PS 303 — Modern Physics — Test #2

Name _							Scor	e:	/100	T	otal po	ints:			_
										A	pproxi	mate	grade		
Relax.	Look	over	all	questions	be fore	you	begin,	and	at tempt	the	easier	ones	first.	Plac	ce

Relax. Look over all questions before you begin, and attempt the easier ones first. Place your answers in the boxes provided. To receive full credit you must SHOW your work and EXPLAIN your method. You may work on the back of each sheet.

$$t = \gamma_r \left(t' + \beta_r \frac{x'}{c} \right) \quad \frac{x}{c} = \gamma_r \left(\beta_r t' + \frac{x'}{c} \right) \quad (\Delta t)^2 - \frac{(\Delta x)^2}{c^2} = (\Delta t')^2 - \frac{(\Delta x')^2}{c^2}$$

$$r_n = \left(\frac{4\pi\epsilon_0 \hbar^2}{m_e Z e^2} \right) n^2 \quad v_n^2 r_n = \frac{1}{4\pi\epsilon_0} \frac{Z e^2}{m_e} \quad E_n = -\left(\frac{m_e Z^2 e^4}{32\pi^2 \epsilon_0^2 \hbar^2} \right) \frac{1}{n^2} \quad E = h\nu \quad p = \frac{h}{\lambda}$$

$$E = \gamma m c^2 \quad \vec{p} = \gamma m \vec{v} \quad E^2 = p^2 c^2 + (mc^2)^2 \quad v_x = \frac{u + v_x'}{1 + \frac{uv_x'}{c^2}} \quad N = N_0 e^{-\lambda t}$$