Appendix H

Reduced Mass

Consider two particles of mass m_{1} and m_{2} located at positions $\overrightarrow{\mathbf{r}}_{1}$ and $\overrightarrow{\mathbf{r}}_{2}$ respectively, as shown in Fig. H.1. If, in addition to the forces that they exert on each other, there is an external force $\overrightarrow{\mathbf{F}}_{\text {ext }}$ that is exerted on each of them, then the equations of motion for each of the particles are

$$
\begin{align*}
& \overrightarrow{\mathbf{F}}_{\mathrm{ext}}+\overrightarrow{\mathbf{F}}_{21}=m_{1} \frac{d^{2}}{d t^{2}} \overrightarrow{\mathbf{r}}_{1}, \tag{H.1}\\
& \overrightarrow{\mathbf{F}}_{\mathrm{ext}}+\overrightarrow{\mathbf{F}}_{12}=m_{2} \frac{d^{2}}{d t^{2}} \overrightarrow{\mathbf{r}}_{2} \tag{H.2}
\end{align*}
$$

where $\overrightarrow{\mathbf{F}}_{12}$ is the force exerted by m_{1} on m_{2}, and $\overrightarrow{\mathbf{F}}_{12}=-\overrightarrow{\mathbf{F}}_{21}$ (by virtue of Newton's Third Law). The two (vector) dependent variables in this description that are to be solved for as functions of time are $\overrightarrow{\mathbf{r}}_{1}(t)$ and $\overrightarrow{\mathbf{r}}_{2}(t)$. This "two-body problem" can be reduced to an equivalent "one-body problem" by making the following change of variables

$$
\begin{gather*}
\overrightarrow{\mathbf{R}}=\frac{m_{1} \overrightarrow{\mathbf{r}}_{1}+m_{2} \overrightarrow{\mathbf{r}}_{2}}{m_{1}+m_{2}}, \tag{H.3}\\
\overrightarrow{\mathbf{r}}=\overrightarrow{\mathbf{r}}_{1}-\overrightarrow{\mathbf{r}}_{2}
\end{gather*}
$$

where $\overrightarrow{\mathbf{R}}$ is the position of the center of mass of the system and $\overrightarrow{\mathbf{r}}$ is the relative position of the particles. It doesn't matter whether you use the original set of dependent variables,

Figure H.1: Geometry for two particles moving in one coordinate system. If there is no external forces, then only the relative position vector $\overrightarrow{\mathbf{r}}$ is needed.
$\overrightarrow{\mathbf{r}}_{1}(t)$ and $\overrightarrow{\mathbf{r}}_{2}(t)$, or the new set, $\overrightarrow{\mathbf{R}}(t)$ and $\overrightarrow{\mathbf{r}}(t)$. Therefore, in order to recast Eqs. (H.1) and (H.2) we need to invert the transformation in Eq. (H.3) and express $\overrightarrow{\mathbf{r}}_{1}$ and $\overrightarrow{\mathbf{r}}_{2}$ in terms of $\overrightarrow{\mathbf{R}}$ and $\overrightarrow{\mathbf{r}}$. Doing this I obtain

$$
\begin{align*}
& \overrightarrow{\mathbf{r}}_{1}=\frac{\left(m_{1}+m_{2}\right) \overrightarrow{\mathbf{R}}+m_{2} \overrightarrow{\mathbf{r}}}{m_{1}+m_{2}}, \tag{H.4}\\
& \overrightarrow{\mathbf{r}}_{2}=\frac{\left(m_{1}+m_{2}\right) \overrightarrow{\mathbf{R}}-m_{1} \overrightarrow{\mathbf{r}}}{m_{1}+m_{2}}
\end{align*}
$$

Plugging these into the original equations of motion, (H.1) and (H.2), I obtain two new equations of motion, for $\overrightarrow{\mathbf{R}}$ and $\overrightarrow{\mathbf{r}}$. First, adding (H.1) and (H.2) gives

$$
\begin{equation*}
2 \overrightarrow{\mathbf{F}}_{\mathrm{ext}}=\left(m_{1}+m_{2}\right) \frac{d^{2}}{d t^{2}} \overrightarrow{\mathbf{R}} \tag{H.5}
\end{equation*}
$$

and then subtracting (H.2) from (H.1) results in

$$
\begin{align*}
\overrightarrow{\mathbf{F}}_{12} & =\left(\frac{m_{1}-m_{2}}{2}\right) \frac{d^{2}}{d t^{2}} \overrightarrow{\mathbf{R}}+\frac{m_{1} m_{2}}{m_{1}+m_{2}} \frac{d^{2}}{d t^{2}} \overrightarrow{\mathbf{r}} \\
& =\left(\frac{m_{1}-m_{2}}{m_{1}+m_{2}}\right) \overrightarrow{\mathbf{F}}_{\mathrm{ext}}+\frac{m_{1} m_{2}}{m_{1}+m_{2}} \frac{d^{2}}{d t^{2}} \overrightarrow{\mathbf{r}} \tag{H.6}
\end{align*}
$$

Eq. (H.5) is simply the equation of motion for the entire system-the total force, $2 \overrightarrow{\mathbf{F}}_{\text {ext }}$, is equal to the total mass, $\left(m_{1}+m_{2}\right)$, times the acceleration of the center of mass. The first term in Eq. (H.6) is zero if $\overrightarrow{\mathbf{F}}_{\text {ext }}=0$, so that in the absence of external forces the internal dynamics are determined by

$$
\begin{equation*}
\overrightarrow{\mathbf{F}}=\mu \frac{d^{2}}{d t^{2}} \overrightarrow{\mathbf{r}} \tag{H.7}
\end{equation*}
$$

where $\overrightarrow{\mathbf{F}}=\overrightarrow{\mathbf{F}}_{12}$ is the internal force between the two particles, and

$$
\begin{equation*}
\mu=\frac{m_{1} m_{2}}{m_{1}+m_{2}} \tag{H.8}
\end{equation*}
$$

is called the "reduced mass." Equation (H.7) is identical to that for one particle of mass μ moving in a central force $\overrightarrow{\mathbf{F}}$. Another, more suggestive, way of expressing the reduced mass is

$$
\frac{1}{\mu}=\frac{1}{m_{1}}+\frac{1}{m_{2}} .
$$

The net result of this transformation has been to reduce a two-body problem to a one-body problem. For many situations, $m_{1} \gg m_{2}$, and the approximation $\mu \approx m_{2}$ is valid. Such is the case, for example, for a low-mass planet orbiting a high-mass star.

