degree improbabli, if we can show the latter to be not contradictory to known
physical laws. And we do show this and more, by merelypointing to certain actions,
going on before us at present, which, if sufficiently abundant at some past time, must
have given the sun heat enough to account for all we know of his past radiation and
present temperature.”

— Lord Kelvin, 1862

22. Tunnel through the Earth I

A particle is dropped into a hole drilled straight through the center of the Earth.
Neglecting rotational effects and friction, show that the particle’s motion is simple
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harmonic if you assume the Earth is spherical and has a uniform density. Show that
the period of oscillation is about 84 minutes.

23. Tunnel through the Earth II

Let’s try the same thing as with the previous tunnel problem, but this time we do not
require that the tunnel passes through the center of the Earth (although we do require
that the tunnel is straight). That is, the tunnel is a straight chord from one spot on
the surface of the Earth to another. Assuming that the tunnel’s surface is frictionless,
show that the period of oscillation is the same as when the tunnel passes through the
center of the Earth. If you designed a transportation system with this idea, you could
travel from any point on the Earth’s surface to any other in only 42 minutes!

24. Shape of reference geoid

Calculate the shape (r as a function of θ) of the Earth (the reference geoid) in the
following manner. Start with the expression for the gravitational potential

Φ(r, θ) = −GM
r

+
GMJ2a

2

r3
P2(cos θ)− 1

2
r2ω2 sin2 θ,

where a is the Earth’s equatorial radius and ω is its angular velocity of rotation. Choose
the potential surface of interest to be that which passes through the equatorial radius

Φ0 = Φ(a, π/2).

Then, setting Φ = Φ0, and assuming r = a(1 + ε), where |ε| � 1, solve for ε(θ). Use
your knowledge of Taylor series expansions to retain only the largest terms. Then,
compare this shape to that of a true ellipse (i.e., determine ε(θ) for an ellipse and plot
both functions on the same graph).

25. Chain and peg

A flexible chain of length L is hung over a peg with one end slightly longer than
the other. Assuming that the chain slides off with no friction, derive and solve the
differential equation of motion to show that

y(t) = y0 cosh


t
√

2g

L


 ,

where 2y is the difference in length of the two ends, and y = y0 when t = 0. (The
above solution only is valid, of course, for 0 < y < L/2.)

26. Water droplet III

We have modeled a falling raindrop gaining mass in two different ways. Let’s take a
third model, one that I think is more realistic. In this model, the time rate of change
of the mass is proportional to both the cross-sectional area A and the velocity v (but
not the mass directly)

ṁ = kAv,
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where k is a positive constant. This makes more sense because more water vapor will
be swept up by a larger cross-sectional area, and, of course, the faster the drop moves
the faster it will sweep up water vapor. This assumes that the density of the raindrop
and the water vapor is constant.

Derive the dynamical equation for this raindrop, as well as any auxiliary differential
equations that might be needed for a complete solution. (Make sure that all constants
and variables are defined.) Although you do not have to solve it, discuss how you
would go about solving it.

27. Tunnel through the Earth III

In Problem 18 we considered a spherically symmetric distribution of mass M whose
gravitational field is

~g = gr̂,

where g = −MG/R2 is a negative constant. (Recall that this means the mass density
is not constant.) Consider a particle of mass m in a straight frictionless tunnel drilled
through a chord of this sphere (i.e., it does not pass through the center, but its closest
approach to the center is a distance a, similar to Problem 23). (a) What is the compo-
nent of the gravitational force on the particle in the direction of its motion? (b) What
is the potential energy of the particle as a function of its position in the tunnel? (c)
Sketch this potential energy, and describe (qualitatively) the motion of the particle.
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