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A variation on the “twin paradox” of special relativity is presented wherein twins undergo the
same acceleration for the same length of time, yet they age differently. Although this problem is
simple to solve, it gets to the heart of the behavior of clocks in special relativity and, hopefully, will
help to dispel the notion students develop that the acceleration experienced by a relativistic
traveler is directly related to the rate at which that traveler ages.

L INTRODUCTION

Perhaps the most 1ntr1gu1ng aspects of the special theory
of relativity are those concerning the nature of time and few
problems baffle the beginning student more than the para-
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dox of the identical twins.' In the standard version of the
twin paradox, twin No. 1 remains at home while twin No. 2
travels away at high velocity. Subsequently, No. 2 turns
around, speeds home, and finds that No. 1 has aged more.
This is due, of course, to time dilation, i.e., No. 1 sees No.
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2’s clock running slow. An apparent paradox arises if one
applies the time dilation factor from the second twin’s per-
spective who sees No. 1’s clock running slow and concludes
that twin No. 1 should be the younger. The resolution is
that the time dilation formula of special relativity holds
only in inertial, i.e., nonaccelerating, frames of reference.
Twin No. 1 remains in an inertial frame and correctly ap-
plies the time dilation factor while twin No. 2 had to be
accelerated in order to turn around and return home and,
therefore, may not use the simple time dilation formula.

Although the preceding analysis resolves the paradox,
students often inquire as to “why” the accelerated twin
ages less and “when” the extra aging of the home twin
occurs. These questions are not well defined in the scientif-
ic sense but have promoted a variety of analyses (many can
be found in the pages of this Journal®) which for the most
part have been useful additions to the pedagogy of special
relativity theory. However, many of these analyses are
quite complicated and it is doubtful that the beginning rela-
tivity student gains a great deal of insight from them par-
ticularly concerning the significance of acceleration. It has
often been pointed out that while the acceleration of one
twin is the key to resolution of the paradox, it is wrong to
suppose that reduced aging is a direct result of acceleration.
The age difference of the twins is proportional to the length
of the trip while the period of acceleration is determined
only by how long it takes to turn around and is independent
of the length of the trip and, hence, the final age difference
of the twins.

The above argument notwithstanding, many students of
relativity still harbor the feeling that it is the acceleration
that in some way causes the traveling twin to age more
slowly. The following simple “twin paradox” is offered
both to dispel this notion and at the same time emphasize
the fundamental principle that underlies most if not all of
the apparent paradoxes in special relativity. In the “case of
the identically accelerated twins,” twins who undergo iden-
tical accelerations for the same length of time, nevertheless,
age differently. Although I am sure that the problem of
identically accelerated twins is well known in one form or
another to many,’ I have been amazed over the years at
how many of my colleagues have initially professed disbe-
lief at the outcome. What the student gains from studying
this problem is a grasp of the significance of the problem of
clock synchronization in special relativity and a simple ex-
ample of how acceleration from one inertial frame to an-
other renders two initially synchronized clocks unsyn-
chronized. The latter is a convenient point of departure for
a discussion of the behavior of stationary clocks in a uni-
form gravitational field.

11. THE CASE OF THE IDENTICALLY
ACCELERATED TWINS

Suppose two twins, Dick and Jane, own identical space-
ships each containing the same amount of fuel. Jane’s ship
is initially positioned a distance x, to the right of Dick’s, as
shown in Fig. 1. Mom and Dad remain at home. The twins
synchronized their watches (according to special relativity
all observers in this inertial frame agree the clocks are syn-
chronized) and at precisely 12:00 noon start their engines
and accelerate off to the right. After both ships have ex-
pended all their fuel, they will coast at velocities v, and vy,
respectively.

Since their ships are identical and the initial supplies of
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Fig. 1. The twins as they begin their journey.

fuel are the same, the final velocities of the twins will be the
same, v, = Uy, and they will once again be in the same
inertial frame. Upon comparing ships’ logs, they find that
their trips commenced at the same time (initial synchroni-
zation of clocks) and that they experienced the same accel-
eration (identical spaceships) for the same intervals of
time (identical amounts of fuel). They are astonished,
however, to find that Jane has aged more than Dick! Since
their ships’ logs contain identical entries, we know that the
two were the same age when they completed their journeys.
Therefore, Jane evidently arrived at the new inertial frame
before her brother. They also discover that their ships are
further apart than when they started. See Fig. 2.

Both of these results are easily derived from the observa-
tions of their parents who remained at home. According to
Mom and Dad, the clocks and, hence, the ages of the twins
remain the same throughout their journey. This must be so
since they undergo identical accelerations and, therefore,
their velocities are always the same. It also follows that,
according to Mom and Dad, the distance between the two
ships is always x,. The age difference and separation of the
twins in their own frame are then easily determined by the
Lorentz transformations relating the two frames, i.e.,

x' =y(x —uvt) (1)
and
t'=y(t—vx/c?), (2)

where y = (1 — v*/c?) =% v = vp, = vy; c is the speed of
light; x and ¢ are the length and time coordinates of the
parents’ frame; and x’ and ¢ ' are the coordinates of the final
inertial frame of the twins.

Now consider two events in the frame of the twins: the
times at which their rocket engines shut off and they arrive
in their new inertial frame. Suppose these occur on the
birthdays of the twins (remember their ships’ logs are iden-
tical). From Eq. (2), the times of these events as seen in the
inertial frame of the twins are related to the times in the

)
1

S X,

Fig. 2. The twins after having arrived at their new inertial frame.
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frame of the parents by
tp =y(lp —/vxD/cz),
t; =yt —vx;/c?),

where the subscripts indicate the birthdays of Dick and
Jane, respectively. Therefore,

th —t] =v(tp — b)) —v(xp — x;)/. (3)

In Mom and Dad’s frame, the birthdays occur simulta-
neously, i.e.,t, — ¢; = 0, and the twins are always separat-
ed by a distance x,. Then Eq. (3) yields

th —t) = yvxy/c (4)
That is, according to the twins, Jane’s birthday occurs
yux,/c? before Dick’s; consequently, Jane is older. A simi-
lar calculation shows that the twins discover the distance
separating the two ships after the journey is yx,.

The above results may seem paradoxical. The two twins
underwent identical accelerations for identical times and
yet aged differently. Of course, there is no paradox. The
situations of the twins are not exactly the same. Jane start-
ed the trip a distance x, from Dick in the direction of the
subsequent acceleration. Had the two accelerated to the
left it would have been Dick who aged more. If the accel-
eration had been perpendicular to their separation, the
problem would be symmetrical and the twins would have
aged the same.

I11. DISCUSSION

At the root of the twin paradox is the problem of syn-
chronization of clocks. Two clocks separated by a proper
distance x, that are synchronized in their rest frame appear
unsynchronized by an amount yx,v/c* to an observer mov-
ing with velocity v in the direction of the separation of the
clocks. In the above example, according to an observer in
the primed frame, the clocks of the two twins before the trip
were out of synchronization by yx.v/c?. After their trip,
the twins are also in the primed frame and find, indeed, that
one twin is older by just this amount. According to special
relativity, initially synchronized clocks that accelerate
from one inertial frame to another will lose their synchroni-
zation (if the acceleration is in the direction of their separa-
tion).

One can explain the ordinary twin paradox in these
terms. According to twin No. 2 (see Sec. I above), twin No.
1 ages less rapidly by a factor 1/y during the entire trip.
However, because of the acceleration at turnaround, there
is a change in synchronization between the two twins’
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clocks. This change more than compensates for the appar-
ent slowdown in twin No. 1’s aging and at the end of the
trip twin No. 1 is the older of the two.

The change in synchronization of accelerated clocks also
provides important insight into the behavior of clocks in a
uniform gravitational field. According to the principle of
equivalence,* physics in a uniform gravitational field is the
same as physics in an accelerated frame of reference. From
the above discussion, two accelerated clocks that are sepa-
rated along the direction of acceleration do not remain in
synchronization; rather, the forward clock runs fast. Simi-
larly, two clocks at rest in a uniform gravitational field are
in a sense forever being accelerated into new frames and,
therefore, the “forward” clock, i.e., the clock at the higher
gravitational potential, runs faster. This is precisely the
cause of gravitational redshift in a uniform gravitational
field.?

Perhaps the most important lesson of the “case of the
identically accelerated twins” is that statements in special
relativity about the rates of clocks that are in motion rela-
tive to each other always involve a comparison of clocks
that are spatially separated and thus constitute a nonlocal
system. The twins in the above paradox had identical local
experiences (same accelerations for same time intervals)
but not identical global experiences (one twin was in front
of the other). It is this global asymmetry and not any local
asymmetry, such as different accelerations, which lies at
the heart of the paradox of the twins.
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2See, for example, Robert H. Romer, “Twin Paradox in Special Relativi-
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celerated Clocks,” Am. J. Phys. 47, 431-435 (1979); and Edward A.
Desloge and R. J. Philpott, “Uniformly Accelerated Reference Frames
in Special Relativity,” Am. J. Phys. 55, 252261 (1987). An interesting
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W. Durso and Howard W. Nicholson, Jr., “Non-uniform Gravitational
Fields and Clock Paradoxes,” Am. J. Phys. 41, 1078-1080 (1973).
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