
Topic 14 | Spacetime Diagrams

Graphical representations can make kinematic concepts less abstract and also give
useful information. For example, not only does a v-t graph for one-dimensional
motion show the velocity at any instant, but its slopes give accelerations, and
areas under it give displacements. For relativity the transformations y9 = y and
z9 = z are easy to understand, so we’ll just consider the ±x directions.

The usual convention in relativity is to graph ct on the vertical axis and x on
the horizontal axis. Such a graph provides us with a spacetime diagram. We use
ct rather than t so that both scales can have the same unit and the same scale. The
path of a particle forms a line, called its worldline, as the particle moves in one-
dimensional motion. At any point, the slope of the worldline is d(ct)/dx = (c dt)/(v
dt) = c/v. Thus a light pulse with v = ±c has a slope of ±1 on a spacetime diagram,
giving angles of 45° with the ± x-axes. Since material particles have speeds less
than c, all worldlines for material particles are steeper than those 45° angles. That
is, nothing known has a worldline with a slope between −1 and 1. The worldline
of a particle at rest is vertical and so has infinite slope. Figure T14.1 shows six
worldlines, three of light pulses and three of particles. Can you show that these
six worldlines agree with the statements made in this paragraph about their
slopes?

How does the S 9 reference frame appear on our ct-x spacetime diagram? Recall
that we always set x9 = 0 at x = 0 when t 9 = 0 = t and let S 9 move at a speed u in
the +x-direction. But x9 = 0 all along the ct 9-axis, so x9 = 0 and the ct 9-axis have
a worldline of slope c/u on our ct-x spacetime diagram. For example, if
u = 0.600c, the ct 9-axis is at an angle of arctan(1/0.600) = 59.0° from the x-axis
or 90.0° − 59.0° = 31.0° from the ct-axis.

Surprisingly enough, the x9-axis is not drawn perpendicular to the ct9-axis on
our ct-x spacetime diagram. Since ct 9 = 0 (so t 9 = 0) all along the x 9-axis, the
Lorentz transformation equation for t 9 gives (t − ux/c2) = 0 or ct = (u/c)x for the
x9-axis. Thus the x9-axis is drawn with a slope of u/c on our ct-x spacetime dia-
gram. For u = 0.600c the x9-axis is at an angle of arctan(0.600) = 31.0° from the
x-axis. That is, the x 9-axis makes the same angle with the x-axis as the ct 9-axis
makes with the ct-axis. Figure T14.2 shows that the worldline of a light pulse
leaving x9 = 0 = x at t 9 = 0 = t with a velocity +c bisects the angle between either
set of axes. 
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T14.1 A spacetime diagram showing
worldlines of three light pulses and three
particles. Particles 1 and 2 leave x = 0 at
t = 0, accelerating from rest in opposite
directions.
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T14.2 The ct9- and x9-axes drawn on our
ct-x spacetime diagram. Notice the two
sets of equal angles.

another dot for event 2 (because x2 > x1). How do we read a value
of a point on a graph? We draw a line through that point parallel to
one axis and measure where it intercepts the other axis. Thus to
measure the times of the two events in Mavis’s S 9 frame, in Fig.
T14.2 we draw dashed lines parallel to the x9-axis that intercept the
ct 9-axis at ct19 and ct29. We see that ct29 < ct19, so t29 < t19. The
events are not simultaneous in S 9, and Mavis measures event 2 to
occur before event 1.

Simultaneity on a spacetime diagram
Example

T14.1

Stanley measures events 1 and 2 to occur simultaneously in S at
positions x1 and x2, where x2 > x1. Use our spacetime diagram to
show that Mavis, who moves in the positive x-direction relative to
Stanley, measures event 2 to occur before event 1.

SOLUTION

Events that are simultaneous in S have the same time t, so in Fig.
T14.2 we draw a dashed line parallel to the x-axis (constant t). We
put a dot on that line for event 1, and farther from the ct-axis we put



On our spacetime diagram, the scale for the S 9 axes is not the same as the scale
for the S axes. For example, consider the dashed line x9 = 1 in Fig. T14.3, which
must be drawn parallel to the ct 9-axis. (We have left off the unit for generality; it
could be x9 = 1 meter, x9 = 1 light year, or whatever is convenient.) This dashed
line intercepts the x-axis at ct = 0. Substituting t = 0 in the Lorentz transformation
x 9 = g (x − ut) gives x = 1/g for the x9 = 1 line. In Fig. T14.3, u = 0.60c and this
intercept is at x = 0.80. We can see that the symmetry of our spacetime diagram
gives us the same scaling ratio for the ct9- and ct-axes. To summarize, in compar-
ison to the ct- and x-axes, the ct 9- and x9-axes are rotated through an angle arctan
u/c toward the common v = c = v9 line at 45° and are stretched in scale so that the
x9 = 1 line intercepts the x-axis at x = 1/g .

Let’s finish this discussion with a simple example of length contraction. Mavis,
at rest in frame S 9, holds a meter stick with its left end at x9 = 0 and its right end
at x9 = 1 m. Thus in Fig. T14.3 the units are meters. At any time t 9 measured in
frame S9, the left end is at x9 = 0 (on the ct 9-axis) and the right end is on the x 9 = 1
dashed line. In frame S the positions of both ends of the meter stick are measured
at the same time t, then subtracted to find the length. For instance, at t = 0 (on the
x-axis) we see from Fig. T14.3 that the left end of her stick is at x = 0 and the right
end is at x = (1 m)/g . Thus in S the meter stick has a contracted length of (1 m)/g .
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T14.3 A spacetime diagram for
The dashed line inter-

cepts the x-axis at The
scale of the -axes is greater than that of
the S-axes.

S r
x 5 1/g 5 0.800.

x r 5 1u 5 0.600c.


