PS 303 - Modern Physics - Test \#2

Name \qquad Score: \square /100 Total points: \square /
Approximate grade \square
Relax. Look over all questions before you begin, and attempt the easier ones first. Place your answers in the boxes provided. To receive full credit you must SHOW your work and EXPLAIN your method. You may work on the back of each sheet.

$$
\begin{gathered}
t=\gamma_{r}\left(t^{\prime}+\beta_{r} \frac{x^{\prime}}{c}\right) \quad \frac{x}{c}=\gamma_{r}\left(\beta_{r} t^{\prime}+\frac{x^{\prime}}{c}\right) \quad(\Delta t)^{2}-\frac{(\Delta x)^{2}}{c^{2}}=\left(\Delta t^{\prime}\right)^{2}-\frac{\left(\Delta x^{\prime}\right)^{2}}{c^{2}} \\
r_{n}=\left(\frac{4 \pi \epsilon_{0} \hbar^{2}}{m_{e} Z e^{2}}\right) n^{2} \quad v_{n}^{2} r_{n}=\frac{1}{4 \pi \epsilon_{0}} \frac{Z e^{2}}{m_{e}} \quad E_{n}=-\left(\frac{m_{e} Z^{2} e^{4}}{32 \pi^{2} \epsilon_{0}^{2} \hbar^{2}}\right) \frac{1}{n^{2}} \quad E=h \nu \quad p=\frac{h}{\lambda} \\
E=\gamma m c^{2} \quad \vec{p}=\gamma m \vec{v} \quad E^{2}=p^{2} c^{2}+\left(m c^{2}\right)^{2} \quad v_{x}=\frac{u+v_{x}^{\prime}}{1+\frac{u v_{x}^{\prime}}{c^{2}}} \quad N=N_{0} e^{-\lambda t}
\end{gathered}
$$

