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Preface

Tomorrow is going to be wonderful because tonight I do not understand
anything. — Niels Bohr

Introductory physics is usually taught in historical order. The first course is me-
chanics, which was developed in the 17th century, followed by fluids, thermodynamics and
electromagnetism, which were developed in the 18th and 19th centuries. The final piece of
the puzzle, modern physics (or 20th century physics), is left until last, and is also usually
presented in a historical manner. It starts with special relativity, and then progresses
through “old quantum theory” and basic quantum mechanics. Finally, if there is time in
the typical one-semester course, a brief overview of nuclear physics, the standard model
of particle physics, and possible some cosmology is presented. This standard procedure
illustrates the (now discredited) biological dictum, “ontogeny recapitulates phylogeny.”2

However, the brief emphasis placed on particle physics does not give the students a
sense of the “big picture” of the standard model, which is our current best guess for
how things are put together. While a fundamental understanding of the standard model
requires advanced relativity and quantum mechanics, I believe that to be truly a course in
“modern physics,” we must place this modern understanding in a prominent role. Also,
after two or three semesters of physics, students deserve to be shown how all the physics
that they have learned fits together, rather than simply viewing the Bohr model, the
Schrodinger equation, and special relativity, etc., as simply more in a long list of (separate)
topics. For this reason, I start this book with a discussion of the most fundamental
particles, quarks and leptons, and then I progress outward to larger, composite, objects:
nuclei, and then atoms. This is in reverse historical order, but gives the students a coherent
picture of our current knowledge. Of course, some ideas from relativity and quantum
mechanics are needed to understand these fundamental particles, so I have placed a basic
introduction in Chapter 1, and have also introduced physical concepts as needed. Finally,
in the latter part of the book, while covering relativity and quantum theory, I am able
to prove some statements that I had previously only quoted. Therefore, the endpoint
of our study of relativity and quanta is an explanation of our understanding at the most
basic level, i.e., the important applications, rather than simply solving the 1D Schrodinger
equation for various potentials, for example, with no apparent motivation.

It is true that there is much to be learned studying history, and one of the most
important results of a study of physics is to understand precisely how we have come to
our conclusions, and why we think they are correct. That is, how do we know what we
claim to know? What are the experimental clues that lead us to believe that our current

2An idea from developmental biology which states that the embryonic development of an organism
(ontogeny) mirrors the evolutionary development of the species (phylogeny). This theory was first put
forth by Ernst Haeckel (1834-1919). As Haeckel himself wrote in his book Riddle of the Universe at the
Close of the Nineteenth Century (1899), “I established the opposite view, that this history of the embryo
(ontogeny) must be completed by a second, equally valuable, and closely connected branch of thought -
the history of race (phylogeny). Both of these branches of evolutionary science, are, in my opinion, in the
closest causal connection; this arises from the reciprocal action of the laws of heredity and adaptation ...
‘ontogenesis is a brief and rapid recapitulation of phylogenesis, determined by the physiological functions
of heredity (generation) and adaptation (maintenance).’ ”
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model is the best one? And what were the previous models that experiments ruled out?3

Understanding these experimental facts and the logic behind them are
as important as understanding the theoretical constructs upon which
we base our models. As Robert Millikan [Nobel Prize, Physics, 1923]
said, “Science walks forward on two feet, namely theory and experi-
ment ... Sometimes it is one foot which is put forward first, sometimes
the other, but continuous progress is only made by the use of both – by
theorizing and then testing, or by finding new relations in the process
of experimenting and then bringing the theoretical foot up and pushing
it on beyond, and so on in unending alternations.”4 In fact, a thorough
investigation into incorrect models, and the experiments that finally re-
vised (or perhaps completely overthrew) those models, is extremely useful. Those stories
are not the main thrust of this book, however, and have been relegated either to foot-
notes, boxed historical asides, or appendices. Several of the appendices should be studied
thoroughly, as they comprise a significant fraction of the text. The main point, though,
is to describe our current thinking about how the world is put together, what it is made
of, and how the pieces interact. In telling that story the key historical observations and
experiments will be delved into, and pointers to the appropriate appendix will be made
for further study.

This book is divided approximately into three parts. First, Chapter 1 consists of a
brief overview, with statements (not proof) of some of the basic principles of relativity
and quantum mechanics that are needed as a foundation. Second, Chapters 2-4 are in-
troductions to particle physics, nuclear physics, and atomic physics, which bring you up
to speed on the current state-of-the-art. Finally, Chapters 5-7 develop the mathematics
that explain the results stated previously: Chapter 5 is a development of special rela-
tivity; Chapter 6 is a development of “old” quantum theory, and Chapter 7 derives the
full-fledged non-relativistic quantum mechanics.

3Epistemological questions such as these tend to be swept under the rug during a study of classical
physics, partially because the answers seem so self-evident among familiar surroundings. When you study
physics that is further removed from everyday experience, however, such as subatomic particles, these
questions come to the fore, unbidden. A careful consideration of such questions clarifies the role of
classical physics and gives us a deeper understanding of the universe and its inner workings.

4Nobel Lecture, May 23, 1924, The electron and the light-quant from the experimental point of view.
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How to Study

There are as many study methods as there are students, but a few principles are universal,
and there are a few new ones that apply specifically to modern physics. First, do a lot of
outside reading. Unlike in your previous physics courses, which mostly covered classical
physics, which is “normal” and “intuitive,” in modern physics there will be quite a few
new concepts, many of them completely unfamiliar and counter-intuitive, along with lots
of new jargon. One way to become familiar with the concepts and comfortable with the
language is to expose yourself to as many different viewpoints as possible. Not only should
you read this text carefully, but you should read other textbooks and popular accounts.

Second, true physical understanding comes through familiarity with the mathematics.
So, just as in classical physics, problem solving is crucial to building physical intuition.
How best to solve problems? Just as with study habits, there many problem solving
methods, but Descartes developed a method 400 years ago that still works. René Descartes
was one of the first to discuss the so-called “scientific method.” Such a method works as
well for solving problems as it does for investigating nature — this is because they are the
same activity ! Descartes said in Discourse on the Method :

A multitude of laws often hampers justice, so that a state is best governed
when it has only a few laws which are strictly administered; similarly, instead
of the large number of laws which make up logic, I was of the opinion that the
four following laws were perfectly sufficient for me, provided I took the firm
and unwavering resolution to stick to them clearly at all times.

The first was never to accept anything as true if I did not clearly know it to
be so; that is, carefully to avoid precipitate conclusions and preconceptions,
and to include nothing more in my judgement than was presented clearly and
distinctly to my mind, so that I had no reason to doubt it.

The second, to divide each of the difficulties I examined into as many parts as
possible, and as might be necessary for a proper solution.

The third, to conduct my thoughts in an orderly fashion, by starting with the
simplest and most easily known objects, so that I could ascend, little by little,
and step by step, to more complex knowledge; and by giving some order even
to those objects which appeared to have none.

And the last, always to make enumerations so complete, and review so com-
prehensive, that I could be sure of leaving nothing out.

The second and third parts seem to be the most helpful. Break down each problem into
small, easily understood pieces. Solve each piece; then put them together to solve the entire
problem. Some problems appear to be unsolvable at the beginning, but that’s because the
solver tries to do it all at once. Forget about the final answer, but try to obtain information
about a small part of the problem. Once you’ve succeeded there, attack another small
part, then another, etc., and eventually the entire problem will be done.

Finally, in addition to outside reading, I suggested that you read this book. How?
There are many ways to read this book, all of them are viable. It’s not necessary to
read straight through from the beginning to the end (although I have planned this to be
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a coherent strategy for someone who is getting their first glimpse at the subject). But
you can jump around and read the pieces that interest you. The many appendices that
supplement the main text are meant to be read in this serendipitous way. One of the best
recommendations on how to read textbooks is in the book Basic Mathematics by Serge
Lang. In the middle of this book he has a section entitled “On Reading Books,” and I
quote it here in its entirety, because it is difficult to improve on.

On Reading Books

This part of the book can really be read at any time. We put it in the mid-
dle because that’s as good as any place to start reading a book. Very few
books are meant to be read from beginning to end, and there are many ways
of reading a book. One of them is to start in the middle, and go simultane-
ously backwards and forward, looking back for the definitions of any terms you
don’t understand, while going ahead to see applications and motivation, which
are very hard to put coherently in a systematic development. For instance,
although we must do algebra first, it is quite appealing to look simultaneously
at the geometry, in which we use algebraic tools to systematize our geometric
intuition.

In writing the book, the whole subject has to be organized in a totally ordered
way, along lines and pages, which is not the way our brain works naturally. But
it is unavoidable that some topics have to be placed before others, even though
our brain would like to perceive them simultaneously. This simultaneity cannot
be achieved in writing, which thus gives a distortion of the subject. It is clear,
however, that I cannot substitute for you in perceiving various sections of this
book together. You must do that yourself. The book can only help you, and
must be organized so that any theorem or definition which you need can be
easily found.

Another way of reading this book is to start at the beginning, and then skip
what you find obvious or skip what you find boring, while going ahead to
further sections which appeal to you more. If you meet some term you don’t
understand, or if you need some previous theorem to push through the logical
development of that section, you can look back to the proper reference, which
now becomes more appealing to you because you need it for something which
you already find appealing.

Finally, you may want to skim through the book rapidly from beginning to
end, looking just at the statements of theorems, or at the discussions between
theorems, to get an overall impression of the whole subject. Then you can go
back to cover the material more systematically.

Any of these ways is quite valid, and which one you follow depends on your
taste. When you take a course, the material will usually be covered in the
same order as the book, because that is the safest way to keep going logically.
Don’t let that prevent you from experimenting with other ways.
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Chapter 1

Preliminaries

The opinion seems to have got abroad that in a few years all the great physical
constants will have been approximately estimated, and that the only occupation
which will then be left to men of science will be to carry on these measurements
to another place of decimals. — James Clerk Maxwell, 1871

This book starts with a description of our present understanding of how the universe
works. Because this description relies on physics that we will not delve into until later, I
must first present some basic results of special relativity and quantum mechanics (before
we actually study them in detail in Chapters 5 and 7) so that the description makes sense.
You will have to take my word that I am telling the truth; I can’t prove these results
until later, but they are necessary for understanding the basics of particle physics, nuclear
physics, and atomic physics, all of which we will cover in the next few chapters.

In addition, it is helpful to have some idea of the historical sequence that physics went
through, so I give a brief synopsis of the state of affairs at the beginning of the period we
wish to study, and also at the end (in order to proceed, it is helpful to know where we are
going).

1.1 Historical Preview

Physics circa 1900

In 1895 (before the discovery of X-rays,1 radioactivity,2 and the electron3) there were two
forces: the gravitational force and electromagnetic force; there were two object properties:
mass and charge; and there was one dynamical law determining how objects respond to
those forces: Newton’s law of motion. (Well, Newton actually enumerated three laws,

1Wilhelm Conrad Roentgen discovered X-rays on November 8, 1895, and was awarded the first Nobel
Prize in Physics for 1901.

2Henri Becquerel discovered the natural radioactivity of uranium in early 1896 while investigating
X-rays, and shared the Nobel Prize in Physics for 1903 with Pierre and Marie Curie.

3Joseph John Thomson discovered the electron in 1897 and was awarded the Nobel Prize in Physics
for 1906. In reality, Thomson measured the charge-to-mass ratio of the electron in 1897, and it wasn’t
until 1899 that he was able to make an independent measurement of its charge (and hence its mass); the
latter date, therefore, can be more definitively called the date of discovery.

1



2 CHAPTER 1. PRELIMINARIES

but they act as one coherent group.) These, in principle, are all that you need to predict
how objects will behave dynamically. The object properties determine the strength of the
forces that act on the objects, and Newton’s dynamical laws predict the future response
to those forces. Thus, the universe was envisioned as a great clock—once started it would
continue to run forever. In fact, if one were able to measure (with infinite precision, of
course) the positions and velocities of all objects in the universe at a specific time (i.e.,
the “state” of the universe), then the laws of dynamics along with a knowledge of the
forces would allow one to predict their future positions and velocities. This is known as
the “mechanistic worldview” or the “Newtonian worldview.”

In addition, the thermodynamic properties of matter and its in-
teraction with light were relatively well understood. (Some of these
properties are summarized in Appendix A.) So much so, in fact, that
in 1875 the head of the physics department at the University of Munich
advised Max Planck [Nobel Prize, Physics, 1918], the future progenitor
of quantum theory, to not study physics because, as he put it, “Physics
is a branch of knowledge that is just about complete. The important
discoveries, all of them, have been made. It is hardly worth entering
physics anymore.”

However, there was little understanding of what matter was made.
No theory satisfactorily explained why a particular object was endowed with its particular
values of mass and charge. Many elements (such as nitrogen and oxygen) were known,
and each element had a known molar mass and volume density, but no underlying reason
for these properties had been successfully proposed. As you might guess, there had been
hints about the microscopic structure of matter. For instance, the atomic hypothesis
had been around since Democritus (c. 400 BCE), who postulated that rather than being
a continuum, matter was made up of small discrete objects called “atoms”. The word
atoms comes from the Greek word ατoµoσ, which means “that which cannot be cut,” or
“uncuttable.” However, this hypothesis was nothing more than supposition until John
Dalton proposed his law of multiple proportions in 1803, which states that when two
elements combine to form more than one compound, the ratios of the weights are ratios
of small integers.

One of the clearest sets of data was the ratio of the amounts of oxygen and nitrogen
needed to make various compounds.4 Experiment showed that

mO

mN

= 0.57, 1.13, 1.71, 2.29, 2.86 (1.1)

for the five compounds nitrous oxide (N2O), nitric oxide (NO), nitrous anhydride (N2O3),
nitrogen dioxide (NO2), and nitric anhydride (N2O5), respectively. The five ratios are very
close to the integers 1:2:3:4:5. While this suggests that matter is made of discrete clumps, it
would take another hundred years before the concept was accepted by the scientific commu-
nity.5

4Friedman and Sartori, The Classical Atom, page 1.
5For a detailed look at the history of the atomic concept, see Boorse and Motz, The World of the

Atom, which contains reprints from Lucretius to Einstein concerning the existence of atoms and subatomic
particles.
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smaller → (h)
faster ↓ Newton quantum

(c) relativity quantum field theory

Figure 1.1: A schematic diagram of dynamical theories. Newton’s Laws are approxi-
mately valid when velocities are small compared with the speed of light, c, and another
quantity, called “action,” is large compared with Planck’s constant, h. Otherwise, quan-
tum mechanics or special relativity is needed, or perhaps both. When both are needed,
the combination results in a “quantum field theory,” such as Quantum Electrodynamics
(QED) which describes electromagnetism, and Quantum Chromodynamics (QCD) which
describes the strong/color force.

The discrete clumps turned out not to have exactly integer mass ratios,
a fact that was first conclusively shown in 1920 by William Aston, who,
along with Ernest Rutherford [Nobel Prize, Chemistry, 1908] developed
an accurate mass spectrograph, and whose work included the discovery
of isotopes of non-radioactive elements.

Physics circa 2000

The current view of the fundamental nature of matter and the ways
in which it interacts is certainly more detailed than in 1895, and it is
tempting to believe that we have reached “the end.” However, while
there are mathematical reasons that lead us to believe we might be near the “Theory of
Everything,” or a “Grand Unified Theory,” past experience has at least humbled physicists
of the present day and they understand that what we call “fundamental” today may turn
out not to be. In fact, the situation today may be compared with that of 1895. We know
of more (and smaller) particles, e.g., quarks, but, for example, we still have no idea why
the quarks have fractional electric charge or why they have spin 1

2
, nor even why any of

the particles have the masses they do.
We now know of four forces: the gravitational force and electromagnetic force, but

also the strong nuclear force (or “color” force) and the weak nuclear force. We also can
enumerate many more properties (or attributes) of subatomic particles: mass, charge, and
color, which are related to the forces, as well as others that make sense only within the
quantum description of matter, properties like spin and strangeness. Finally, we have
expanded Newton’s description of how these particles interact, with the result that his
dynamical laws have been modified both on a small scale (quantum mechanics) and at
large velocities (special relativity), as shown in Figure 1.1.

The theory of relativity and the theory of quanta are the
two great theoretical constructs of the early 20th century.

If you are interested in the intersection of quantum mechanics and relativity—quantum
field theory—you will likely have to continue your work in graduate school because not
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Relativity
special relativity 1905 Einstein
general relativity 1915 Einstein
Old Quantum theory
blackbody radiation 1900 Planck
photoelectric effect 1905 Einstein
hydrogen atom 1913 Bohr
Quantum Mechanics
wave-particle duality 1925 de Broglie
wave equation 1926 Schrodinger
matrix mechanics 1926 Heisenberg, Born, Jordan
relativistic wave equation 1928 Dirac

Figure 1.2: An overview of the architects of relativity and quanta, and when their key
developments were produced.

only are advanced mathematical tools needed, but also a thorough grounding in rela-
tivity and nonrelativistic quantum mechanics. Rather than diving headlong into these
mathematically difficult (and conceptually abstract) topics, I will spend the rest of this
chapter describing the basics in simplified terms. In this way we can attack the concep-
tual differences between classical physics and modern physics first, and then show later
the mathematical detail of why they must be this way. Also, the mathematics and physics
that we will need at first is nothing more than the basics of what you have learned in your
study of introductory physics so far: energy, momentum, angular momentum, etc., and
straightforward algebra.

Timeline

Relativity is, of course, the brainchild of one person, Albert Einstein
[Nobel Prize, Physics, 1921], but quantum mechanics took many physi-
cists many years to straighten out, as shown in Figure 1.2. How they
were led to make the discoveries that they made was due to a long
list of experiments that, for the most part, raised more questions than
they answered. This list of experiments and predictions are given in
Fig. 1.3. The first three experiments were essentially accidents, but the
next two resulted from purposeful investigations into newly found, not
understood phenomena. The next five, covering the first 15 years of the
new century, were theoretical responses to the pile up of 19th century
experiments that were inconsistent with 19th century physical theory. Key experiments
were done during this time, however, they were continuing explorations of previous work
rather than profound new advances. Most of these topics are covered in later chapters—
those with an asterisk are analyzed separately in their own appendix.
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1887 Hertz photoelectric effect *
1895 Roentgen X-rays
1896 Becquerel radioactivity
1896 Zeeman Zeeman effect
1897 Thomson discovery of electron
1900 Planck blackbody radiation *
1905 Einstein photoelectric effect *
1905 Einstein specific heats of solids
1908 Rydberg-Ritz combination principle
1913 Bohr atomic model
1914 Frank-Hertz Franck-Hertz experiment
1922 Stern-Gerlach Stern-Gerlach experiment *
1923 Compton Compton effect *
1923 de Broglie electron wavelength
1927 Davisson-Germer electron diffraction

Figure 1.3: Listing of key experimental results and theoretical predictions that “largely
shaped the physics of the twentieth century.” [Pais, Inwward Bound, page 379.] The
starred topics are discussed in detail in separate appendices.

1.2 Relativity

Intuition is something one develops on the basis of experience.
— Alfred Schild

The most important result of Einstein’s Special Theory of Relativity that we will use
at this point is the equivalence of mass and energy. The “rest energy,” E0, of an object is
given by

E0 = mc2, (1.2)

where m is the mass of the object and c is the speed of light

c = 299 792 458 m/s . (1.3)

This value of c is exact—it has been defined as this value—but a useful approximation
is c ≈ 3.00 × 108 m/s. In some sense, Eq. (1.2) defines how much energy is locked up
in the mass of an object. In fact, it is useful to think of mass as potential energy. More
importantly, this equation expanded our understanding of the rules of the natural world by
replacing two “laws” that were thought to be universal (the conservation of mass and the
conservation of energy) with a third law that we now believe is universal (the conservation
of the sum of mass and energy, or the conservation of energy with mass as just another
type of energy).

In 1789, the chemist Antoine Lavoisier was the first to show that matter was conserved
in chemical reactions. That is, even though the compounds may change (e.g., liquid water
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can be turned into gaseous hydrogen and gaseous oxygen), the quantity of matter neither
increases nor decreases. He discovered this rule by carefully measuring the weights of
the reagents and the products in various chemical reactions (including the gases). Today,
we call this the “Law of Conservation of Mass.” In the 19th century, several physicists,
James Joule among them, realized that there was another conserved quantity, energy.
Joule, for instance, stirred water with a paddle, and, by carefully measuring the amount
of mechanical work done by the paddle and the subsequent increase in temperature of
the water, was able to demonstrate that there was a “mechanical equivalent of heat.”
Subsequently, with the discovery of other types of energy (electrical energy, wave energy,
etc.), the principle that the total energy in the universe is constant came to be accepted,
and prompted Rudolf Clausius, thermodynamicist, to say in 1865

“The energy of the universe is constant.”

What Einstein said with Eq. (1.2) is that neither of those two laws are separately
true, but that the sum of mass and energy is a constant. In reality, he discovered a new
type of energy: rest energy. In fact, c2 can be thought of simply as a conversion factor
between joules, units normally used to measure energy, and kilograms, units normally used
to measure mass. In our analysis of atomic, nuclear, and particle physics in Chapters 2
through 4, we’ll see that a basic understanding of the physical processes involved can be
obtained by keeping track of the transformation of mass to energy, and vice versa, and
not worrying about the detailed dynamics. This is similar to analyzing collisions between
objects by looking only at the momentum before and after the collision, but ignoring the
details of the forces that caused those changes in momentum.

Although we won’t cover relativistic dynamics until Chapter 5, it is useful to know the
relativistically correct expression for kinetic energy in addition to the rest energy. What
happens when an object is not at rest, but is moving with respect to an observer (you,
for instance)? Then, in addition to its rest energy, the observer would measure that it has
some kinetic energy as well, and this kinetic energy increases as the speed of the object
increases.6 However, the manner in which it increases is different from 1

2
mv2. The total

energy of a particle (rest plus kinetic), is given by

E = E0 + K = γ mc2, (1.4)

where γ, called the “relativistic factor,” is

γ =
1√

1− v2

c2

. (1.5)

You’ll see where this comes from in Chapter 5, but we can draw some conclusions simply
by looking at the mathematical form of γ. The most important of these is that v must
be less than c. This is a fundamental property of the universe in which we live: any
object with nonzero mass must travel slower than the speed of light. Objects that do not

6Einstein’s second paper on special relativity in 1905 dealt specifically with this issue, and it was titled,
“Does the Inertia of a Body Depend Upon Its Energy Content?” As you should guess, if the kinetic energy
depends on velocity, so should the momentum, which is a quantitative measure of inertia.
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have mass (such as photons, i.e., light) must travel at the speed of light (we will see the
mathematical justification for this later). A second conclusion is that we can recover the
usual form of the kinetic energy when the speed of the object is small compared with the
speed of light (see Problem 2).

This is a good place to stop and think about the implications of these results. Why
is c a universal speed limit? Why must photons travel at that speed? Can objects travel
faster than c? Unfortunately, science cannot answer those questions, or at least it has not
been able to answer them yet. The role of science is to observe the universe and deduce, in
laws that are as simple and far reaching as possible, how the universe works. Many laws
of classical physics (e.g., Newton’s second law) seem so natural that it appears impossible
for them to be any other way. This is directly due to our familiarity with them, given
that they govern the macroscopic world around us. But you must realize that there is no
answer to the question, “Why does ~F equal m~a?” All physics can say is, “that is the way
nature works,” and we have deduced that rule and written it in simple language.

In addition to energy, momentum is the second fundamental concept in special rela-
tivity. In classical mechanics, it is customary to consider the mass m and velocity ~v of
a particle to be the fundamental dynamic quantities (along with the position, of course).
From these you can calculate any other quantity of interest: momentum (~p = m~v), kinetic
energy (K = mv2/2), acceleration (~a = d~v/dt), etc. However, it is more natural to treat
energy, Eq. (1.4), and momentum

~p = γm~v, (1.6)

as the fundamental quantities. Newton’s second law, in the form

~F =
d~p

dt
, (1.7)

still holds, and the mass, or rest energy, can be determined from Eq. (1.4). The fact
that the relativistic factore γ appears in Eq. (1.6) implies that our “classical” definition
of momentum must be modified just as we have modified the definition of energy. You
can show (Problem 3) that there is still a consistent relationship between energy and
momentum, although the correct, relativistic, relationship is different from what you have
learned in introductory mechanics.

1.3 Quantum Mechanics

The implications of quantum mechanics are often much stranger than those of relativity.
An important new philosophical result is that there are some questions that are not “ask-
able” in quantum mechanics, in the sense that certain quantities cannot be measured at
particular times. I will point out these questions as they arise throughout the book. For
now, I will concentrate on the most fundamental difference between classical mechanics
and quantum mechanics, namely the reason why it is called quantum.

In our classical, macroscopic world, properties of objects (both intrinsic properties
such as mass, and extrinsic properties such as velocity) can take on any value among
a continuous range of values—there is no restriction. In the subatomic quantum world,
however, some properties of particles (though not all) are restricted to a discrete set
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of values—they are “quantized.” The best known example is probably the energy of an
electron that is bound in a hydrogen atom. Unlike a planet (or asteroid, or comet) orbiting
the Sun, which can have any energy, the electron is restricted to occupy certain “energy
levels.” Each of these levels is assigned a “quantum number,” and the electron’s energy
can be calculated from that quantum number. In this particular case the quantum number
is n, and it can take on the values n = 1, 2, 3, . . . , ∞. It is simply a label for the particular
quantum “state” that the electron occupies. The electron’s energy when it is in state n is
given by the formula

En =
E1

n2
, (1.8)

where E1 ≈ −13.6 eV,7 and E1 is the electron energy when it occupies state n = 1.
The average radius, rave, of the electron’s orbit is another physical property that can be
calculated in terms of the quantum number n

rave = a0 n2, (1.9)

where a0 ≈ 0.0529 nm, and is called the “Bohr radius.” This structure is ubiquitous in
quantum mechanics:

A quantum number labels the state that a particular par-
ticle is in, and the physical properties of that state can be
calculated from a formula that depends on that quantum
number.

In the case of the hydrogen atom, n is called the “principal” quantum number.
Since we will not do any explicit quantum calculations until Chapter 7, all I can do

is list the possible values for the quantum number and tell you what the formula is. The
formulas, however, are related in the sense that they all depend on a constant that is
intrinsically quantum in nature: Planck’s constant, h. We can see this by looking at the
form of the constants E1 and a0 (which are determined from a solution of Schrodinger’s
equation, the quantum equivalent of Newton’s second law)

E1 = −mee
4

8h2ε2
0

, (1.10)

a0 =
ε0h

2

2me2
, (1.11)

where me is the electron mass, e is the electron charge, and ε0 is the permittivity of free
space. These should be familiar to you, but h is something new. It is Planck’s constant
and its measured value is

h = 6.626 0693(11)× 10−34 J s, (1.12)

7Recall that electron volts (eV) are just another energy unit, defined as the amount of energy gained by
an electron when it falls through a potential difference of one volt, and that 1 eV= 1.602 176 53(14)×10−19

J, or with our usual precision 1 eV≈ 1.60× 10−19 J . Note that the energy of the electron is its total
energy (kinetic plus electric potential) which is why it is negative—the convention is that that potential
energy is zero when the separation of the electron and proton is infinitely large, and therefore the potential
energy is always negative.
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where the (11) gives the experimental uncertainty in the last two digits. Usually, three
significant digits will be enough, except when we are subtracting two nearly equal num-
bers, which we’ll do when we discuss fusion and fission and the energy those processes

generate. Hence, we can take h ≈ 6.63× 10−34 J s . This constant, along with c, are the
two numbers that in some sense define Twentieth Century Physics.

One simple way to understand this quantized behavior of the electron in the hydrogen
atom—indeed, any particle confined to a finite region of space—is to view the electron as a
“wave.” We will talk in detail about what this means later, but for now the situation can
be thought of in the same way as the resonant harmonic structure of a string that is fixed
at both ends. In that case, a frequency is resonant if an integer number of wavelengths
fit along the string. In the case of the electron, if it can be described as a wave, it must
have a wavelength, and while confined in the hydrogen atom it is allowed to occupy only
those states where an integral number of wavelengths “fit” in the atom. Although it
is not immediately clear what this resonance means for an electron, we at least have a
mathematical and conceptual framework on which to hang our understanding. This type
of analogy is common in modern physics: some quantum and relativistic systems behave
as if they were governed by the same laws as a classical system, and so we can use our
understanding of those systems to “understand” the new systems.

A second quantity that quantum mechanics says should be discrete is angular mo-
mentum. Recall that the angular momentum of an object about an axis is ~L = ~r × ~p,
where ~r is the radius vector from the axis to the object, and ~p is the object’s linear mo-
mentum. Classically, the angular momentum of an object can take on any value—its
momentum and distance from the axis of rotation are both completely arbitrary. Quan-
tum mechanics, however, predicts that the magnitude of ~L is discrete, and has the value

L = |~L| =
√

`(` + 1) h̄, where h̄ = h/2π.8 The quantum number in this case is ` and can
take on the values ` = 0, 1, 2, . . . , ∞. It can easily be shown that Planck’s constant h has
the proper units of angular momentum (you should convince yourself that this is true be-
fore you continue reading). For example, the magnitude of the orbital angular momentum
of the Earth about the Sun is about 3× 1040 J s. Since the Earth’s angular momentum is
much larger than h̄, this means the quantum number ` that describes the Earth’s revolu-
tion takes on the value of about 3× 1074. We will see in Chapter 7 that quantum effects
are difficult to detect when objects are in states with large quantum numbers, and that
the quantum dynamical laws can be approximated quite well by the classical dynamical
laws.9

Finally, a third example of a system that is quantized (or discrete) is a “photon.” Since
Maxwell’s time, light has been thought of as an electromagnetic wave. While this appears
to be true in some experiments, in some other experiments light appears to be made up
of discrete packets of energy, called quanta or photons. The energy E of each photon
depends on the frequency ν of the light

E = hν, (1.13)

8It is up to you whether you wish to memorize h or h̄, but a combination that appears often, and is
therefore useful to know, is h̄c ≈ 197 MeV fm .

9This is one instance of Niels Bohr’s “Correspondence Principle.”
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where the proportionality constant is the “intrinsically quantum” h. This conceptual view
of light (as a discrete particle) was first proposed by Max Planck in 1900 in his study
of blackbody radiation, subsequently solidified by Einstein in 1905 in his study of the
photoelectric effect, and finally nailed down in 1923 by Compton’s experiments on the
scattering of X-rays by graphite. It is illuminating to read Einstein’s own words on the
subject from his 1905 paper describing the photoelectric effect:

It seems to me that the observation associated with black body radiation,
fluorescence, the photoelectric effect, and other related phenomena associated
with the emission or transformation of light are more readily understood if
one assumes that the energy of light is discontinuously distributed in space. In
accordance with the assumption to be considered here, the energy of a light ray
spreading out from a point is not continuously distributed over an increasing
space, but consists of a finite number of energy quanta which are localized at
points in space, which move without dividing, and which can only be produced
and absorbed as complete units.10

Equation (1.13) is one of the fundamental relations that describe the “wave-particle”
duality of light: energy is a property that is usually thought to apply to particles, and
frequency is a property that is usually thought to apply to waves. Light (indeed, all
particles) can be thought of as having both mutually exclusive characteristics—wave and
particle—and which characteristic shows itself depends on the experiment. In fact, in
order to correctly interpret some experiments, both characteristics must be invoked (see
Problem 5). The second fundamental relation that describes the wave-particle duality of
all particles is de Broglie’s equation

p =
h

λ
, (1.14)

where p is the particle’s momentum, and λ is the wavelength. Again, Planck’s constant
acts to relate the two properties. (See Sec. 4.2.3 for de Broglie’s development.)

Equations (1.13) and (1.14) relate the particle properties (E and p) to the wave prop-
erties (ν and λ) of an object. How are we to interpret these relations? Linus Pauling
guides us to the proper interpretation:

Does light really consist of waves, or of particles? Is the electron really a
particle, or is it a wave?

These questions cannot be answered by one of the two stated alternatives.
Light is the name that we have given to a part of nature. The name refers to
all of the properties that light has, to all of the phenomena that are observed
in a system containing light. Some of the properties of light resemble those
of waves, and can be described in terms of a wavelength. Other properties
of light resemble those of particles, and can be described in terms of a light
quantum, having a certain amount of energy, hν.... A beam of light is neither
a sequence of waves nor a stream of particles; it is both.

10“On a Heuristic Viewpoint Concerning the Production and Transformation of Light,” Annalen der
Physik, 17 132 (1905).
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In the same way, an electron is neither a particle nor a wave, in the ordinary
sense. In many ways the behavior of electrons is similar to that expected of
small spinning particles, with mass m, electric charge −e, and certain values of
angular momentum and magnetic moment. But electrons differ from ordinary
particles in that they also behave as though they have a wave character, with
a wavelength given by the de Broglie equation. The electron, like the photon,
has to be described as having the character both of a particle and of a wave....
You might ask two other questions: Do electrons exist? What do they look
like?

The answer to the first question is that electrons do exist: “electron” is the
name that scientists have used in discussing certain phenomena, such as the
beam in the electric-discharge tube studies by J. J. Thomson, the carrier of
the unit electric charge on the oil drops in Millikan’s apparatus, the part that
is added to the neutral fluorine atom to convert it into a fluoride ion. As
to the second question—what does the electron look like?—we may say that
some information has been obtained by studying the scattering of very-high-
velocity electrons by protons and other atomic nuclei. These experiments have
given much information about the size and structure of the nuclei, and have
also shown that the electron behaves as a point particle, with no structure
extending over a diameter as great as 0.1 fm.11

As early as 1909, Einstein was beginning to understand that this was to be the crux of
any physical theory of light:

It is my opinion that the next phase of theoretical physics will bring us a theory
of light that can be interpreted as a kind of fusion of the wave and the [particle]
theory.

Of course, it would take until 1926 for the term “photon” to be coined, and until 1927
for Compton to receive the Nobel prize for his X-ray experiments that definitively pinned
down the particle nature of light. However, we are getting ahead of the story. Now that I
have stated, but not proved, some of the fundamental ideas, it is time to jump forward to
the present and investigate our current understanding of how the universe is put together.
For that, we start with particles in Chapter 2.

Collateral Reading

Here are three excellent accounts of the history of physics in the twentieth century. Two
of the authors, Gamow and Segre, were participants in this history, and therefore give
first-hand accounts.

• George Gamow, Thirty years that shook physics: The story of quantum theory, Dou-
bleday, 1966. (ERAU: QC 174.1 .G3)

11Pauling, General Chemistry, pages 80-81. The current upper limit to the “diameter” of an electron
is about 10−7 fm.
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• Emilio Segre, From X-rays to quarks: Modern physicists and their discoveries, W.
H. Freeman, 1980. (ERAU: QC 7 .S44 1980)

• Barbara Lovett Cline, Men who made a new physics, University of Chicago Press,
1987. (ERAU: QC 15 .C4 1987)

Problems

1. Look up the word “epistemology.” Write a paragraph on what it means and why
it is important in science, in physics, and especially modern physics. (Even though you
are just beginning your study of modern physics, discuss it in light of your background
knowledge.)

2. Show that in the limit of small speeds (v ¿ c) the total energy (γ mc2) of a particle is
approximately equal to E ≈ mc2 + 1

2
mv2. This limit is sometimes called “nonrelativistic.”

HINT: Use the binomial expansion (1 + ε)p ≈ 1 + pε, where ε ¿ 1.
3. (a) From the definitions of energy and momentum in Eqs. (1.4) and (1.6), show

that they are related in the following way

E2 = p2c2 + (mc2)2.

Remember that p2 ≡ ~p · ~p. (b) Obtain the nonrelativistic limit of this result. That is,
use the binomial expansion again, and apply it to the limit when p is small, that is, when
p ¿ mc.

4. The relativistic factor γ arises in nonrelativistic situations as well. For example,
consider a river flowing with speed v, and a swimmer able to swim at speed c relative to
the water. (a) Calculate the time tu it takes the swimmer to swim a distance d upstream
and back, where d is the distance measured relative to the stationary river bank. (b)
Calculate the time ta it takes the swimmer to swim a distance d directly across the river
and back (perpendicular to the river bank). (c) Show that the ratio of the two times
(tu/ta) is equal to γ.

5. Equations (1.8) and (1.13) together represent a simple theory of the interaction of
light and matter. As an example, if an electron in a hydrogen atom makes a transition
from state n = 3 to n = 2, it loses an amount of energy equal to E3−E2. If this energy is
released in the form of a photon, what is the frequency of that photon? Is it in the visible
portion of the spectrum?

6. Equations (1.4) and (1.13) together represent another aspect of the interaction
between light and matter. (a) If an electron and an anti-electron (both with the same mass)
approach each other, one possibility is that they “annihilate” each other and, to conserve
energy and momentum, they must produce two identical photons. If the electrons initially
have negligible kinetic energies, calculate the frequency and wavelength of the photons.
(b) Calculate the same quantities for the annihilation of a proton and anti-proton pair.

Solutions

1. epistemology, n. The branch of philosophy that investigates the nature, limits,
criteria, or validity of human knowledge; also, a particular theory of cognition. From the
Greek episteme meaning “knowledge,” and logos meaning “theory.”
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One question that is often asked is “Is objective knowledge possible?” A possible
answer is that the senses are vague and inconsistent, so therefore abstract knowledge
is superior. This is the point of view of rationalists, such as Descartes, Spinoza, and
Liebniz. The final test of knowledge is deductive reasoning based on self-evident principles.
Empiricists, such as Bacon and Locke, on the other hand, believe in the primacy of sense
perception, and hold that all knowledge must be verifiable in experience. Locke stated,
“one cannot have absolutely certain knowledge of the physical world.”

2. To solve this, you need the Taylor series expansion (1 + ε)p ≈ 1 + pε, which is a
good approximation when ε ¿ 1. The total energy of a particle is

E = γmc2 =

(
1− v2

c2

)−1/2

mc2 ≈ mc2

(
1 +

1

2

v2

c2

)
= mc2 +

1

2
mv2.

Since we also know that E = E0 + K, we see that the first order approximation to the
kinetic energy is the well known mv2/2. Can you calculate the next order term? Answer:
K = (mv2/2)(1 + 3

4
v2

c2
).

3. (a) One method is to take the definitions of energy and momentum and form the
quantity E2 − p2c2

E2 − p2c2 = γ2(mc2)2 − γ2m2v2c2.

Factoring out γ2(mc2)2 gives

E2 − p2c2 = γ2(mc2)2

(
1− v2

c2

)
= (mc2)2,

where the last equality comes from the definition of γ. (b) The nonrelativistic relationship
between energy and momentum can be written

E =
√

p2c2 + (mc2)2 = mc2

√
1 +

(
p

mc

)2

≈ mc2

[
1 +

1

2

(
p

mc

)2
]

= mc2 +
p2

2m

Again, K = p2/2m is the correct Newtonian expression for kinetic energy.
4. The Galilean transformation is needed here, which states that

~vSG = ~vSW + ~vWG,

or in words, “the velocity of the Swimmer relative to the Ground is equal to the velocity of
the Swimmer relative to the Water plus the velocity of the Water relative to the Ground.”
Note that this is a vector equation, so the magnitudes don’t necessarily add. In this
problem, let’s let ~vWG = −vŷ and |~vSW | = c.

(a) While swimming upstream, the swimmer’s speed relative to the ground is reduced
~vSG = (+c− v)ŷ so that

∆tu =
d

c− v
.

Similarly, swimming downstream the swimmer goes faster ~vSG = (−c − v)ŷ and ∆td =
d/(c + v). The total time taken is

∆t = ∆tu + ∆td =
d

c− v
+

d

c + v
=

2cd

c2 − v2
.
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(b) If the swimmer wants to move directly across the river, they must angle slightly
upstream so they don’t drift downstream. In this case, c is the hypotenuse of the right
triangle, v is one side, and therefore |~vSG| =

√
c2 − v2 is the speed of the swimmer relative

to the ground. The time taken to swim across the river is the same as that to swim back
(same speed), so that the total time taken is

∆t =
2d√

c2 − v2
.

(c) The ratio shows that it is quicker to swim across and back

∆tup

∆tacross

=
c

c2 − v2

√
c2 − v2 =

1√
1− v2

c2

= γ ≥ 1.

This, in fact, is exactly the analysis needed to interpret the Michelson-Morley exper-
iment. The “swimmer” in that case is light, and the “river” is the ether. Michelson and
Morley measured the two travel times and tried to detect a difference, which would have
allowed them to determine the speed of the Earth relative to the ether. However, since
their result was that the two times were identical, FitzGerald and Lorentz proposed that
objects (i.e., their measuring apparatus) contracted in length by a factor γ in the direction
of motion. This ad hoc proposal would result in the two travel times being identical. Of
course, there is a “Lorentz contraction,” but for reasons having to do with observers in
different reference frames (i.e., special relativity), rather than a physical contraction of
objects.

5. From (1.8) we have that

E3 − E2 = E1

(
1

9
− 1

4

)
=

5

36
(−E1) ≈ 1.89 eV.

From (1.13), the frequency of the photon is

ν =
E3 − E2

h
≈ 4.57× 1014 Hz.

The wavelength of this light, from c = λν, is λ ≈ 657 nm, which is red, visible light. In
spectral terminology, this is called the “Balmer α” (or Hα) line.

6. The energy before the annihilation is just 2mec
2 = 2 × 0.511 MeV (the photons

don’t exist yet). Afterward, the electron—anti-electron pair does not exist, so the photons’
energy is 2×hν, which, equating the energies means that ν = 1.23×1020 Hz, and λ = 2.43
pm (that’s a picometer which is 10−12 m), which is a gamma ray. Gamma rays are
conventionally defined as electromagnetic radiation with wavelengths less than 100 pm,
or frequencies higher than 3 EHz (E = exa = 1018). For protons (E0 = 938 MeV), the
resulting photons have ν = 2.27× 1023 Hz and λ = 1.32 fm (a “hard” gamma ray).



Chapter 2

Introduction to Particle Physics

If I could remember the names of all the particles, I’d be a botanist.
— Enrico Fermi

Matter

At its most basic level, all matter consists of combinations of 12 elementary particles, which
are listed in Fig. 2.1. They can be classified into two groups, leptons and quarks: quarks
interact via the color force (or strong force) but leptons do not. Both types of particles
interact gravitationally (i.e., they all have mass) and via the weak force. Finally, all but
the neutrinos interact electromagnetically because neutrinos are electrically neutral. The
original motivation for the classification of leptons in 1947 was that the electron (the only
known lepton at that time) was less massive than the proton and neutron (the only known
nucleons—later determined to consist of quarks), and “lepton” is from a Greek word that
means small or light. (See page 23.) Of course, after the discovery of the tau lepton in
1975 and the observation that it was almost twice as massive as a proton, the original
reason no longer made sense. However, with the discovery of quarks and the fact that
they are the only particles to interact via the strong force, the division into leptons and
quarks is appropriate, albeit for reasons that have to do with forces rather than mass.1

Amazingly, all natural matter that we observe in the world around us consists of only
three of these particles: electrons, up quarks, and down quarks. The atoms in our bodies
are comprised of electrons as well as protons and neutrons, but the proton is made up of
2 up quarks and 1 down quark (commonly written ‘uud’), while the neutron is 2 down
quarks and 1 up quark (commonly written ‘udd’). In this sense, the universe is very
simple. There are only three particles, which combine in a myriad of ways to make up
all the wonderful objects that we see: trees, rivers, oceans, mountains, planets, stars, and
galaxies.

What are the intrinsic properties of these elementary particles? Two are very familiar,
mass and electric charge, and three others, spin, magnetic moment, and color, are not as

1In addition to these 12 particles, there are the so-called “exchange particles,” like the photon (denoted
by the symbol γ), that mediate the four forces. These particles are also called “gauge bosons,” or
“intermediate vector bosons,” and they are not normally considered to be matter. I will discuss them
below on page 26.

15
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e− electron
νe electron neutrino
µ− muon (mu lepton) Leptons
νµ muon neutrino
τ− tauon (tau lepton)
ντ tau neutrino
u up quark
d down quark
c charm quark Quarks
s strange quark
t top (truth) quark
b bottom (beauty) quark

Figure 2.1: The twelve elementary particles that comprise all natural and man-made
matter. The three particles in boldface — electron, up quark, and down quark — comprise
all known natural matter. There are six leptons (three massive leptons and three massless
neutrinos) and six flavors of quarks.

familiar. We will examine these five in detail in Sections 2.1 through 2.5. Of course, there
are many others, such as strangeness, isotopic spin, lepton number, and baryon number,
and we will investigate these in later chapters. The nomenclature of particle physics is
very complicated, but if you remember to characterize particles based on their fundamental
properties, like mass, charge, etc., it doesn’t matter what they are called, you will be able
to understand the physics of their interactions.

You may have noticed that I didn’t mention size as an intrinsic property. The reason
is that all of these elementary particles are thought to be point-like and have no size.
For example, the size of an electron has been experimentally measured
by Hans Dehmelt [Nobel Prize, Physics, 1989] to be less than 10−22

meters! This simply means that the electric force that an electron feels
is Coulombic (i.e., ∼ 1/r2) down to that distance, which means that
there is no reason to think that electrons have any structure at any
scale. Of course, when elementary particles combine to form protons,
neutrons, atoms, and molecules, the physics of their interaction occurs
on a spatial scale so that the conglomerations acquire a characteristic
size and shape.

There is another characteristic of these particles that has no classical
counterpart: they are identical and indistinguishable. Unlike our macroscopic world, where
we can paint seemingly identical objects different colors to distinguish them (billiard balls,
for example), in the microscopic world there is no way to tell two electrons apart. When
a cue ball, say, collides with an eight-ball and they each move off in different directions, it
is clear which ball is which after the collision. However, if two electrons collide and move
off, the experimenter is not able to distinguish which electron is which after the collision.
As we will see below, this fact has far-reaching implications on the allowable motions of
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e+ positron (anti electron)
νe anti electron neutrino
µ+ anti muon (mu lepton) anti Leptons
νµ anti muon neutrino
τ+ anti tauon (tau lepton)
ντ anti tau neutrino
u anti up quark
d anti down quark
c anti charm quark anti Quarks
s anti strange quark
t anti top (truth) quark
b anti bottom (beauty) quark

Figure 2.2: The twelve elementary antiparticles.

these particles. The most well-known implication is the Pauli exclusion principle that is
applied to electrons within atomic orbitals, which I will discuss in Chapter 4.

Antimatter

Antimatter is as much matter as matter is matter. — Abraham Pais2

For every particle, there is a corresponding “antiparticle,” with the same mass, but oppo-
site electric charge, and these are listed in Fig. 2.2. The antiparticles are denoted by an
overbar, or sometimes by simply changing the sign, as with the positron. Do not ascribe
any mysterious properties to antimatter. As Pais implies, from an antiparticle’s point of
view, we are made of “antimatter.” In fact, current cosmological theories suggest that
in the early universe, a short time after the Big Bang, there was ap-
proximately as much matter as antimatter. As the universe cooled,
equal amounts of matter and antimatter were annihilated, and what
was left over was the small amount of matter that makes up the visible
universe. The question of why there was an asymmetry between the
amounts of matter and antimatter (i.e., why there wasn’t exactly the
same amount of both kinds) is one that still has not been answered.

Why, then, does antimatter exist? No one knows, but that appears
to be the way the universe is made. However, within the rules of our
current structure of theoretical physics, antiparticles are a “necessary
consequence of combining special relativity with quantum mechanics.”3 Paul Dirac [Nobel

2Abraham Pais is perhaps one of the foremost chroniclers of the story of modern physics. His writings,
listed in the Bibliography, are all the more valuable because he was a practitioner — he worked on the
front lines in 1940s through the 1970s — and he knew and collaborated with several of the key players
personally, e.g., Bohr, Einstein, Heisenberg.

3Martin and Shaw, Particle Physics, p. 2.
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Prize, Physics, 1933] was the first to realize this fact when he attempted to construct
a relativistic wave equation for the electron in 1928 (the Schrodinger equation was not
relativistic). The mathematics implied the existence of positive electrons, which later
turned out to be positrons.

2.1 Mass

A particle’s mass indicates how strongly it interacts via the gravitational force. The mass
of the electron is

me = 9.109 382 6 (16)× 10−31 kg,

or, with our typical precision, me ≈ 9.11× 10−31 kg . Rather than using the SI unit of
kilogram, a common practice is to quote particle masses in terms of their “rest energy.”
Einstein’s relativistic equivalence E0 = mc2 means that the electron’s rest energy is mec

2 ≈
8.19×10−16 J ≈ 0.511 MeV . (Sometimes, physicists omit the factor c2 because it is clear
from the context that the mass is being quoted in energy units.) It is common to quote
a particle’s rest energy in millions of electron volts (MeV), rather than Joules. The other
massive leptons, the muon and tauon, are identical to the electron, except for their mass:
they interact in exactly the same manner. The accepted values of the lepton masses are

m(e−) = 0.510 998 910(13) MeV
m(µ−) = 105.658 3668(38) MeV
m(τ−) = 1 776.99(29) MeV

The first thing to notice is the progression of larger masses with the µ− and τ− leptons.
This increasing mass is characteristic of the quarks and neutrinos as well. In fact, there
are three “families” (or generations) of leptons and quarks, each composed of a lepton, its
corresponding neutrino, and two quarks. The following table organizes them in this way.

Leptons Quarks
e− u
νe d light
µ− c ↓
νµ s ↓
τ− t heavy
ντ b

The first family is the lightest, and each successive family is heavier than the previous.
Similar to the leptons, the top and bottom quarks are the most massive, and the up and
down quarks are the least massive. The neutrino masses also increase, with νe the lightest
and ντ the heaviest. We will ignore the neutrino masses, however, because they are very
small (on the order of a few eV). In fact, experiments are only able to set upper limits on
their masses, and currently they are

m(νe) < 2.2 eV
m(νµ) < 170 keV
m(ντ ) < 15.5 MeV
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These mass limits can be determined in two ways. The first comes from the energy
analysis of β decay, the prototype of which is the neutron decay in Eq. (2.3). These
“direct” measurements yield the upper limits given above. The second, “indirect,” method
consists of analyzing cosmological data, specifically the cosmic microwave background,
and determining what neutrino mass would result in a universe different from the one
we observe. This method gives an upper bound to the sum of all three neutrino masses
of about 0.3 eV. In this book I will always assume these masses to be so small as to be
ignorable in our calculations.4

The quark masses are more problematic because quarks have never been observed in
isolation, and therefore we can only infer their masses from theoretical arguments. That is,
measurements of energy released in particle reactions must be used along with a theoretical
structure, such as QCD (quantum chromodynamics), in order to predict the quarks’ “free”
mass.5 For example, the up quark has a “free” mass of about 3 MeV/c2, and the down
quark about 6 MeV/c2. The other quark masses are listed in the table below.

quark mass (GeV/c2)
u 0.003
d 0.006
c 1.5
s 0.5
t 1756

b 4.5

Keep in mind that the values of these masses have large error bars, and that it really only
makes sense to talk about the mass of particles that can exist in isolation. Particles that
can be isolated, such as protons and neutrons, have masses that can be experimentally
measured:

mpc
2 = 938.272 029(80) MeV

mnc
2 = 939.565 360(81) MeV

Usually, we will not need to express them so precisely, so we can use mpc
2 ≈ 938 MeV

and mnc
2 ≈ 940 MeV . However, we shall see that the mass difference between them

is critical, so it’s important to remember that while they are both approximately 2000

4In 1998, the SuperKamiokande neutrino experiment determined that the different types of neutrinos
can change into each other, which automatically implies that they must have mass. See Dennis W. Sciama,
“Consistent neutrino masses from cosmology and solar physics,” Nature 348, 617-618 (13 December 1990)
for an interesting discussion.

5A quark’s free mass is the mass we would theoretically expect it to have if it could be freed from the
confines of the proton or neutron. However, because the quarks can’t be isolated, their free mass depends
sensitively on the theoretical assumptions made about the color force. The quarks’s constituent masses,
on the other hand, can be calculated in a straightforward manner using the concept of binding energy
B, introduced below, and ignoring any potential energy due to the strong force. See Problem 14. On
the other hand, the free masses of nucleons (protons and neutrons) in nuclei can be determined using the
binding energy concept — see Sec. (3.1) — because they can be isolated.

6This has only been recently determined accurately, from a collision of a proton and anti-proton, each
with about 1 TeV of kinetic energy.
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times more massive than the electron, the neutron is slightly heavier than the proton.
Also, it’s important to note that mn −mp = 1.29 MeV, not 2 MeV as suggested by the
approximate masses. When subtracting two nearly equal numbers, retaining sufficient
digits is necessary.

If you look at the free masses of the up and down quarks, it’s clear that the masses of
the proton and neutron are not simply the sums of the masses of their constituent particles.
How can that be? The reason is because there is a significant amount of potential energy
involved in assembling the proton and neutron from the quarks, and this fact highlights
the need to discuss our first “modern” concept in detail, that of binding energy.

Binding Energy

The binding energy B of a compound particle of mass M is defined as the difference
between the sum of the masses mi of the individual constituent particles and the mass of
the compound particle

B ≡
(∑

i

mi −M

)
c2. (2.1)

The simplest example that illustrates binding energy is the deuteron (the nucleus of deu-
terium, 2H, also known as heavy hydrogen), which consists of one proton and one neu-
tron.7 The deuteron’s binding energy can be calculated from the measured rest energy of
the deuteron and the (isolated) masses of the proton and neutron:

mpc
2 938.272 029(80) MeV

+mnc
2 939.565 360(81) MeV

−mDc2 1 875.612 82(16) MeV
= B 2.224 57(20) MeV

This means that if we are able to combine a free proton and a free neutron to make a
deuteron, we obtain ≈ 2.22 MeV of energy in return8 — in the language of chemistry,
it’s an exothermic reaction. Where does the released energy go? It goes into the kinetic
energy of the compound particle! In fact, combining two nucleons into a single nucleon is
called fusion, so named because two or more particles “fuse” to form one particle. A more

7You might think that the proton or neutron would be simpler, but they are three-particle systems,
not two, and more important, as previously mentioned, the binding energy is not well defined when the
constituent particles cannot be isolated.

8There is another unit of mass that is commonly used when binding energy calculations are made, and
that is the “atomic mass unit,” or “u.” Here, the carbon-12 atom sets the scale so that m(12C) ≡ 12.00
u exactly, and the conversion to kilograms is 1 u = 1.660 538 86(28)×10−27 kg ≈ 1.66×10−27 kg. The
atomic mass approximately measures the “atomic number” of the nucleus, i.e., the number of protons
and neutrons. Working in atomic mass units, but keeping only six decimal places, the calculation of the
deuteron’s binding energy is

mp 1.007 276 u
+mn 1.008 664 u
−mD 2.013 553 u

= B/c2 0.002 388 u

and converting to electron volts (1 u ≈ 931.494 MeV/c2) I obtain B ≈ 2.22 MeV.
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complicated fusion reaction occurs in the core of the sun, where four protons fuse to form
one α particle (the nucleus of helium, 4He).9 That reaction, of course, is also exothermic,
and is what powers the sun. These considerations lead us to the conclusion that mass is
a form of potential energy:

Mass (and binding energy) is potential energy.

Another, more familiar, example is the case of the Earth and a 1-kg ball. If these two
objects are infinitely far away from each other, they have well-defined masses, ME and
m = 1 kg, that can be measured precisely. As we bring the ball to the surface of the
Earth, the Earth-ball system loses potential energy. The amount lost can be calculated
from our knowledge of gravitational potential energy

∆U =
GMEm

RE

= 6.26× 107 J (2.2)

= 3.89× 1026 eV

= 6.93× 10−10 kg c2,

where I used the constants G = 6.67× 10−11 Nm2/kg2 , ME = 5.98× 1024 kg, and RE =

6.37× 106 m. Where did that energy (≈ 63 MJ worth) go? It went into heat, sound, etc.
The Earth eventually radiated away the heat energy, and the sound energy also travels
off. This leads me to make the following claim:

CLAIM: The compound object (Earth and ball) has a
smaller mass than the two separate objects combined!

The mass lost is exactly 6.93 × 10−10 kg, the mass equivalent of the potential energy
difference. Of course, this mass difference is extremely tiny, and cannot be measured with
present day experiments, but it must exist, nonetheless. If I were to separate the Earth
and ball again, it would take 63 MJ of work, and when I measured their masses, they
would “recover” their original masses, because I have put energy into the system with the
work that I did to separate them.

While the underlying physics of binding energy and the mass of compound objects is
identical in both the classical case (Earth and ball) and the subatomic case (proton and
neutron), there are some subtle differences. In the classical case, the binding energy is
small compared with the rest energies of the particles involved, and we tend to think of
the constituent objects retaining their identity regardless of whether they are far apart or
combined. However, with subatomic particles it is often the case that the binding energy is
a significant fraction of the rest energies, and the compound object is usually considered to
be a different object—the constituent particles lose their identity. For example, a proton
“consists” of two up quarks and a down quark: uud. However, there is another compound
particle, called ∆+, which also consists of two up quarks and a down quark. But the mass
of the ∆+ is 1232 MeV, and it is considered to be a different particle from a proton. The

9Note that Eq. (2.1) does not state how the constituent particles combine to form the compound
particle; other laws of physics are needed to determine that.
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mass is different because the three quarks are in a different quantum state than the proton
(that is, they occupy a different energy level), which means that the proton and ∆+ have
different binding energies, and hence different masses.10 On the other hand, when the 1-kg
ball is on the surface of the Earth, we still consider the Earth and the ball to be separate,
distinct, objects.

A final example of an interaction involving the mass-energy relationship (and anti-
matter) is the decay of the neutron. A free neutron (not one that is bound in an atomic
nucleus) spontaneously decays into a proton with a half life of 10.23 minutes.11 The
reaction equation is

n → p + e− + ν̄e, (2.3)

where the electron and antineutrino must be part of the decay products in order to conserve
both charge and the “lepton number,” a quantity that is characteristic of the weak force.
The lepton number is another quantum number that we will discuss later. Now, the
neutron is NOT comprised of a proton and electron, so there is no binding energy, but we
can calculate the energy released in this decay by computing the difference in rest energies
before and after the decay

Q ≡
( ∑

initial

m− ∑

final

m

)
c2. (2.4)

The symbol Q (called “reaction energy”) is used rather than B to denote that this is not a
compound particle, but that there is some energy that is released in the reaction. If Q > 0
there is energy released (exothermic) and a spontaneous decay is energetically possible.
However, if Q < 0 then simply because of energy conservation the decay is not allowed.
In the case of the neutron decay, I obtain (and you should check the math) Q ≈ 0.782
MeV.12 What happens to this released energy? As before, it goes to the kinetic energy of
the product particles, i.e., those on the right-hand-side of the reaction equation. In some
sense, you can think of a neutron as being in a higher potential energy state than a proton
(because it is more massive), and since objects like to lower their potential energy, the
neutron wants to turn into a proton.13

10This difference in binding energies can be traced to a difference in the spins of the quarks – see Sec. 2.3.
11Radioactive decay and the concept of half-life is discussed in detail in Chapter 3.
12In calculating this value, I ignored the small neutrino mass. Since the upper limit on the rest energy

of the electron neutrino (and antineutrino) is about 2.2 eV, it doesn’t affect the calculation at this level
of precision.

13As far as we know, the proton is a stable particle because there is no baryon that is less massive for
it to decay into, although the possibility that the half-life for proton decay is so long that we haven’t
noticed it yet is an active area of research. Baryon number is another quantum number that must be
conserved—we will investigate this concept later. The electron is the lightest lepton and hence it, too, is
stable against spontaneous decay.
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Why are neutrons in nuclei stable? If all neutrons were unstable to
β decay, then there would be no heavy atoms, no life in the universe, and
we would not exist. To understand the stability of nuclei, the concepts
of binding energy and reaction energy give a simple explanation.

Consider the case of a deuteron, the nucleus of deuterium (also
known as 2H, or heavy hydrogen). It consists of a proton and a neutron,
and if the neutron decayed it would emit an electron and an antineu-
trino, leaving two protons. Two protons (also known as a “diproton”)
do not form a stable nucleus, so they immediately split into two sep-
arate protons. We therefore must look at the reaction energy of the
following reaction

d → p + p + e− + ν̄e.

The deuteron has a mass of 1875.613 MeV/c2, while the combined
masses of the products is 1877.055 MeV/c2. This means that Q =
−1.442 MeV. Thus the neutron in the deuteron cannot decay spon-
taneously! At least 1.4 MeV must be added to “cause” this reaction.
Note that this is a different calculation than the binding energy of the
deuteron.

Why is the deuteron stable but the diproton (2He) and the dineu-
tron are not? To answer this question satisfactorily requires a knowl-
edge of advanced quantum mechanics and nuclear physics, including
spin and the Pauli exclusion principle.

Classification according to mass, and particle names

There were three known particles in the 1930s: the electron, proton and neutron. With a
mass of about 0.5 MeV/c2 the electron was the lightest, and with a mass of about 1000
MeV/c2 the nucleons (the collective name for the proton and neutron) were heavy. With
the discovery in 1937 of an intermediate mass particle, about 100 MeV/c2, in cosmic rays,
the particles were given “nicknames” according to their mass. Since the electron was
light, it was called a “lepton,” from the Greek word leptos (λεπτoζ) meaning “small.”
And, since the nucleons were massive, they were called “baryons,” from the Greek barys
(βαρυζ) meaning “heavy.” The cosmic ray particle was therefore called a “meson,” from
the Greek word mesos (µεσoζ) meaning “middle.”14 It wasn’t realized until later that
the intermediate mass cosmic ray particle was actually the µ− lepton, although it was
originally called the µ-meson.

Under our current naming scheme, however, a baryon has come to mean a particle
that is made up of three quarks (such as a proton or neutron), a meson has come to mean
a particle that is made up of a quark–anti-quark pair, and leptons are the elementary
particles that do not interact via the strong force. Since any three of the six flavors of
quarks can combine to form a baryon, there are 56 possible combinations, although there

14Interestingly, Hideki Yukawa, who predicted the existence of an intermediate-mass particle in 1935,
initially proposed to call it a “mesotron,” in keeping with the name of the electron. However, Werner
Heisenberg noted that the correct Greek word was mesos and it had no “tr.”
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are more than 56 different baryons since it is possible for the same set of quarks to have
different binding energies (see the comparison between the proton and ∆+ above). For
example, the sigma (Σ) baryons are combinations of one strange quark and two up or
down quarks. Their quark content and masses are

Σ+ uus 1189.4 MeV
Σ0 uds 1192.5 MeV
Σ− dds 1197.4 MeV

The pi (π) mesons are composed of different combinations of up and down quarks and
their anti-particles:

π+ ud̄ 139.6 MeV

π0 (uū-dd̄)/
√

2 135.0 MeV
π− dū 139.6 MeV

Note that the π0 meson is actually a superposition of quark states. This means that when
an experimenter “looks” at a π0 meson, 50% of the time they will “see” the uū combina-
tion, and the other 50% they will see dd̄. The factor of

√
2 indicates this mathematically.15

This is just one of the strange features of quantum mechanics. It should look somewhat
familiar, however, because it is similar to the fact that the general solution of a linear
second-order differential equation is a linear combination (or superposition) of two inde-
pendent solutions. In the same way, some quarks (and baryons and mesons) can be linear
combinations of two (or more) independent quark states. Also note that the π+ and π−

are antiparticles of each other, and hence have the same mass, and that the π0 is its own
antiparticle.

The Σ and π particles are just a few of the possible baryon and meson combinations
that can be constructed with the six known quark flavors. A short list, along with their
quark constituents, are shown in Table 2.1. At this time, no other combinations of quarks
other than qqq and qq̄ have been observed, although there have been searches for exotic
combinations such as so-called “penta-quarks,” made up of four quarks and one anti-quark:
qqqqq̄. In some sense this looks like a baryon and meson bound together. Either these do
not exist, or their lifetimes are too short to measure.

2.2 Electric Charge

A particle’s charge indicates how strongly it interacts via the electromagnetic force. In ad-
dition, however, charge is quantized; that is, it appears in nature only as integer multiples
of the fundamental unit of charge, e, which happens to be the charge of the electron,

qe = −e = −1.602 176 53(14)× 10−19 C,

15The probability of each state occurring is equal to the square of the numerical coefficient that multiplies
that state.
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baryon mass (MeV/c2)
p uud 938.3
n udd 940.6

Σ+ uus 1189.4
Σ0, Λ0 uds 1192.5, 1115.7

Σ− dds 1197.4
Ξ− dss 1321.7
Ξ0 uss 1314.9

meson mass (MeV/c2)
π+ ud̄ 139.6

π0 (uū-dd̄)/
√

2 135.0
π− dū 139.6

K0, K̄0 ds̄, d̄s 497.6
K+, K− us̄, ūs 493.7

η (uū+dd̄-2ss̄)/
√

6 547.9

η′ (uū+dd̄+ss̄)/
√

3 957.7

Table 2.1: Tables of the light (u, d, s quarks only), spin 1
2

baryons and the light, spin 0
mesons. Note that the Σ0 and Λ0 have the same quark content but different masses. The
heavier one, Σ0, is an electromagnetic excited state and decays in about 7 × 10−20 s into
the lighter one, Λ0. This process is identical to that which occurs when an electron in an
excited state (of higher energy) in an atom decays into a lower energy level. In both cases
the decay is accompanied by the emission of a photon equal to the energy difference. Here,
the energy difference is indicated by the mass difference, and a gamma ray of wavelength
2.57 fm is emitted. Also note that the π0, η, and η′ are all neutral mesons, but are just
different linear combinations of the same set of three quark—anti-quark pairs.

or, for our purposes e ≈ 1.60× 10−19 C .16 The other massive leptons (muon and tau)
have the same negative charge as the electron, and the neutrinos are neutral. In fact the
word neutrino was proposed by Wolfgang Pauli in 1930, and means “little neutral one” in
Italian.

What about the quarks? What are their charges? The quarks come with fractional
charges, that is, submultiples of e! For example, the charge on the up quark is qu = +2

3
e,

and that on the down quark is qd = −1
3
e. At first sight, this appears strange. How can any

particle have a fractional charge? There are two ways to reconcile this with the proposed
quantization of charge. First, all this really says is that the fundamental unit of charge is
not e, but is 1

3
e. Charge is still quantized and all particles have integer multiples of this

fundamental unit. Second, because quarks are never observed in isolation (they always
appear in groups of 3 — baryons — or in a quark–anti-quark pair — mesons), the charges
of particles that can exist in isolation must be a multiple of e. So the proton and neutron
have integer charges

qp =
(
+

2

3
+

2

3
− 1

3

)
e = e

qn =
(
+

2

3
− 1

3
− 1

3

)
e = 0.

This second fact was helpful in convincing skeptics about the usefulness, and the ultimate
reality, of quarks. The charges on the quarks are

u c t +2
3
e

d s b −1
3
e

16Keep in mind that e is a positive quantity, and that negative particles have charges that are integer
multiples of −e.
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One important fact about electric charge is that it is absolutely conserved. There is
no way to transform charge into energy, as there is with mass, so the charge of compound
particles is just the sum of the charges of the constituent particles. This conservation law
is sometimes stated as

Electric charge is neither created nor destroyed.

Why? We don’t know. All we know is that the violation has never been observed, so until
then it remains a “law.”

Interactions

Gravity and electromagnetism are the two classical (non-quantum) forces. The other
two “forces,” the weak and strong nuclear forces are inherently quantum mechanical in
nature. For this reason, you won’t be able to fully understand them in detail until after
a thorough study of quantum mechanics; however, we can discuss them now using some
of the classical concepts that you already know, such as energy and momentum. This
quantum nature leads to a new way of describing and understanding these forces that is
completely different from our previous descriptions. Previously, physicists have thought
about forces in two different ways. First, as “action-at-a-distance,” propounded by Newton
with his Universal Law of Gravitation.17 Second, utilizing the concept of a “field,” devised
by Faraday (and honed by Maxwell) to explain the electric and magnetic forces. Gravity
can also be described in terms of the gravitational “field,” both in the Newtonian limit
and in general relativity. Due to the necessity of using quantum ideas to describe the
weak and strong nuclear forces, we are forced to use quantum field theory, and this third
description postulates the existence of exchange particles.

For example, two electrons repel each other not because of a mys-
terious action-at-a-distance Coulomb force, nor even the electric field,
but by exchanging photons. Just like two ice skaters who, throwing
a ball back and forth, appear to repel each other, electrons exchange
photons, which, due to the conservation of momentum, exert impulses
on the electrons, and they appear to repel each other. The photon,
therefore, is the exchange particle that “mediates” the electromagnetic
force. The ice skater analogy does not work for particles that attract
each other, but the concept is still valid. In his thinking that led to the
proposal of the meson, the mediating particle that held the nucleons
together in the nucleus, Hideki Yukawa [Nobel Prize, Physics, 1949] wrote

If one visualizes the [nuclear] force field as a game of “catch” between protons
and neutrons, the crux of the problem would be the nature of the “ball” or
particle.

17Newton had a philosophical objection to action-at-a-distance, which he expressed in a letter in 1692:
“That gravity should be innate, inherent and essential to matter, so that one body may act upon another
at a distance through a vacuum, without the mediation of anything else by which their action and force
may be conveyed from one to another, is to me so great an absurdity that I believe no man who has in
philosophical matters a competent faculty of thinking can ever fall into it.”
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Figure 2.3: Feynman diagram depicting the electromagnetic interaction between two elec-
trons. Only one spatial dimension is shown, and the time axis is conventionally drawn
upward. Matter particles are depicted by straight lines, while the photon, an exchange
particle, is shown as a wavy line and indicated by a γ.

This view has three aesthetically pleasing features. First, all interactions are “local,”
which means that particles must be in the same location for any effect. Second, it nicely
explains the 1/r2 nature of the electric and gravitational forces: the “density” of mediat-
ing particles must decrease as 1/r2 from the “source” particle, a simple geometrical effect.
Finally, effects are not instantaneous, but take a finite time as the mediating particle
traverses the intervening distance. A graphical method of describing interactions that
automatically displays the first and third of these features is called a “Feynman diagram.”
A Feynman diagram of the electromagnetic interaction between two electrons is shown in
Fig. 2.3. This is similar to a position-time graph from elementary mechanics, where the
trajectories of all particles are shown. Note that the photon (γ) comes into and out of
existence when it interacts with an electron, and each electron undergoes a momentum
change. At each “vertex” all quantities such as charge and other quantum numbers are
conserved, the only exception being energy. That is, energy is created when the photon
is emitted by the first electron, and then lost when the photon is absorbed by the sec-
ond electron. The time interval over which the photon exists (and during which energy
conservation is violated) is short enough so that Heisenberg’s uncertainty principle is not
violated 18 (see App. I). A photon of this type is called a “virtual” photon, so that in this
third picture of interacting electrons, they do not exert a Coulomb force (at a distance),
nor do they create an electric field, but they exchange virtual photons in order to exchange
momentum and repel each other.

To the extent that each of the fundamental forces can be described by a quantum field
theory, each force must be mediated by an exchange particle. If the photon mediates the
electromagnetic force, what particles mediate the other forces? They are listed below,
along with their mass, charge, spin, and color.

18Technically, this description is not correct, as quantum mechanics does not allow energy violation.
However, the correct description is more mathematically sophisticated than we have space for here. If
you’re interested, see Griffiths, Introduction to Quantum Mechanics, page 118.
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mass charge spin color
gravity graviton19 0 0 2 no
E&M photon 020 0 1 no
color gluons 0 0 1 yes
weak W± 80.4 GeV/c2 ±e 1 no

Z0 91.2 GeV/c2 0 1 no

Our “zoo” of particles is now complete. We have 12 particles of matter, 12 of anti-matter,
and 13 “gauge bosons.” (There are 8 types of gluons, which are distinguished because
they also carry color.)

We will see later that when the mass of the mediating particle is zero, then the in-
teraction is long range. This makes sense for gravity and electromagnetism, in that they
both are 1/r2 forces which means that although they become weaker with distance, they
never go to zero. The weak force, on the other hand, is extremely short range because the
W and Z bosons are very massive. This means that the weak force is very “weak” (hence
the name) and particles must be very close to interact in this manner. The color force
is also long range, but it turns out to become stronger with distance rather than weaker.
The strong force, which is the force between baryons and mesons, is a short range force
that is the residual, or “leftover,” color force between objects that are color neutral.21

2.3 Spin

Our third property of interest, after mass and electric charge, is spin. It is a property
that does not relate specifically to one of the four fundamental forces, but is an inherently
quantum property, and therefore nicely illustrates the differences between the quantum
world and the classical world. A discussion of spin is a nice place to introduce the Heisen-
berg uncertainty principle and the Pauli exclusion principle so that you can see just how
the quantum world operates and how it differs from the world you know.

Spin is also known as “intrinsic” angular momentum. The Earth, for example, has
both orbital angular momentum due to its revolution about the sun, as well as “spin”
angular momentum: it rotates on its axis once every 24 hours.22 In the same way the
elementary particles, such as electrons, have intrinsic angular momentum that appears
to be due to their actual spin about an internal axis. There are two problems with this
explanation, however. First, if elementary particles have no size, then in the definition of
angular momentum, ~r× ~p, the factor ~r is zero, which means that the angular momentum
must be zero. Second, in Sec. 1.3 I claimed that angular momentum is quantized, and that
the allowed values for the angular momentum quantum number ` are integers. We’ll see in
Chapter 7 that this restriction comes from the fact that when you turn around 360◦, you
must see the same thing. However, measurements show that the spin angular momentum
quantum number can also be a half-integer, which means that it is somehow different from

19The graviton, while postulated to exist, has not yet been observed.
20The current upper bound for the photon mass is 1.2 × 10−51 g. (Luo et al., Phys. Rev. Lett. 90

081801, 2003)
21See Sec. 2.5 for more details.
22The “spin” angular momentum of the Earth about its geographic axis is about 7× 1033 J s.
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our classical view of angular momentum. These two problems remind us that while the
mathematics of spin is identical to that of the usual angular momentum, it is really only
an analogy, and it has no classical counterpart.

In classical mechanics, the symbol ~L is used for all types of angular momentum, but
in particle physics ~L represents the orbital angular moment of one particle about another
(similar to the angular momentum of the Earth orbiting about the Sun), and ~S is used
to denote the intrinsic angular momentum (i.e., spin) of the particle. So, just like L, S
is quantized, and its value depends on a quantum number. The quantum number is s
and can take on the values s = 0, 1

2
, 1, 3

2
, ..., ∞. All twelve of the elementary particles

(and their antiparticles) have s = 1
2
. It is usually stated, for example, that the electron

is a “spin 1
2
” particle. The magnitude of the angular momentum vector of a particle with

spin quantum number s is given by S = |~S| =
√

s(s + 1)h̄, where h̄ = h/2π, and h is
Planck’s constant. The manner in which S depends on s is exactly the same as the way
that L depends on `. The physics of the two types of angular momentum, ~L and ~S, are
identical, except for the fact that s can take on half-integer values while ` is restricted to
integer values. In the discussion that follows, I will focus on spin (S), but the results will
be equally valid for L.

While subatomic particles do have spin angular momentum, it is not correct to con-
clude that they are actually “spinning.” Our model of the elementary particles is one of
mathematical points, and, of course, points cannot spin. One way to see that this picture
of a spinning sphere must be wrong is to calculate how fast the electron and proton would
be spinning if they actually had

√
3

2
h̄ ≈ 9×10−35 J s of angular momentum. A point on the

“equator” would be traveling at a speed greater than the speed of light. (See Problem 24.)
Angular momentum is a vector, of course, and to specify it completely we need a

magnitude and direction. The magnitude is given by s, but what is the direction? It turns
out that we don’t know! We can determine one component of the vector, usually the z
component, but no others. This turns out to be a consequence of Heisenberg’s Uncertainty
Principle.

2.3.1 The Heisenberg Uncertainty Principle and angular mo-
mentum

The more precisely the position is determined, the less precisely the momentum
is known in this instant, and vice versa. — Werner Heisenberg

This quote embodies the most familiar form of Heisenberg’s principle, which is that
there is a special relationship between momentum and position: they can’t be known si-
multaneously with arbitrary precision. The exact mathematical statement of this principle
is

∆px ∆x ≥ h̄

2
, (2.5)

where ∆ signifies the “uncertainty” of a particular variable. We will discuss this in more
detail later in Chapters 6 and 7, and there you’ll see that there is a precise definition
of ∆x, namely, the predicted standard deviation of a series of measurements. However,
for now it is sufficient to realize that this principle implies that there is a fundamental
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Figure 2.4: Relationship between the spin vector ~S and its z component Sz.

limit to our knowledge—at a given instant we cannot know, with arbitrary precision, both
the momentum and position of a particle, regardless of the resolution of our measuring
apparatus. Unfortunately, the name is somewhat misleading. I feel that a better name
would be the “principle of indeterminacy,” because it is not that we are ‘uncertain’ of the
values of position and momentum. It is much deeper than that. The values of position
and momentum simply cannot be measured simultaneously: they are ‘indeterminant.’ As
Abraham Pais says,

“I have often felt that the expression ‘uncertainty relation’ is unfortunate
since it has all too often invoked imagery in popular writings utterly different
from what Heisenberg very clearly had in mind, to wit, that the issue is not:
what don’t I know? but rather: what can’t I know? In common language, ‘I
am uncertain’ does not exclude ‘I could be certain’. It might therefore have
been better had the term ‘unknowability relations’ been used. Of course one
neither can nor should do anything about that now.” — Inward Bound, page
262.

It turns out that there is also an uncertainty relationship between angular momentum
and angular position (i.e., angle), and another version of Heisenberg’s principle states that
we cannot know both of those quantities precisely. Mathematically,

∆Sz ∆φ ≥ h̄

2
, (2.6)

where φ is the usual cylindrical azimuthal angle (see Fig. 2.4). That is, ∆Sz is the “error”
(or indeterminateness) in the measurement of Sz, and likewise ∆φ is the indeterminateness
in the measurement of φ. It turns out that we are able to know Sz exactly, so that ∆Sz

must be zero, and therefore ∆φ must be infinitely large. What this means is that while
we know the magnitude of ~S and its z component, the vector itself lies somewhere (we
don’t know where) in the cone in Fig. 2.4. Or, put another way, we have no knowledge of

the x or y components of ~S.
The fact that we are able to know Sz exactly implies that there must be a quantum

number associated with the z component of the spin vector. There is, and it is called ms.
The allowed values of ms are s, s−1, ..., −s. That is, ms can range from s to −s, but each
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Figure 2.5: Possible orientations of the spin angular momentum vector for a particle with
s = 2. Note that the angle between ~S and the z axis is observable, but not the x or y
components. Figure 7-12 from Eisberg and Resnick, Quantum Physics, page 258.

allowed value must differ from its neighbor by 1. For the case of s = 1
2
, the allowed values

of ms are ±1
2
. Since the z component can point in the positive or negative direction, this

is the origin of the notion that electrons can be either “spin up” or “spin down.” For
the case of s = 1, the allowed values of ms are ms = 1, 0,−1, for the case of s = 3

2
, the

allowed values of ms are ms = ±3
2
,±1

2
, and for the case of s = 2, the allowed values of ms

are ms = 2, 1, 0,−1,−2, (see Fig. 2.5). As mentioned on page 8, each quantum number
allows the calculation of a physical quantity. Which quantity does ms represent? The z
component of the spin vector, Sz, and it takes on the possible values Sz = msh̄. Notice
that the allowed values of ms and s automatically require that the z component of the spin
vector is smaller than the magnitude of the spin vector itself. This, of course, is consistent
with our basic definition of a vector.

The fact that we are unable to know the actual direction of the spin vector is one of
the properties of quantum mechanics that many people find “weird.” An “explanation”
for this quantum weirdness is stated nicely by Eisberg and Resnick:

The fact that [the wave function] does not describe a state with a definite
x and y component of angular momentum, because these quantities are not
quantized, is mysterious from the point of view of classical mechanics. ...
[This] is a consequence of the fact that there is an uncertainty principle relation
which states that no two components of an angular momentum can be known
simultaneously with complete precision. Because the z component of angular
momentum has the precise value msh̄, the relation requires that the values of
the x and y components be indefinite. But one thing can be said about the
values of these components: ... their average values ... both equal zero. So,
although the particular value of Sx that would be obtained in any particular
measurement cannot be predicted, it can be predicted that the average value
that would be obtained in a set of measurements of Sx is zero. And similarly
for Sy.

23

23Eisberg and Resnick, Quantum Physics, page 258.
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The quantum number s is a fundamental property, an unchangeable attribute, of each
elementary particle, but ms can change. That is, the magnitude of a particle’s spin vector
is fixed, but it is allowed to change direction.

Nucleons and the addition of spin

Protons and neutrons both are also spin 1
2
. Why? How do the spins of the constituent

quarks, combined with the possible orbital angular momentum of the quarks about each
other, add to give the nucleons a total intrinsic angular momentum quantum number of
s = 1

2
? A simple model of a nucleon is to assume that the quarks have zero orbital angular

momentum.24 Since spin is a vector, adding two spins must be done vectorially; but we
don’t know which direction ~S points, so the formula ~S = ~S1 + ~S2 is impossible to evaluate.
A simple algorithm for adding the angular momenta of spin 1

2
particles is to note that

although ~S can point in any direction, they add as if they were parallel or anti-parallel.25

Therefore, if s1 = 1
2

and s2 = 1
2
, then s can take on two possible values:

s = 1 if the spins are parallel
s = 0 if the spins are anti-parallel

(The two cases above refer to when the z components are parallel or anti-parallel.) If we
add a third spin s3 = 1

2
to the s = 0 state we end up with s = 1

2
. If we add it to the s = 1

state, there are two possibilities again s = 1
2
, 3

2
. Therefore, our conclusion is:

The only possible 3-quark spins are 1
2

and 3
2
.

Recall that the proton consists of two up quarks and a down quark. But on page 21 we
saw that there is another uud baryon that has s = 3

2
and a mass of 1232 MeV—it’s called

the ∆+. In addition, another particle, the ∆0, is udd like the neutron, and is spin 3
2

and
has the same mass as the ∆+. These particles, while having the same quark constituents,
are in a different spin state, and the energy due to the interactions of their spins causes
them to be in a different energy state, and hence have a different mass. The baryons listed
in Table 2.1 have s1 = 1

2
, and there is a similar listing of the baryons that have s1 = 3

2
.

The ∆-particles are sometimes called “resonances,” and were discovered in 1949 by
Fermi and Anderson at the University of Chicago by scattering π± mesons off protons in
an H2 target. The term resonance, rather than particle, was used because they live for
such a short period of time before spontaneously decaying that their existence is inferred
from their decay products rather than direct observation of the particles themselves. That
is, the “scattering” can be thought of as π+p→ ∆ followed by a decay ∆ →p+π. The ∆
state has a half-life of only about 5 × 10−24 s, but has all the properties of a (unstable)
particle.

24Recent work at Brookhaven National Laboratory seems to point to the conclusion that the quark
spins contribute only 20% of the total angular momentum of the proton. Presumably, then, the other
80% is due to orbital angular momentum. The details of this interaction is not well understood.

25In reality, it is the z components that are adding, but without delving into the mathematical formalism,
it is equivalent to think of the spins as “up” or “down.”
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2.3.2 The proton-electron model of the nucleus

Before 1932, when James Chadwick [Nobel Prize, Physics, 1935] dis-
covered the neutron, it was not known what the constituents of nuclei
were. One proposed model, the leading contender since 1913, was that
it was composed of protons and electrons. This made sense because
in the 1920s the only particles that were known were the electron and
the proton (which at that time was defined to be the smallest nucleus
known, that of hydrogen). It was known that the electron was nega-
tively charged and not very massive. It was also known that the proton
was positively charged and much more massive than the electron (about
2000 times), so that the logical conclusion was that the mass of atoms
must be made up primarily of protons. These pieces of information came from Thomson’s
work on the electron, Rutherford’s work on the atom, and Bohr’s work on the hydrogen
atom.

Hence, a nucleus of mass number26 A must have A protons to account for its mass.
But it also had to have a charge Ze (where Z is the atomic number) to neutralize the
Z electrons that were not part of the nucleus. For this to be the case, the nucleus must
include A−Z electrons, so that its charge is A(+e) + (A−Z)(−e) = Ze. These electrons
reduced the charge but did not add significantly to the mass.

As we know now, there are several reasons why this model was incorrect, and one of
them is spin.27 In 1928, Ralph Kronig observed the spectra of N+

2 ions28 and was able to
determine that the spin quantum number of the nucleus of 14N was s = 1. The current
view is that this nucleus contains 7 protons and 7 neutrons. However, the proton-electron
model predicted 14 protons and 7 electrons. The difference between these models is that
one has an even number of spin 1

2
particles and the other has an odd number of spin 1

2

particles. From our discussion above of how spins add, we see that a compound particle
that consists of an even number of spin 1

2
particles must have an integer spin, and an

odd number must have a half-integer spin. The proton-electron model, therefore, would
predict a half-integer spin for the nucleus of 14N, which is not what is observed. The
proton-neutron model, however, has no such discrepancy.

A further clue was that was the observation that cadmium has at least one isotope
whose nucleus has s = 1

2
. You can show (Problem 26) that the proton-electron model

predicts that the nuclei of all isotopes of cadmium should have integer spin. In fact, you
can also show (Problem 27) that for a given isotope, if N is even, the two models (proton-
electron and proton-neutron) give the same prediction, but when N is odd, they give
opposite predictions concerning the nuclear spin. Among the first ten elements (hydrogen
through neon), there are only nine stable isotopes (out of 20) that have odd N : 2H, 3He,

26For the definitions of A, Z, and N see the beginning of Chapter 3.
27Another reason is size. It was a widespread view that the electron was a sphere of charge of radius

re = 2.82× 10−15 m (the “classical” radius, see Problem 8) which is about the same size as the nucleus.
This was disconcerting since it is hard to see how it is possible to fit many electrons into a box (the
nucleus) that is about equal to the size of one electron.

28N+
2 is singly-ionized molecular nitrogen, and Leonard Ornstein of Utrecht, the Netherlands, had ob-

served its rotational band spectrum. The reasoning for determining the nuclear spin is fairly sophisticated;
a nice description is in Pais, Inward Bound, page 299.
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6Li, 9Be, 10B, 13C, 14N, 17O, and 21Ne. Only two of these have appreciable abundance:
9Be (100% of all beryllium) and 14N (99.6% of all nitrogen), so it’s not surprising that this
discrepancy was first observed with 14N. All the other, more common, isotopes: 1H, 4He,
7Li, 11B, 12C, 16O, 18O, 19F, 20Ne, 22Ne, and of course the rare 15N, have an even number
of neutrons and hence require a different method to distinguish between the two models.

2.3.3 The Pauli Exclusion Principle and classification according
to spin

Just like placing subatomic particles in three categories depending on their mass (lepton,
meson, or baryon), we can place all particles into one of two categories depending on their
spin:

fermions — half-integer spin, s = 1
2
, 3

2
, 5

2
, ...

⇒ MUST obey the Pauli Exclusion Principle
bosons — integer spin, s = 0, 1, 2, ...

⇒ no exclusion principle

Fermions are named after Enrico Fermi and Paul Dirac, who developed “Fermi-Dirac
statistics” to describe this type of particle, and bosons are named after Satyendra Bose
and Albert Einstein, who developed “Bose-Einstein statistics.”

What is Pauli’s exclusion principle? In 1924 he stated it in the following manner

In the atom there can never be two or more equivalent electrons for which
... the values of all quantum numbers coincide. If there is an electron in the
atom for which these quantum numbers have definite values then the state is
“occupied.”

Prior to this, from observations of atomic spectra when the atoms are placed in magnetic
fields, it had been determined that each electron had three quantum numbers, n, `, and
m`. The first, n, is a label for the shell, ` labels the subshell, and m` is the so-called
“magnetic quantum number” because it would split the spectral lines only when the atom
was placed in a magnetic field. It was realized that two electrons could be placed in
each of these quantum states, and so a fourth quantum number for the electron, mR, was
proposed by Samuel Goudsmit which could take on the two values mR = ±1

2
. This now

doubled the number of allowed states, and Pauli’s principle works. As you might guess,
mR is nothing but ms, the z component of the electron’s spin. That is, two electrons can
occupy a single state, but with the caveat that one must be spin up and the other spin
down. This implies, therefore, that they are really occupying different quantum states,
since the external configuration (i.e., position) as well as the internal configuration (i.e.,
spin) must be included in the definition of “quantum state.”

The Pauli principle has since been generalized and made a more formal part of quantum
mechanics. The new statement (and you shall see what this means in Chapter 7) is that

fermions must have an antisymmetric wave function, and bosons must have a
symmetric wave function.
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Figure 2.6: Geometry of a magnetic dipole. Current I flowing in a loop with cross sectional
area A has a magnetic dipole moment of magnitude µ = IA. The direction of ~µ is
determined by the right hand rule: curl the fingers of your right hand in the direction of
I and your thumb points in the direction of ~µ.

It is not important at this stage to understand what a “wave function” is, but I want to
introduce early on the concept of symmetry, which underlies all of modern particle physics.
You have seen the concept of symmetry before when you labeled a function either even
or odd. A function that satisfies f(−x) = f(x) is an even, or symmetric, function; and
one that satisfies g(−x) = −g(x) is an odd, or antisymmetric, function. In general, a
symmetry can be defined as a quantity that remains unchanged when another quantity
changes. For example, a sphere is unchanged when it is rotated about an axis that passes
through its center. It is said to have “rotational symmetry.” The function f above is
symmetric under the interchange of x ↔ −x, while g is antisymmetric. We will study
symmetry more in Chapter 7, but for now I want to mention one symmetry that you are
familiar with: a mirror. What is the symmetry (or antisymmetry) of an object and its
image in a flat mirror? More specifically, why does a mirror reverse left and right, but not
up and down? (See Problem 28.)

2.4 Magnetic moment

How do you experimentally determine the spin of a particle? It is difficult to measure it
directly, but is relatively straightforward to infer it through a measurement of the particle’s
magnetic dipole moment. What is a magnetic dipole moment? You may recall from your
study of electrostatics that two electric charges, one positive and the other negative (±q),
separated by a distance d, is called an electric dipole, and has an electric dipole moment
~p = q~d. Here, the vector ~d is chosen to point from the negative charge toward the
positive charge. Similarly, since the fundamental unit of magnetism is current, a current
I in the shape of a loop of cross-sectional area A is a magnetic dipole with a magnetic
dipole moment ~µ = I ~A, where the direction of ~A is determined by the right-hand-rule
(see Fig. 2.6). This is the origin of the magnetic properties of matter: both an electron’s
orbital motion in the atom as well as its spin contribute to a magnetic dipole moment
that both is the source of a magnetic field, and also is affected by the magnetic field due
to other objects.
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The Electron

What is the magnetic dipole moment (from now on called simply “magnetic moment”) of
a charge q and mass m moving in uniform circular motion with speed v? In addition to
the current due to the moving charge, the mass of the moving particle means that it also
has angular momentum. It turns out that its magnetic moment ~µ is directly proportional
to its angular momentum ~L

~µ =
q

2m
~L, (2.7)

where q/2m is called the gyromagnetic ratio (see Problem 30). I have used the symbol ~L
because it is the particle’s orbital angular momentum that we are concerned with. Since
quantum mechanics tells us that ~L is quantized, Eq. (2.7) implies that ~µ must also be
quantized. The z component of the magnetic moment can be expressed as

µz =
q

2m
Lz =

q

2m
m`h̄, (2.8)

where m` is the quantum number associated with the z component of the orbital angular
momentum ~L.29

For an electron (orbiting in an atom, say), q = −e and m = me, and we have

µz =
−e

2me

m`h̄ = −
(

eh̄

2me

)
m` ≡ −m` µB, (2.9)

where µB ≡ eh̄/2me = 927.400 949(80) × 10−26 J/T is called the “Bohr magneton,” and
is the unit in which atomic magnetic moments are measured. As Eq. (2.9) shows, the
magnetic moment due to an electron’s orbital motion must be an integer multiple of the
Bohr magneton. A measurement of µz therefore allows us to infer a value of m`. How
can we measure µz? By placing the atom in a magnetic field and observing the effect on
the magnetic dipole moment. The Stern-Gerlach experiment (Appendix C) is a classic
example of such a measurement.

In addition to the magnetic moment due to its orbital motion, the fact that an electron
is an electric charge that is “spinning” on its axis means that it not only has intrinsic
angular momentum, but an intrinsic magnetic moment. If the electron, however, were
truly a spinning sphere of charge −e and mass me, and if its charge and mass were
uniformly distributed, then it would have exactly the same intrinsic gyromagnetic ratio
as a single current loop (see Problem 31). But it does not! The dimensions are, of course,
correct, but the numerical factor is incorrect. The intrinsic (or spin-related) magnetic
moment of an electron can be written

~µs = g
( −e

2me

~S
)

, (2.10)

where g is a dimensionless number, called the Landé g-factor.30 Experimentally, it turns
out that g ≈ 2. In 1921, Alfred Landé first proposed g = 2. Although it explained some

29Recall that the orbital angular momentum quantum number ` is always an integer, which means that
m` is also an integer.

30The quantity g was originally a “fudge” factor, proposed by Landé in 1921 to explain spectroscopic
measurements of the Zeeman effect.
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spectroscopic measurements,31 it was ad hoc, and did not make sense in light of classical
electromagnetic theory. At that time there was no inkling that the electron could be
anything but a physical object, most probably a sphere. In hindsight, however, this value
of g is incontrovertible evidence that the electron is a new kind of object. In 1928, Paul
Dirac developed a relativistic theory of quantum mechanics, and one of the results of that
theory was that any point particle (with zero spatial extent) must have a g-factor equal
to 2. This made physicists realize that the electron does not have any physical size, but
is truly a point particle, “and there is no sense asking what is inside it.”32

Actually, the quantum theory of Dirac was only an approximation to QED, and QED,
physical quantities must be calculated in a series of approximations, similar to a Taylor
series in calculus. The exact value of g for the electron has been calculated to be

g = 2 +
(

α

π

)
− 0.656957930

(
α

π

)2

+ 2.362482912
(

α

π

)3

+ · · · = 2.002 319 304 . . . , (2.11)

where α is called the “fine structure constant”33 and has the value

α =
e2

4πε0h̄c
=

1

137.035 999 070(98)
≈ 1

137
. (2.12)

This theoretical prediction for g agrees with experimental results to at least 10 digits,
and is the most accurate prediction of any physical theory at the present time. In fact,
the calculation of the coefficient of α3 took 20 years, and recently,34 the next term in the
series has been calculated, using numerical approximation methods (and several years of
supercomputer time) and has the value

−3.8288(70)
(

α

π

)4

≈ −1.01× 10−10. (2.13)

If you look at the experimental value for g listed in the CODATA sheet, g = 2.002 319
304 3718(75), it is getting close to the level of experimental uncertainty.35

31As Samuel Goudsmit, the discoverer of spin, commented, Landé’s assumption explains “completely
the extensive and complicated material of the anomalous Zeeman effect.”

32Abers, Quantum Mechanics, page 176.
33α is “the coupling constant or measure of the strength of the electromagnetic force that governs how

electrically charged elementary particles and light interact.” —NIST. It determines the strength of the
fine-structure splitting of the hydrogen atom’s spectral lines, a subject that we will take up in Chapter 4.

34Aoyama, et al., “Revised Value of the Eighth-Order Contribution to the Electron g-2,” Phys. Rev.
Lett. 99 110406 (2007).

35Often the electron magnetic moment “anomaly,” ae ≡ (g − 2)/2 is quoted rather than the value of g
itself

ae =
1
2

(α

π

)
− 0.328478965

(α

π

)2

+ 1.181241456
(α

π

)3

− 1.9144
(α

π

)4

= 0.00115965218279(771),
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This value of g for the electron is the third piece of evidence that leads
us to believe that electrons are point particles. The first was its size—
or lack thereof. It has no discernable structure on any scale that has
been measured. The second was the fact that its spin quantum number
s is half integer, i.e., it’s a fermion. Angular momentum obtained from
the classical definition ~r × ~p is required to have an integer quantum
number. Finally, the nail in the coffin is that g 6= 1. More important,
g ≈ 2, which, by Dirac’s theory means it must be a point particle.

2.5 Color Charge

To interact gravitationally, an object must have mass, and to interact electrically it must
have electric charge. There is only one kind of mass, but there are two kinds of electric
charge (positive and negative). The force between quarks is called the color force, and for
a particle to feel the color force, it must have “color charge.” In this case, however, there
are three kinds of color charge: red, green, and blue.36 Just like equal positive and negative
electric charges “cancel” and result in a charge neutral object, so too a combination of all
three colors results in a color neutral object that does not interact via the color force. The
three colors, while they have nothing to do with the actual colors of light, were chosen
because of the property that these three colors added together make white (something
without color).

The color, therefore, is a new quantum number of the quarks. An up quark, for
example, can either be in the red state, the green state, or the blue state. Anti-quarks
come in “anti-colors,” which can be thought of the complementary color on the color
wheel; i.e., anti-red is equivalent to mixing green and blue, which gives cyan. The colors
magenta and yellow are the anti-colors of green and blue, respectively. Since quarks are
never seen in isolation, this means that bare color is never seen, and quarks must exist
only in combinations that are color neutral. The only such combinations are three quarks
(qqq), each with a different color, or a quark–anti-quark pair (qq̄), with a color and its
anti-color. These, of course, are just baryons and mesons.

Why do we need this extra quantum number? Let’s look at three of the baryons that
have been observed along with their quark constituents, the ∆++ (uuu), the ∆− (ddd),
and the Ω− (sss). Each of these exist only in the spin 3

2
state, and, since they are composed

of identical, indistinguishable particles, they seem to violate the Pauli exclusion principle.
That is, in each of these baryons there seems to be three identical particles with the same
value of ms. If, however, we postulate that there is another quantum number (color) that
can take on three different values, and if each quark has a different color, then Pauli’s
principle is not violated. For example, the ∆− could be composed of a red down quark
(dr), a blue down quark (db), and a green down quark (dg).

Mesons also must be color neutral, and, for example, the quarks in the π+ meson (ud̄)
must be anti colors. However, which colors does it choose? Red and cyan? Green and
magenta? Blue and yellow? In fact, the mesons are composed of linear combinations

36Originally, the three colors were red, white, and blue, but the concept of color neutrality is more
pleasing using the well-known primary colors.
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(superpositions) of all three possibilities. We can write

π+ =
1√
3

(
urd̄r + ugd̄g + ubd̄b

)
, (2.14)

where the
√

3 is there just to make sure that we are counting only one quark. Essentially,
the π+ meson can be thought of consisting of 331

3
% of each color combination.

This is exactly analogous to the logic inherent when Pauli first proposed his exclusion
principle. If you read his statement on page 34, he states that two electrons are allowed
in each state. In fact, only one fermion is allowed per quantum state, so that meant that
there must be another quantum number for the electron in an atom (beyond the three
that were known) that could take on two possible values. It turned out that this quantum
number was ms, the z component of the electron’s spin, which could take on the values ±1

2
.

That is, the electron could be in either a spin up state, or a spin down
state. With color, the logic is the same: there must be another quantum
number that “allows” three identical particles to be in the “same state.”
In reality, since only one fermion per state is allowed, the new quantum
number must take on three different values. In addition to explaining
why baryons with three identical quarks exist only in a spin 3

2
state,

this proposition solves another problem—it explains why we see quarks
only in baryons and mesons, but in no other combination, and definitely
not in isolation. This idea of color was proposed by Oscar Greenberg in
1964, and M. Y. Han and Yoichiro Nambu [Nobel Prize, Physics, 2008]
in 1965.

The Color Force

Even though the mathematics of the color interaction are quantum mechanical in nature,
and also very complicated, we can understand the force between two quarks in a simple
way. One of the most important properties of the color force is that, unlike the electric and
gravitational forces, it becomes stronger with distance. Quarks can be thought of as being
connected by a rubber band: as you pull them apart, the attractive force between them
becomes stronger. This is a partial explanation for why quarks are not seen in isolation—
you cannot separate them because the attractive force is so strong. Mathematically, we
can express this force in terms of a potential energy that is a function of the distance r
between two quarks

U(r) = −a

r
+ br, (2.15)

where a = 94.6 MeV fm, and b = 913 MeV/fm.37 The first term in the potential energy
is electrostatic in character—i.e., it is due to a 1/r2 attractive force. For comparison, the
Coulomb potential energy between a proton and an electron is

U(r) = − e2

4πε0

1

r
≈ −1.44 MeV fm

r
, (2.16)

37This is the so-called “Cornell potential.” See Martin and Shaw, Particle Physics, p. 138.
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which shows that this part of the strong force is about 65 times stronger than the electro-
static force. (See Problem 34 for the calculation of a similar constant for the gravitational
force.) The second term represents the “spring-like” force that gets stronger with dis-
tance. Equation (2.15) is only valid, however, when the distance is in the range 0.2 fm
< r < 0.8 fm. Why such a restricted regime? Because it was obtained experimentally by
looking at the spectrum of “charmonium,”38 a meson that consists of a charm quark and
an anti-charm quark (cc̄), and comparing it with the spectrum of positronium (which is
an “atom” made up of an electron and positron.) Since these two objects are both made
up of a particle and its anti-particle, and positronium is held together by the electric force
only (which is well understood), a comparison yields information concerning the color
force, which holds charmonium together. It turns out that the spectrum is determined by
the potential energy over the spatial range above, because this is the typical inter-quark
distance.

How is this color force mediated? Through the exchange of gluons, which are the
exchange particles for the color force. Although gluons are massless, just like photons,
they do have color, unlike photons. That is, while photons mediate the electromagnetic
force, they have zero electric charge. Gluons mediate the color force, but they do have
a nonzero color charge. This means that a single gluon cannot be observed in isolation
because it is not color neutral. There are, however, predictions of “glueballs,” which are
particles made up of two gluons (of a color and its anticolor) that are color neutral. They
have not yet been seen, and one possible reason is that they are difficult to distinguish
from mesons.

There are two predictions of QCD that make the color force different from other forces.
The first is confinement. As r increases the potential energy increases, and at some
point this energy is large enough to create new particles, e.g., a quark–anti-quark pair.
So, if you try to separate two quarks to observe one in isolation, not only does the force
required increase with distance, but you must do so much work that you create matter
from the energy you put in. In some sense, this is like the inability to observe a single
magnetic pole: cutting a magnet in half simply creates two magnets. Quarks are confined
in color neutral combinations, and any attempt to separate them requires so much energy
that new quarks are created that retain the color neutrality of each particle.

The second prediction is called asymptotic freedom. At small distances, less than
about 0.2 fm, the interaction becomes very weak. As quarks “asymptotically” approach
each other, they become “free,” with no force acting on them. Again, this is consistent
with our picture of quarks happy to exist in groups of two or three (that are color-neutral,
of course), but unhappy to be isolated.39

The strong nuclear force

If nucleons are color neutral, what holds them together in the nucleus of an atom? The
answer is the residual color force, also called the strong force, that exists because the color
force between two color-neutral nucleons does not exactly cancel. The situation is similar

38Charmonium is also called the J/ψ particle.
39The Nobel Prize in Physics for 2004 was awarded to David Gross, Frank Wilczek and David Politzer

for discovering asymptotic freedom in 1973.
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to the force that electrically neutral atoms exert on each other. This residual electric force
exists because the electric charge in the atoms (the positive charge in the nucleus and the
negative charge in the electron cloud) are not in exactly the same location. This means
that they act like electric dipoles, and two electric dipoles exert a force on each other that
has a shorter range than the Coulomb force between bare charges. The Coulomb force falls
off as 1/r2, and you can show (Problem 36) that the force between permanent dipoles falls
off as 1/r4. It becomes weaker more quickly as the dipoles move apart, and therefore they
must be close together to feel a significant force. This weak residual force is also known
as the “van der Waals” force, postulated by Johannes van der Waals (Nobel Prize, Physics,
1910) to obtain an equation of state for a non-ideal gas that included a liquid phase.

The exact same partial cancelation occurs with the color charge of
the quarks in a nucleon. The fact that the three quarks in a nucleon
are not in exactly the same location means that there will be a nonzero
residual color force, which is usually called the strong nuclear force.
If this is truly a “force,” then using our new description of forces it
must be mediated by an exchange particle. This exchange particle is
a pion, or π meson, and is what Yukawa envisioned as holding the
nucleus together. He knew that the force must be short range, because
atomic nuclei do not compress as more nucleons are added—they have
a relatively constant density. As Yukawa correctly deduced, this implies that nucleons
only interact with their “nearest neighbors,” and do not feel any attraction to distant
nucleons on the other side of the nucleus. As I have stated on page 28, short-range forces
must be mediated by massive exchange particles, and a range of 1 fm corresponds to a
mass of about 100 MeV/c2, which is very close to the mass of the pion.

One final note on terminology. Quarks are the only elementary particles that have
color and interact via the color force. Baryons and mesons are the only particles that are
composed of quarks. Therefore, baryons and mesons are the only particles that interact via
the strong nuclear force. Collectively, baryons and mesons are called “hadrons,” meaning
a particle that exerts and feels the strong force.

2.6 Weak interactions

Of the four fundamental forces, the weak force is the most difficult to describe in simple
mathematical terms. It does, however, have one feature that none of the other forces
have: it can change quarks and leptons from one flavor to another. Because the exchange
particles (W± and Z0) are so massive, the weak force acts over extremely short distances—
so short, in fact that the interactions appear to be point-like, and the existence of the W±

and Z0 particles must be inferred from their decay products.

One example of the weak interaction is the neutron decay on page 22. One of the
down quarks in the neutron is transformed into an up quark (making a proton), but in
the process a W− particle is created, which then decays into an electron and antineutrino.
This reaction can most easily be described graphically by means of a “Feynman diagram,”
shown in Fig. 2.7. The diagram depicts the decay process with the spatial dimension on



42 CHAPTER 2. INTRODUCTION TO PARTICLE PHYSICS

Figure 2.7: Feynman diagram of neutron decay. Note that only one d quark in the neutron
decays into a u quark, and the other d quark and the one u quark are “just along for the
ride.”

the horizontal axis and time running vertically. First, the neutron is transformed into a
proton and a W−: n → p + W−, and then the W− decays: W− → e− + ν̄e. The net
reaction is, of course, identical to Eq. (2.3). Note that at each vertex in the Feynman
diagram electric charge is conserved. In addition, “lepton number” is also conserved at
each vertex (lepton number is a quantum number assigned so that leptons have a lepton
number of 1, and anti-leptons have a lepton number of −1). However, the mass is not
conserved at each vertex: the extra mass of the W− violates the law of the conservation
of mass and energy, but does so only for a short time in accordance with the Heisenberg
uncertainty principle.

One other strange thing you may notice about the Feynman diagram is that the an-
tineutrino is depicted with an arrow directed backward in time. This is because in quantum
field theories, the mathematical description of particles moving forward in time is iden-
tical to anti-particles moving backward in time. for this reason, you can think of the
anti-neutrino colliding with the W− and forming an electron. On that weird note, we
now turn to more mundane matters—nuclear physics—where we ignore the sub-nuclear
particles and concentrate on protons and neutrons, and on the nuclei that they comprise.

Collateral Reading

• “The Discovery of the Top Quark,” by Tony M. Liss and Paul L. Tipton, Scientfic
American, September 1997, pages 54-59.

• “Top-ology,” by Chris Quigg, Physics Today, May 1997, pages 20-26.

Problems

7. At the beginning of the twentieth century, physicists wondered what mechanism
endowed an electron with mass. One idea was that it came from the electrostatic energy
needed to assemble a uniform sphere of charge −e. One way to calculate this energy is to
recall from elementary electromagnetic theory that when you assemble charge in such a
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way as to create an electric field, the energy density of that field is 1
2
ε0E

2 (this is usually
derived for a parallel plate capacitor). Assuming that the electron is a uniform sphere of
radius R and charge Q, use Gauss’s Law to calculate the electric field everywhere (it will
only have a component in the radial direction), and then integrate the energy density over
all space to find the total energy E . Your answer should be

E =
3

5

Q2

4πε0R
.

See the box on page 98 for another perspective on this concept of “electromagnetic mass.”
8. In the early 1900s, the electron was thought to be a uniform sphere of charge;

therefore, its size could be determined by assuming that its rest energy, mec
2, is equal

to the electrostatic potential energy stored in the charge distribution, e2/4πε0re. In this
problem you are to calculate the numerical value of re, known as the “classical electron
radius.” How does your answer compare with the experimental fact that the electron is
smaller than 10−22 m? NOTE: the correct formula for the energy of a uniformly charged
sphere is (3/5)(e2/4πε0re) — see Problem 7. Historically, physicists were only interested
in the order of magnitude, and so they ignored the factor of (3/5) which is approximately
unity.

9. Calculate the classical proton radius using the same method as in Problem 8. How
does your answer compare with the experimental value for the proton radius?

10. The mass of the hydrogen atom has been measured as 1.007 825 032 07(10) u.
Using the known masses of the proton and electron, determine the binding energy of the
hydrogen atom in eV. How well does your answer agree with the known ionization potential
of hydrogen? Recent measurements of the electron mass gives 0.000 548 579 9111(12) u,
and for the proton 1.007 276 466 77(10) u.

11. Calculate (a) the binding energy B of the deuteron, and (b) the reaction energy
Q of the deuteron “decaying” into two protons: d → p + p + e− + ν̄e.

12. Calculate the binding energy B of the helion (the nucleus of 3He).
13. The 4He nucleus, also called an α-particle, is one of the most tightly bound nuclei.

For this reason it is used as the end product for effective fusion reactions because those
reactions release a large amount of energy. What happens when you try to put two α-
particles together to form one 8Be nucleus? Calculate (a) the binding energy of 8Be as
well as (b) the reaction energy for 8Be to split up into two α-particles. (c) Is 8Be stable
or unstable? NOTE: The atomic mass of 8Be is 8.005305 u. The α-particle mass listed in
the CODATA sheet is the nuclear mass.

14. The concept of binding energy only makes sense when the force between the
constituent particles vanishes as their separation distance becomes infinitely large. This
is the case, for instance, with the Earth and the ball, and also for the proton and neutron
(the proton and neutron interact via the strong force, which is extremely short range,
and only has an effect within a few femtometers). However, the quarks are bound by
a force (the “color” force) that gets stronger with distance, which explains why no free
quarks have been observed. For this reason, the concept of “constituent quark mass” has
developed, which simply ignores any possible binding energy, and is a calculation of the
quark masses simply by measuring the observable baryon and meson masses.
(a) Your task here is to calculate the constituent masses of the up and down quarks by
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using the observed masses of the proton and neutron. (you simply have to solve a system
of equations with two unknowns). (b) Another idea is to calculate the constituent masses
of the up, down, and strange quarks by using the observed masses of the three sigma
baryons. You’ll find that there is a problem with this method, however. What is it? And,
what exactly can you calculate with this method?

15. Calculate the reaction energy Q for neutron decay.

16. Calculate the reaction energy Q for the decay of the muon µ− → e− + ν̄e + νµ.

17. Confirm that the three Σ baryons and the three π mesons have the proper charge
due to their quark constituents.

18. List all possible distinct baryons (particles consisting of combinations of three
quarks) if you only have u, d, and s quarks. How many are there? Also, for each baryon,
list its electric charge and strangeness.

19. (a) Determine a formula for the number N of distinct baryons (particles consisting
of three quarks) if there are n flavors of quarks. For n = 3 does your answer agree with
Problem 18? For n = 6, what number do you get? (b) Do the same for mesons (one quark
and one antiquark).

20. Convert the rest energies of the weak vector bosons, W± and Z0, to kg as well as
u. What atoms have the same masses as these particles?

21. Calculate the magnitudes of the orbital and intrinsic (rotational or spin) angular
momentum of the Earth. What direction do these vectors point?

22. Calculate the angular momentum (both orbital and rotational) of the Sun, Mer-
cury, Venus, Earth, Mars, Jupiter and Saturn. In which body does most of the solar
system’s angular momentum reside? Can you explain this result?

23. What possible angles does the angular momentum vector ~L make with the positive
z axis when ` = 2?

24. The electron is known to have a spin (intrinsic angular momentum) quantum
number of s = 1

2
. This means that the magnitude of its angular momentum is S =√

s(s + 1) h̄ =
√

3 h̄/2. Assuming that the electron is a uniform sphere of radius re (equal

to its classical radius, Problem 8) and that its spin is due to rotation about an axis that
passes through its center, calculate (a) the angular velocity ω of the electron, and (b) the
speed of a point on the equator of the electron. Does your answer make sense?

25. Using the same method as in Problem 24, calculate (a) the angular velocity of the
proton and (b) the speed of a point on its surface assuming it is a uniform sphere whose
radius is equal to its classical radius (Problem 9). (c) For part (b) you should obtain the
same answer as you got in part (b) of Problem 24. Why?

26. In 1929, it was observed by Schuler and Benck that cadmium had at least one
isotope that was spin 1

2
. Why does this contradict the predictions of the proton-electron

model of the nucleus?

27. Obtain a general rule (based on A, N , and Z of a nucleus) that will allow you
to determine for which nuclei the proton-electron model and the current proton-neutron
model give contradictory predictions for the nuclear spin.

28. When you look at yourself in the mirror, your image is reversed left↔right but it
is not reversed up↔down. Why? It is not because you have two eyes, since the illusion
remains when you close one eye. It is also not because you stand vertically, since even if
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you lie horizontally the illusion remains.
29. Is it correct to think of the electron as a tiny ball of charge spinning on its axis?

Is it useful?
30. For a point particle of mass m and charge q that is moving in a circle of radius r

at constant speed v, calculate separately the magnitudes of its angular momentum ~L and
magnetic dipole moment ~µ. What directions do they point? What is the ratio of their
magnitudes (the gyromagnetic ratio or magnetomechanical ratio)?

31. Consider a solid sphere of radius R with a uniform mass density ρM and total
mass M , uniform charge density ρQ and total charge Q, that is spinning about an axis
through its center with angular velocity ω. (a) Calculate the magnitude of the angular
momentum. (b) Calculate the magnitude of the magnetic dipole moment. For this part,
one method is to first calculate the moment of a charged disk of radius r′ and then add up
(i.e., integrate) all the disks to make a sphere. (c) What is the ratio of the two quantities?

32. In the Bohr model of the hydrogen atom, in the lowest energy state the electron
orbits the proton at a speed of 2.2 × 106 m/s in a circular orbit of radius 5.3 × 10−11 m.
(a) Calculate the current I due to the moving electron and the magnetic moment due to
this orbital motion of the electron. (b) Calculate the orbital angular momentum of the
electron. (c) How do these quantities compare with the intrinsic values of the spin and
magnetic moment for the electron.

33. Prove that the gyromagnetic ratio of a sphere of mass M and charge Q, with a
uniform mass density ρ and uniform surface charge density σ is characterized by g = 5/3.
You will have to integrate the contributions of many infinitesimal rings of charge to obtain
the magnetic moment of this object.

34. Equation (2.16) showed that the potential energy due to the electric force between
an electron and a proton can be written U = −α/r where α = 1.44 MeV fm. One of the
terms in the potential energy for the color force is −a/r where a = 94.6 MeV fm. (This
shows that the color force is stronger than the electric force.) The gravitational force
between two nucleons has a similar potential energy function. That is, UG = −αG/r
Calculate the constant αG for gravity (in units of MeV fm) for two nucleons.

35. Consider the potential energy function between two quarks in a meson, Eq. (2.15).
(a) Assume that the two quarks have zero potential energy. At what separation distance
r0 is U = 0? (This is approximately the stable distance between the quarks in the meson.)
(b) When the quarks are at this distance, what is the magnitude of the attractive force
between them? (Recall that Fr = −∂U/∂r.) (c) If you pull the quarks apart, you must
do work on them, and their potential energy increases. How far must you pull them apart
so that you have enough done enough work to create a π0 meson? (d) Does this suggest
a possible reason why quarks are never observed in isolation?

36. To investigate the strong force visualized as the residual color force between
nucleons, in this problem we consider two neutral atoms, which do not exert an electric
force on each other, but if their charges incompletely cancel—that is, they have an electric
dipole moment—then they do. Consider two electric dipoles (each with a dipole moment
p = qa) located a distance r apart. That is, two charges ±q are located at x = ±a/2,
y = 0, and two more charges ±q are located at x = r ± a/2, y = 0. Use the binomial
expansion to take the limit where r À a. Your result should be that the 1/r2 terms cancel,
leaving only an attractive force that depends on r like 1/r4. This residual force, which is
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weaker than that between two bare charges at the same distance, is similar to the strong
nuclear force, which is weaker than the color force between quarks because quarks always
combine in color neutral combinations, just like the electric dipole is charge neutral.

37. Draw a Feynman diagram for the decay of the µ− lepton: µ− → e− + ν̄e + νµ.
This decay illustrates that there is a lepton number for each lepton flavor that must be
conserved separately. That is, µ− and νµ have muon lepton numbers of +1, while µ+ and
ν̄µ have muon lepton numbers of −1. A similar scheme holds for electron-type leptons and
tau-type leptons.

Solutions

7. From a consideration of Gauss’s Law in its integral form, it is straightforward to
obtain

Er =

{
Q

4πε0
1
r2 r ≥ R

Q
4πε0

r
R3 r ≤ R

and then, for example, the total energy outside the sphere is given by

1

2

∫ 2π

0

∫ π

0

∫ ∞

R
ε0

(
Q

4πε0

1

r2

)2

r2dr sin θdθdφ =
Q2

8πε0

∫ ∞

R

dr

r2
=

Q2

8πε0R
,

where I’ve used the fact that the integrand is only a function of the radius r so that the
angular integrations give

∫ ∫
sin θdθdφ = 4π. A similar integration can be done for the

region r ≤ R.
8. Equating

mec
2 =

e2

4πε0re

,

and solving for re, the “classical electron radius” is re = e2/4πε0mec
2 ≈ 2.82 × 10−15 m.

This is much larger than the observed upper limit of the size of the electron, 10−22 m. This
result means that the supposition that the electron’s mass is due to electrostatic energy
is wrong.

9. Since the only dependence in the formula is on the mass, we can write

rp =
e2

4πε0mpc2
=

re

1836
= 1.54× 10−18 m,

where 1836 is the ratio of the proton mass to the electron mass. Whereas the classical
electron radius was far too large (since it actually is a point particle), the classical proton
radius is far too small. A proton has a radius on the order of 1 fm. These examples show
that classical ideas are completely inadequate to describe the quantum world.

10. Adding the masses of the proton and electron, then subtracting the mass of the
hydrogen atom, I get 1.4611 × 10−8 u = 13.61 eV/c2 (where I have used the conversion
factor from the CODATA sheet: (1 u)c2 = 931.494 × 106 eV). This matches the known
ionization energy of hydrogen, as it should.

11. (a) See page 20. (b) See page 23.
12. From the definition of binding energy, Eq. (2.1), where M is the nuclear mass of

the helion (from the CODATA sheet), and
∑

i mi are the constituent particles, two protons
and one neutron, I get
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2mp 2× 1.007 276 u
+mn 1.008 664 u
−mHe 3.014 932 u

= B/c2 0.008 285 u = 7.72 MeV

Note that the atomic mass of 3He is 3.016029 u, which, when you subract the electron
masses (0.000549 u each), gives 3.014932 u for the nuclear mass.

13. (a) For the binding energy of a nucleus, we define the constituents to be protons
and neutrons. If we use the proton and neutron masses, we must use the mass of the
beryllium-8 nucleus in the calculation. However, since we only know the beryllium-8
atomic mass (from the Nubase listing), we need to account for the electrons. One way
to do this is to use the hydrogen atomic mass rather than the proton mass, and then the
electron masses will cancel. In this case, I get

B = (4× 1.007825 u + 4× 1.008665 u− 8.005305 u) c2 = 0.060655 u c2 = 56.47 MeV

So, the binding energy of 8Be is positive and you might expect it to be stable. (b) However,
the reaction energy Q for the reaction 8Be → 24He is (using atomic masses again) is found
to be Q = 0.000099 u = 92 keV. (c) The fact that Q is positive proves that 8Be is unstable
to break up into two α particles.

14. (a) Since the masses of the proton and neutron are known, we have two equations
and two unknowns

2mu + md = mp

mu + 2md = mn,

which we can write as a matrix equation

(
2 1
1 2

) (
mu

md

)
=

(
mp

mn

)
.

This can be solved by Gaussian elimination and back substitution, or simply by inverting
the matrix (

2 1
1 2

)−1

=
1

3

(
2 −1
−1 2

)

and solving for the quark masses

(
mu

md

)
=

1

3

(
2 −1
−1 2

) (
mp

mn

)
=

(
2
3
mp − 1

3
mn

−1
3
mp + 2

3
mn

)
.

Since mp = 938.27 MeV/c2 and mn = 939.57 MeV/c2, I obtain mu = 312.32 MeV/c2 and
md = 313.62 MeV/c2.

(b) From the quark constituents of the Σ baryons, the matrix equation is




2 0 1
1 1 1
0 2 1







mu

md

ms


 =




m+

m0

m−


 ,
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where m± are the masses of the Σ±, and m0 is the mass of the Σ0. However, the deter-
minant of the matrix is zero, which means that it can’t be inverted (and therefore only
two of the three equations are linearly independent), so that we cannot solve for all three
masses. The most information we can obtain is two of the masses in terms of the third.

One interesting quantity that we can calculate is the mass difference between the up
and down quarks. Subtracting the second equation (for m0) from the first (for m+), we
get

mu −md = m+ −m0 = 1189 MeV/c2 − 1192 MeV/c2 = −3 MeV/c2.

This is inconsistent with the same quantity obtained from part (a), which was -1.3 MeV. It
turns out we need a more sophisticated model that takes quantum mechanics and relativity
into account, i.e., a quantum field theory.

15. See page 22.
16. In the calculation of Q for muon decay, we can ignore the neutrino masses since

they are much smaller than the electron and muon masses. The difference in the muon
and electron masses results in a reaction energy of 105.147 MeV, signifying that the muon
is unstable to decay into an electron.

17.

Σ+ = uus q = +e
Σ0 = uds q = 0
Σ− = dds q = −e
π+ = ud̄ q = +e
π0 = uū, dd̄ q = 0
π− = dū q = −e

18. Simply by listing the possibilities (where uud is indistinguishable from udu), I
find that there are 10 distinct baryons:

charge strangeness particle s = 1
2

particle s = 3
2

uuu +2 0 ∆++

uud +1 0 p ∆+

uus +1 -1 Σ+ Σ∗+

udd 0 0 n ∆0

uds 0 -1 Σ0, Λ0 Σ∗0

uss 0 -2 Ξ0 Ξ∗0

ddd -1 0 ∆−

dds -1 -1 Σ− Σ∗−

dss -1 -2 Ξ− Ξ∗−

sss -1 -3 Ω−

The Σ0 has a mass of 1192.5 MeV/c2, while Λ0 is 1115.6 MeV/c2. In addition, the decay

Σ0 → Λ0 + γ

occurs, which means that Σ0 can be thought of as an electromagnetic excited state of Λ0.
Note that the three baryons with three identical quarks only exist in the spin 3

2
state. This

is a consequence of the Pauli exclusion principle, applicable to identical particles.
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19. (a) When n = 1, then N = 1, because if there is only one type of quark (say
u) then the only possible baryon is uuu. When n = 2, then N = 4, because if there are
two types of quarks, say u and d, then there are four possible baryons: uuu, uud, udd,
and ddd. Note that the order of the constituent quarks doesn’t matter, only the final
composition. When n = 3, you showed in problem #18 that N = 10. Using the theory
of combinations and permutations, can you find a formula, N(n), that will results in the
following general answer:

N =
n(n + 1)(n + 2)

6
,

which, when n = 6, gives N = 56. (b) For mesons, you will obtain different answers
depending on whether you count anti-particles as distinct or not. I’ll leave this as an
exercise.

20. Using the conversion factors on the CODATA sheet, I get

W±: 80.4 GeV/c2 = 86.3 u = 1.43× 10−25 kg
Z0: 91.2 GeV/c2 = 97.9 u = 1.63× 10−25 kg

This makes Z0 almost the same mass as 98Tc, the longest-lived of the radioactive isotopes,
and W± between the masses of 85Rb and 88Sr (rubidium and strontium).

21. (a) The orbital angular momentum L can be calculated from |~r × ~p| = mvr =
MEvRES where v = 2πRES/T and T = 1 year. I get L = 2.65 × 1040 kg m2/s. (b) For
the spin, we need the integral over the entire Earth, or simply recall the other definition,
S = Iω, where I = 2

5
MER2

E – since the Earth is a sphere – and ω = 2π/T , but this time
T = 1 day. I get S = 7.06 × 1033 kg m2/s. (c) Both of these “spins” are in the same
direction, i.e., both angular momentum vectors point northward.

23. The vector ~L and the z-component form a triangle, see Fig. 2.5, where cos θ =

Lz/L = m`/
√

`(` + 1) (the factors of h̄ have canceled). Given that ` = 2 and the possible
values for m` are 2, 1, 0, -1, and -2, the five values for θ are 35.3◦, 65.9◦, 90◦, 114◦, 145◦.

24. (a) Since we are assuming that the electron is a sphere of radius re = 2.82× 10−15

m, its angular velocity can be calculated from the definition of angular momentum: ω =
S/I = 3.15× 1025 s−1. (NOTE: Again, I assumed that the electron was a uniform sphere
with moment of inertia I = 2

5
mer

2
e .) (b) Since a point on the “equator” is executing

uniform circular motion, its speed is v = ωre = 8.88× 1010 m/s. This is almost 300 times
larger than the speed of light, so, no, it does not make sense. The electron must not be a
spinning sphere.

25. Using the classical proton radius of rp = 1.54 × 10−18 m, and assuming that the
proton is a sphere, I get (a) an angular frequency of ω = 5.76×1028 s−1. (b) Interestingly,
the speed of a point on its equator is the same as for an electron, v = 8.88× 1010 m/s. (c)
Why are the speeds identical? For any sphere of charge Q, mass M , and radius R, if its
spin angular momentum is a multiple of h̄, S = fh̄ (where f is a pure number), then the
equatorial speed is

v = ωR =
fh̄

2
5
MR2

R =
5fh̄

2MR
.
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This, in general, will be different for each object. However, if the particle’s rest energy is
presumed to arise from its electrostatic energy

Q2

4πε0R
= Mc2,

then the quantity MR depends only on the charge Q, and the equatorial speed can be
expressed as a fraction of the speed of light c

v

c
=

(
5

2
f

)
4πε0 h̄c

Q2
=

5

2

(
S

h̄

) (
e

Q

)2
1

α
,

where α is the fine structure constant. Since the proton and electron have the same charge
Q and the same spin S, they have the same equatorial speed. Also, since S ≈ h̄ and Q ≈ e,
the fact that α ≈ 1/137 means that v À c.

26. Cadmium’s atomic number is Z = 48, and its most abundant isotope has A = 112,
which means N = 64. The p-e model predicts 112 protons and 64 electrons, for a total
of 176 particles of spin-1

2
which implies an integer spin. If we look at the second most

abundant isotope, A = 111, the p-e model predicts 111 protons and 63 electrons, for a
total of 174 particles of spin-1

2
which again implies an integer spin. No matter whether A

is odd or even, the p-e model predicts integer spin, which contradicts the observation of
spin-1

2
.

27. Consider a nucleus of element with atomic number Z, and mass number A. These
two are related by A = Z + N . NOTE: Only in the proton-neutron model does N denote
the number of neutrons. In the proton-electron model, N is simply the difference A− Z.

proton-neutron model: This model predicts Z protons and N neutrons, for a
total of Z + N(= A) spin-1

2
particles. Therefore, if A is even, the nucleus must have an

integer spin, but if A is odd, the nucleus must have a half-integer spin.
proton-electron model: This model predicts A protons, but in order to have a

charge Ze there must be N electrons, for a total of A + N(= Z + 2N) spin-1
2

particles.
2N is always even, of course, so that if Z is even, the nucleus must have an integer spin,
but if Z is odd, the nucleus must have a half-integer spin.

Conclusion: If Z and A are both even or both odd (i.e., N is even), then the two
models make the same prediction. However, if one of Z and A is even and the other is odd
(i.e., N is odd), the two models make different predictions. For example, 4He has both
even A and Z, so there is no way to distinguish the models. But for 14N, A is even but Z
is odd. The same is true for 111Cd: A is odd but Z is even, so this allowed Schuler and
Benck to distinguish between the two models.

28. The mirror actually reverses front↔back. Your head is still on the top of your
image, and your left hand is still on that same side of the image. But because the mirror
reverses front↔back, our minds turn our body around so as to fit the image’s body. This
makes it appear to reverse left↔right.

29. No, it is not correct to think of the electron as a spinning sphere of charge (see
the box on page 38). However, it can be very useful, because that helps us think about its
mass and angular momentum in an intuitive way. One must be careful to realize, however,
that there is no classical analogue to spin, or to g 6= 1.
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30. The angular momentum is L = mvr, and the magnetic moment is

µ = IA =
q

T
(πr2) =

q

2πr/v
(πr2) =

qvr

2
.

so the ratio of the magnitudes is
µ

L
=

q

2m
,

which confirms Eq. (2.7) If q > 0 they point in the same direction, and if q < 0 they are
“anti-parallel.”

31. (a) The angular momentum is straightforward L = Iω =
(

2
5
MR2

)
ω. (b) The

magnetic moment, on the other hand, must be obtained via integration, but it’s the same
integration that is used to calculate the moment of inertia I for a sphere. Hence, you can
find it in any standard physics textbook. Here’s an outline:

I’ll assume that the sphere is centered at the origin and is spinning about the z axis,
and I’ll consider a volume element dV at an arbitrary location (r, z) within the sphere
that has a charge dq. The infinitesimal moment of inertia dµ that an infinitesimal charge
dq contributes is dµ = AdI, where A = πr2 and dI = ω

2π
dq. Here, r =

√
x2 + y2 is the

cylindrical coordinate (i.e., the horizontal distance from the z axis, not the distance from
the origin). Cylindrical coordinates are natural, and the total magnetic moment is thus

µ =
∫

dµ =
ω

2

∫
dq r2.

where the last integral is identical to the moment of inertia integral, except that you are
summing over charge not mass. Since dq = ρQ dV = ρQ rdr dθ dz, the integral becomes

µ =
ωρQ

2

∫
r3 drdθdz

=
ωρQ

2
2π

∫ R

0

[∫ √
R2−z2

0
r3 dr

]
dz

=
1

5
QR2ω.

There is no dependence on θ so that integration gives 2π, and the r integration is over a
disk, then the z integration adds up all the disks stacked to make a sphere. (c) The ratio
is the same as before

µ

L
=

Q

2M
.

32. (a) The current is I = qv/2πr = 1.1 × 10−3 A, and the magnetic moment is
µ = IA = 9.3 × 10−24 Am2. (NOTE: the SI units of µ can also be written as J/T.) (b)
This is just like the Earth calculation, L = mvr = 1.1 × 10−34 kg m2/s. (NOTE: The SI
units of L can also be written as J s.) (c) The intrinsic magnetic moment is, of course, on
the order of a Bohr magneton, so it turns out that the orbital µ that we just calculated is
exactly one Bohr magneton. The intrinsic spin is on the order of h̄, which again is exactly
the same as the orbital angular momentum that we just calculated!

33. See the solution to Problem 31 for the technique. The answer should be g = 5/3.
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34. The gravitational potential energy between two protons is U = −Gm2
p/r, which

has the same form as the Coulomb potential energy. The numerator gives the strength of
the force, and is

Gm2
p = 1.865× 10−64 J m = 1.16× 10−36 MeV fm.

So the gravitational force is significantly weaker than either the electric force or the color
force, and we can safely ignore it for the rest of this book.

35. (a) Since U = −a/r + br, setting U(r0) = 0 and solving for r0 gives

r0 =

√
a

b
= 0.322 fm.

(b) Evaluating the force at this distance gives

Fr(r0) = −
[

a

r2
+ b

]

r0

= −2b = −1826 MeV/fm = −2.93× 105 N.

This is a very large force! Especially acting on a small object. (c) At what value of r
does U ≡ Uπ = mπc2 = 135 MeV? Solving Uπ = −a/r + br for r results in a quadratic
equation, and we want the plus sign (the minus sign results in a negative value for r)

R =
Uπ ±

√
U2

π + 4ba

2b
= 0.404 fm,

which shows that if you pull two quarks apart 0.082 fm further than their equilibrium
separation distance, you have put in enough work (i.e., energy) to create a pion! (d) And
a pion will be created in the process, with each pair of quarks combining to form a new
meson, therefore not allowing you to observe any free quarks. Challenge: draw a Feynman
diagram for this process.

36. There are four force terms between the two pairs of charges: two repulsive, and
two attractive. The net attractive force that one dipole exerts on the other is

F =
q2

4πε0

(
− 1

r2
+

1

(r + a)2
+

1

(r − a)2
− 1

r2

)

=
q2

4πε0r2

(
−2 +

1

(1 + a/r)2
+

1

(1− a/r)2

)

≈ q2

4πε0r2

(
−2 +

{
1− 2

a

r
+ 3

a2

r2

}
+

{
1 + 2

a

r
+ 3

a2

r2

})

=
q2

4πε0r2

(
6
a2

r4

)
=

6

4πε0

p2

r4
,

where I’ve used the binomial expansion (1 + ξ)−2 = 1 − 2ξ + 3ξ2 + · · ·, and kept only
the first nonzero term. This force falls off as 1/r4, which is much weaker than the bare
Coulomb force. It’s a “residual” Coulomb force, and is similar to the strong nuclear force,
which is a residual color force.
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37. The first thing to remember about Feynman diagrams is that at each vertex, there
are several quantities that must be conserved
EXACTLY. For this problem, the relevant ones
are electric charge, electron lepton number,
and muon lepton number. Of course, mass is
NOT conserved exactly, because of the Heisen-
berg uncertainty principle. The figure shows
a muon changing to a mu-neutrino and a W−

(exchange particle). The W− then “decays”
into an electron and an electron anti-neutrino,
just as in the neutron decay shown in Fig. 2.7.
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Chapter 3

Introduction to Nuclear Physics

For a nucleus to be stable it must have a mass which is less than the combined
masses of any pair of nuclei made by subdividing it. — Hans Bethe

nucleon a proton or a neutron
nuclide a specific nucleus with Z protons and N neutrons

(plural: nuclides or nuclei)
isotopes nuclides with identical Z but different N
isotones nuclides with identical N but different Z
isobars nuclides with identical A
isomer a nuclide in an excited state

The nuclei of atoms of ordinary matter consist of protons and neutrons. The atomic
number Z is the number of protons in a nucleus, and N is the number of neutrons.
The sum is A = Z + N , which is called the atomic mass number. Unlike chemical (or
atomic) properties, which are determined solely by Z (because Z is also the number of
electrons in the atom, and the interactions between these electron are chemistry), the
nuclear properties depend on both the proton and neutron number. This is because the
forces through which the nucleons interact, in addition to the electromagnetic force, are the
strong and weak nuclear forces. Because they consist of quarks, both protons and neutrons
interact via these nuclear forces. In fact, both protons and neutrons (nucleons) interact
identically via the strong nuclear force because they have the same “strong charge.”

The notation for an isotope of element X is A
ZXN , which is usually shortened to AX. For

example, the common isotope of helium, denoted 4He, consists of 2 protons and 2 neutrons.
The fact that it is helium automatically means Z = 2, and the number of neutrons can
be determined from the values of A and Z (N = A − Z = 2). The less common isotope
of helium is 3He, pronounced “helium-3,” which consists of 2 protons and 1 neutron. Our
first task is to investigate the intrinsic properties of nuclei in the same way we looked at
particles in Chapter 2. The relevant properties are also the same: mass, electric charge,
color, spin, and magnetic moment. There is one new property, and that is size.

55
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3.1 Mass

The mass of a nuclide with Z protons and N neutrons (which I will denote by MZ,N) is
approximately given by

MZ,N ≈ Zmp + Nmn. (3.1)

The equality is not exact because each nucleus has some binding energy (see Eq. 2.1). But
the fact that it is a good approximation is one of the clues that led to the discovery of
the periodic table—elements had atomic weights that were almost integer multiples of the
atomic weight of hydrogen. For a nucleus, this binding energy is defined as

B(nucleus) ≡ (Zmp + Nmn −MZ,N) c2, (3.2)

where MZ,N is the mass of the nucleus with Z protons and N neutrons. As discussed on
page 20, the constituent particles are taken to be nucleons, rather than quarks.

For example, the 4He nucleus (α particle) is one of the most tightly bound nuclei,
which can be seen by using the known masses of protons, neutrons, and α particles in the
calculation of the binding energy:

2×mp 2 × 1.007 276 u
+2×mn 2 × 1.008 665 u

−mα 4.001 506 u
= B/c2 0.030 376 u

Converting the atomic mass units (u) to MeV results in 28.295 MeV. Since A = 4, this
binding energy is about 7.07 MeV per nucleon, or, as it is commonly denoted B/A = 7.07
MeV.1 Note that in this calculation, I used nuclear masses because that is the quantity
with which B is defined in Eq. (3.2). However, for atoms with many electrons it is difficult
to measure the mass of the nucleus and much easier to measure the mass of the entire
atom. For this reason, in tables such as Nubase, it is the atomic masses that are listed.
Atomic masses can be used, but the proper number of electrons must be included, as
in Eq. (3.5) below. Strictly speaking this is incorrect because the binding energy of the
electrons (to the atoms) must be included. However, this electron binding energy typically
is much smaller than the uncertainty in the atomic masses (see page 95), and therefore
for practical reasons it will result in the correct numerical answer.

Remember that the binding energy is a theoretical construct which says how much
energy would be released if we were able to break the compound nucleus apart into its
constituent nucleons. However, it is not usually possible to construct a compound particle
simply by “fusing” the constituent particles. Let’s take helium as an example. How is
it actually created? In the core of the Sun the nucleus of 4He is produced in a series
of nuclear fusion reactions called the “proton-proton chain,” and the net result of these
reactions is

4p → α + 2e+ + 2νe + 2γ, (3.3)

1The binding energies of nuclei are more commonly expressed as the binding energy per nucleon, B/A,
rather than just the binding energy, B, because B/A gives information on whether a given type of reaction
(e.g., fission or fusion) is exothermic or endothermic.
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where the “α-particle” is a common name for the nucleus of 4He. It is four protons (not
two protons and two neutrons) that fuse together, but in the process (which must involve
the weak interaction) two of those protons are converted to neutrons, plus the requisite
positrons, neutrinos, and photons.2 How much energy is released in this reaction? That
is, what is the Q value? Using the proton and α-particle masses (i.e., the nuclear masses),
and not including the neutrino masses in Eq. (3.3), I get Q/c2 = 0.026501 u, or Q = 24.685
MeV. Since Q is positive, this is an exothermic reaction.

However, if we want to analyze carefully what happens to the positrons, it’s possible
to use atomic masses. To see this, let’s add four electrons to each side of the reaction in
(3.3)

4p → α + 2e+ + 2νe + 2γ (3.4)

(+4e− → 2e− + 2e−)

where I have grouped the electrons with their respective nuclei, but there are still two
electrons left over. The positrons that were created will annihilate with any electrons
nearby and this annihilation process results in the creation of four photons. So, in reality
the net reaction is: four hydrogen atoms are converted into one helium atom plus six
photons (which escape the Sun and illuminate the Earth) and two neutrinos (which head
off into space and rarely interact with matter)

41H → 4He + 6γ + 2νe. (3.5)

Of course, it’s too hot and dense for neutral atoms to exist in the solar core, so again this
reaction equation is a theoretical construct that allows us to properly take into account
all of the energy released. Finally, therefore, we can calculate Q using atomic masses (it
is simply the mass difference between one 4He atom and four 1H atoms), which is 26.731
MeV. This is not the same as the (theoretical) binding energy, but is the (practical) energy
released. Where does this energy go? Most of it is taken away by the photons, but each
neutrino carries 0.26 MeV away, on average, and this 0.52 MeV is lost forever as the
neutrinos leave the sun. (Neutrinos can pass through about one light year of lead before
having a significant probability of reacting.) Hence, the final energy that is available to
illuminate and heat the Earth is about 26.21 MeV per net fusion reaction. (See Problems
40 and 41 for a calculation of how many of these nuclear fusion reactions actually occur.)

Another measure of the binding energy of a nucleus is its mass excess, ∆, defined as

∆ ≡ MZ,N − A× (1 u). (3.6)

The dimension of ∆ is mass, and therefore the dimension of ∆c2 is energy. In standard
tables, such as Nubase, the mass excess is listed in keV (rather than the actual mass or
rest energy).3 In reality, then, ∆c2 is given, and if you wish you can calculate MZ,N from
Eq. (3.6).

2Note that both electric charge and lepton number are conserved, as they must be.
3A third way to characterize the nuclide mass is by its “packing fraction,” f , where f ≡ ∆/A. This

was first proposed in 1915 by Harkness and Wilson [J. Amer. Chem. Soc. 37 1367 (1915)] while trying
to understand why isotopes had masses that differed from integral multiples of the hydrogen mass.
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The stability of a given nucleus can be determined using the criteria proposed by Hans
Bethe in the quote on the top of page 55: for a nucleus to be unstable, it is only necessary
to find one pair of nuclei whose combined masses are less than the nucleus in question.
That is, if the value of Q is positive for any reaction where the nucleus in question splits,
then the nucleus is unstable. In particular, it is found that there are no stable nuclei
with A = 5 or A = 8, a fact that is extremely important in the explanation of element
formation in the early universe. Let’s investigate the possible isobars with A = 5: 5H,
5He, 5Li, 5Be, and 5B. The helium and lithium are unstable to the emission of a neutron
and proton, respectively,

5He → 4He + n, (3.7)
5Li → 4He + p,

with reaction energies of 893.8 keV and 1.966 MeV, respectively, and half-lives of 700 ys
and 370 ys,4 respectively. 5Be and 5B have so many protons that the repulsive electric
force overwhelms the attractive strong force. Finally, 5H has too many neutrons, and
decays via double neutron emission

5H → 3H + 2n. (3.8)

Shell model

Certain nuclei are especially tightly bound, which means that they have a large binding
energy per nucleon, a large B/A. One of these is 4He, as well as the other “even-even”
nuclei (those with an even number of protons and an even number of neutrons), e.g.,
12C, 16O, and 20Ne. In an attempt to understand this structure and regularity, quantum
mechanics has been used to create a “shell model” of the nucleus, where the nucleons
arrange themselves in shells similar to the electron shells in an atom. This model is more
complicated than the atomic model because in the atomic model the electrons all orbit
in the strong electric field of the nucleus and the inter-electron interaction is weak. In
the nuclear shell model, however, there is no central object in a nucleus, however, so each
nucleon moves in a “field” due to all the other nucleons combined. This makes the nucleus
a “many-body” problem at its most fundamental level.

Electrons in atoms are the most tightly bound in the inert gases, listed in the right-
most column of the periodic table. This is because in these atoms the outermost electron
shell is filled. Their atomic numbers are

2 10 18 36 54 86 118
He Ne Ar Kr Xe Rn Uuo

where I’ve listed the element symbol below these special values of the atomic number.
There are also special values of the number of nucleons, and these are called magic

numbers. For nuclei, these magic numbers are

2 8 20 28 50 82 126

41 ys = 1 yoctosecond = 10−24 s.
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If a nucleus has either N or Z equal to one of these “magic numbers,” then that nucleus
is especially tightly bound. If both N and Z are magic, then that nucleus is called
“doubly magic.” For example, 4He and 16O are both doubly magic. This means that an
extra nucleon added to one of these nuclei is especially loosely bound. 4He takes this to an
extreme, since it requires about 20 MeV to remove a proton or neutron,5 but an additional
proton or neutron is not bound at all.6

The higher magic numbers are less striking, but they exhibit observable effects, nonethe-
less. Tin, for example (Z = 50), is the element with the largest number of stable isotopes,
ten. Also, in α decay (see Section 3.8), when the emission of an α particle removes the
125th and 126th neutrons from a nucleus (which should be strongly bound), the resulting
energy of the α particle is much lower than when the 127th and 128th neutrons are re-
moved (which are weakly bound) — see Problem 45. Finally, the heaviest stable nucleus
is that of 208Pb, which is doubly magic, and lead (Z = 82) is the endpoint of all four
naturally radioactive decay series (see Sec. 3.8.1).

3.2 Electric Charge

Unlike mass, charge is strictly conserved. This means that the charge of a nucleus is given
by

QZ,N = +Ze, (3.9)

since each nucleus consists of Z protons, and each proton has an electric charge of +e.

3.3 Color

All nuclei are color neutral! This is to be expected because their constituents, the protons
and neutrons, are color neutral. This means that there is no color interaction between
nucleons. As discussed on page 40, there is, however, a residual color interaction, called
the strong force, which binds nucleons together into nuclei. Also, nuclei interact via this
strong force during fusion and fission, for example.

3.4 Size

This is one property that is new. Elementary particles are point-like; they have no physical
dimension. This is not to say that their influence is point-like: they do interact over long
distances via the four fundamental forces, but those forces do not require any structure in
the 12 elementary particles. Compound particles, on the other hand, do have structure,
and this means that they have a certain size and shape. What do I mean by size? It is a
definition that depends on the method of measurement. Hence, whenever someone claims
that a particular object has a certain size and shape, they must also state how they came

5You can calculate that it takes 20.58 MeV to remove a neutron and 19.81 MeV to remove a proton
from an α-particle.

6Recall that there are no stable nuclei with A = 5.
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to that conclusion, i.e., how was it measured?7 For example, when you hold a magnet in
your hand and deduce its size from your sense of touch, you are tracing its outlines by
the contact with your hand. However, a second magnet can be affected when it is not
touching the first magnet, and therefore you might conclude that the first magnet is larger
than its physical contact outlines suggests.

Nuclides are approximately spherical with a radius R given by

R = R0 A1/3, (3.10)

where R0 is a constant. This formula implies that nuclei are “incompressible”: the volume
V of a spherical nucleus with A nucleons is just

V =
4

3
πR3 =

4

3
πR3

0 A = V1 A, (3.11)

or the volume V is the volume of one nucleon, V1 = 4πR3
0/3, times the number of nucleons,

A. Neutron stars are examples of matter that have been compressed to the nuclear density
because they are essentially comprised of neutrons, packed like marbles.

The exact value of R0 depends on the method by which it is measured. For exam-
ple, R0 ≈ 1.07 fm when electron scattering is used.8 That is, if a particular nucleus is
bombarded with electrons, the primary interaction is via the electromagnetic force (since
electrons do not feel the strong force—both feel the weak force, but that, of course, is
weak), and therefore the scattered electron essentially “sees” the positive electric charge
distribution during the process of scattering. If nuclear scattering is used (e.g., neutrons),
then the two objects interact via the strong nuclear force, and experiments give R0 ≈ 1.4
fm. It makes sense that the electric charge distribution occupies a smaller volume than
the nuclear charge distribution due to the fact that all the nucleons carry nuclear charge,
i.e., color, but only the protons have electric charge.

Both distributions can be described by an empirical function of the density (either
electric charge density or nucleon density) that depends on radial location

ρ(r) =
ρ0

1 + e(r−R)/b
, (3.12)

where R is given in Eq. (3.10). In the case when ρ describes the electric charge density,
b ≈ 0.55 fm, and ρ0 ≈ 0.075 e/fm3. The value of the central mass density ρ0,mass is
approximately constant for all nuclei. On the other hand, as shown in Fig. 3.1, the value
of the central electric charge density ρ0,charge decreases slightly for nuclei with large A,
which is due to the fact that the fraction of protons in the nucleus, Z/A, decreases as A
increases (see Section 3.9).

3.5 Spin

The intrinsic angular momentum of a nucleus is the vector sum of the spins of the individual
nucleons (which are spin 1

2
) plus any orbital angular momentum they may have. For nuclei,

7That is, how do I know what I know? — epistemology!
81 fm = 1 femtometer = 10−15 m.



3.5. SPIN 61

Figure 3.1: Plot of nuclear charge density ρ versus radial distance r for several nuclei,
from carbon to bismuth. The charge densities ρ(r) were obtained by fitting experimental
scattering data to Eq. (3.12). The radial distance is in femtometers (F), and charge density
is in e/fm3. The variables ρ(0) = ρ0, R and b are noted for the 6C nucleus. Note that the
atomic number Z is given in the superscript for each element rather than the atomic mass
number A. Figure 15-6 from Eisberg and Resnick, Quantum Physics.

the usual convention is to denote the spin quantum number by i, rather than s. It is still
intrinsic angular momentum, but simply denoted by a different letter. This means that the

magnitude of the nuclear spin is I = |~I| =
√

i(i + 1)h̄, and the z component is Iz = mih̄,

where mi and i are integers or half integers, and |mi| ≤ i.

Recall that we determined the proton and neutron spins by adding the spins of the
quarks that make up the nucleons. Since the quarks are all spin 1

2
, and if we assume that

there is no orbital angular momentum, a baryon must have either spin 1
2

or spin 3
2
. Some

baryons, like the Ω−, have spin 3
2
. Given this method of adding spins, we have seen from

our analysis of the proton-electron model of nuclei (Section 2.3.2) that if the number of
constituent particles of spin 1

2
is even, then the total spin must be an integer, and if the

number of particles is odd, then the total angular momentum must be a half integer. Since
both nucleons are spin 1

2
, this rule also applies to complex nuclei:

• if A is even, then i = 0, 1, 2, ...

• if A is odd, then i = 1
2
, 3

2
, 5

2
, ...

For example, the deuteron (the nucleus of deuterium, 2H) has spin i = 1, and the 7Li
nucleus has spin i = 3

2
. These both follow the above rule. (Note that because the orbital

angular momentum quantum number ` is always an integer, the inclusion of orbital angular
momentum will not change the above rule.) If there is no orbital angular momentum in
the deuteron, it means that the spins of the proton and neutron are aligned, i.e., they
are both spin up or spin down. At first glance, you might think that this violates the
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Pauli exclusion principle, but that only applies to identical particles, and the neutron and
proton are distinguishable.

An interesting fact about nuclei is that pairs of protons like to have their spins aligned
in opposite directions, and so do neutrons—this puts them in a lower energy state. This
is similar to the behavior of electrons in atoms, and the fact that each subshell can con-
tain an even number of electrons, but each pair must have their spins anti-parallel. The
observational consequence of this is that all even-even nuclei have zero spin! The nuclei
of 4He, 12C, 16O, etc., have i = 0. These nuclei also have large binding energies—they are
very stable and tightly bound, which is another indication that the nucleons like to be in
this configuration. Conversely, nuclei do not like to consist of an odd number of protons
and neutrons. In fact, there are only four stable nuclei that are “odd-odd,” with an odd
number of protons and an odd number of neutrons: 2H, 6Li, 10B, and 14N.

3.6 Magnetic Moment

Proton What is the magnetic dipole moment of the proton, the simplest atomic nucleus?
To answer this question, a knowledge of its internal structure is needed. On the other hand,
a measurement of gp can reveal information about its internal structure. As we have seen
in Sec. 2.4, the classical result for a uniformly charged sphere would lead us to expect that

~µp =
+e

2mp

~S, (3.13)

where the proton mass is used instead of the electron mass, as is appro-
priate. But, if the proton is a point particle, then g ≈ 2, and Dirac’s
theory would predict twice the value in Eq. (3.13). Both predictions,
however, turn out to be wrong! The g-factor for the proton, first mea-
sured in 1933 by Otto Stern [Nobel Prize, Physics, 1943], Robert Frisch
(the nephew of Lise Meitner, who worked out the theory of nuclear fis-
sion with her in 1938 after she had fled Nazi Germany), and Immanuel
Estermann,9 is gp = 5.585 694 702(56), and it is defined by

~µp = gp

(
+e

2mp

)
~S, (3.14)

Considering just the z component, and noting that Sz = msh̄, allows us to express µz of
the proton in terms of the “nuclear magneton,” µN ,

µz = gp

(
eh̄

2mp

)
ms = gp ms µN , (3.15)

9In 1933, using the molecular beam method—the same as the Stern-Gerlach experiment (see App. C)—
Stern measured g = 5.0 ± 10%. Six years later the magnetic resonance method, pioneered by Rabi and
Ramsey, was much more accurate: 5.570 ± 0.04. In 1933, Pauli and other theorists advised Stern to
not make this measurement because, he said, “we know the moment of the proton, because we know
the difference in mass between the proton and the electron, and we know the magnetic moment of the
electron.” Of course, they were wrong!
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where µN ≡ eh̄/2mp = 5.050 783 43(43) × 10−27 J/T.10 This result tells us two things.
First, the proton is not a point particle, which we already knew because it is comprised of
three quarks, which are point particles. Second, it is not a uniform sphere—the charged
quarks have spin and orbital angular momentum.

Why does the proton’s magnetic moment have this value? It must come from the
addition of the magnetic moments due to the orbital and spin angular momenta of the
three quarks. But the actual quantum state that the quarks are in is not well known.
In fact, as we saw in Sec. 2.1, not even the masses of the quarks are well known. To
understand the proton’s g-factor requires a detailed study of QCD, the quantum field
theory of the strong force, and how it interacts with the electromagnetic force associated
with the quarks’ spins.

Neutron What about the neutron? The classical prediction is that its magnetic dipole
moment is zero since it is an electrically neutral particle. However, just like the proton,
we know that it is not a point particle, but consists of charged quarks, which not only
move around but also have their own spins and magnetic dipole moments. The measured
value for the neutron’s g-factor is gn = −3.826 085 46(90), which implies that neutrons
have some internal structure, as expected. The fact that it is negative means that ~µ points
anti-parallel to ~S.

Even though the neutron’s electric charge is q = 0, its g-factor is defined in the same
way as the proton, Eqs. (3.14) and (3.15). In fact, since both the proton and neutron are
spin 1

2
particles, and ms = ±1

2
, Eq. (3.15) shows that measured values of µz are multiples

of half a nuclear magneton,

µz = ±g

2
µN . (3.16)

For this reason it is common to quote g/2 rather than g itself

gp

2
≈ 2.793 and

gn

2
≈ −1.913. (3.17)

Deuteron With this knowledge, can we predict the magnetic moment of the deuteron?
Yes, if we remember that the spin of the deuteron consists of the spins of its constituents
plus any orbital angular momentum that they may have. Since the deuteron spin is
measured to be i = 1, the simplest explanation is that the neutron spin is aligned with the
proton spin and there is no orbital angular momentum (i.e., they are in an ` = 0 state,
which for those of you who remember your atomic orbital theory is another way of saying
that they are in an “S state”11). Therefore, the deuteron’s g-factor should be (keeping
only six decimal places)

gD(predicted) =
gp

2
+

gn

2
(3.18)

= 0.879 805.
10Notice that the proton magnetic moment (and nuclear magnetic moments in general) are smaller than

electron magnetic moments by a factor equal to the mass ratio, me/mp. For this reason, it is much more
difficult to measure magnetic moments of nuclei than electrons.

11The subshells for the electronic configuration of an atom are denoted by the letters s, p, d, f , . . .,
which correspond to the angular momentum values ` = 0, 1, 2, 3, . . ., respectively. This notation is
discussed in more detail in Section 4.3
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However, the measured value is12

gD(observed) = 0.857 438. (3.19)

The two values differ by 2.6%, which is much larger than the experimental uncertainty,
so our assumption that there is zero orbital angular momentum must be wrong. It turns
out that the deuteron is not in a pure ` = 0 state, but is, in fact, in a “superposition
state,” with 96% zero angular momentum, and 4% in a “D” state, which is characterized
by ` = 2. (See Problem 50.) Superposition means linear combination, and the deuteron’s
orbital angular momentum is a linear combination of ` = 0 and ` = 2. If we calculate the
deuteron’s magnetic moment including this small amount of orbital angular momentum,
then the electric current due to the proton’s orbital motion gives a contribution to the
total magnetic moment, and the agreement with experiment is almost exact.

As is common in science, this new information leads us to two new questions: Why is
the deuteron in this superposition state? and, How do we know it is? The answer to the
first question is to be found in advanced quantum mechanics, and will not be answered
here, but to the second question I can give a partial answer. In 1939, Kellogg, Rabi,
Ramsey, and Zacharias were able to determine that the deuteron had a non-zero electric
quadrupole moment. What does this mean? It means that the shape of the deuteron is
not spherical, but more like a football. Specifically, it is a “prolate spheroid,” which is
an ellipsoid of revolution about an ellipse’s major axis.13 If you recall the orbital shapes
of the electron clouds in atoms, the ` = 0 orbitals are spherically symmetric, so that any
asymmetry (i.e., anything other than perfect spherical symmetry) implies nonzero orbital
angular momentum.

3.7 Radioactivity

To the chemists of the 19th century the atom and the element represented each
in its sphere the uttermost limit of chemical subdivision or disintegration, and
at the same time the point beyond which it was impossible for experimental
investigation to proceed. If it were queried what there was beyond, nothing but
more or less vague and fruitless speculations were forthcoming. This line of
demarcation, for so long regarded as insurmountable, has now been swept away,
at all events in principle. Nowadays the inner structure of atoms and the laws
regulating that structure belong to the problems that can be made the subject of
discussion in a thoroughly practical and at the same time fully scientific man-
ner, thanks to the exactness of the measurements which have been taken. The
results already arrived at are not only of the utmost importance in themselves,
but derive perhaps a still greater significance from the numerous possibilities,
wholly unsuspected ten or twelve years ago, which have been thrown open for
the continuance of the work of investigation in this department of science. —
Presentation of 1908 Nobel Prize in Chemistry to Ernest Rutherford

12First measured by Estermann and Stern in 1933.
13For reference, the Earth’s shape is an oblate spheroid, which again is a figure of revolution, but this

time the ellipse is revolved around its minor axis, and resembles a pancake.
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Historical Background

On March 1, 1896, Antoine Henri Becquerel discovered radioactivity. His motivation was to
look for X-rays (recently discovered in November 1895 by Roentgen) from phosphorescent
materials, and he was familiar with the phosphorescent properties of uranic salts,14 which,
of course, contain uranium. He wrapped a photographic plate (a piece of glass covered
with a photographic emulsion) in black paper, and placed on the paper a piece of a
phosphorescent substance. He exposed the combination to the sun for several hours, in
the expectation that the sunlight would cause the uranium to phosphoresce, and that
phosphorescent light from the uranium would penetrate the black paper and leave an
image on the emulsion. It worked as expected, but then there came a week of cloudy
weather and the sun did not shine. Becquerel put his plates and uranium in the cupboard
for a week (without being exposed to sunlight), and for some reason he decided to develop
those plates, even though he expected nothing. However, his intuition was correct, and
he discovered that the plates showed an image, just as if it had been in the sun!

This was the first step in the discovery and understanding of radioactivity, and the
“rays” that must have been emanating from the uranium were called “Becquerel rays.”

One week later, on March 9, Becquerel discovered that the rays could discharge an
electroscope, which meant that the rays were charged. At that time there were two types of
rays known, cathode rays (which a year later would be shown by Thomson to be electrons)
and light rays (which had been shown by Maxwell and Hertz to be electromagnetic waves).
Of course, the “X-rays” of Roentgen would turn out to be high-frequency electromagnetic
waves, and the Becquerel rays were nothing but electrons, but that was not clear for quite
a while. In fact, the uranium sample emitted both electrons and α-particles, but the α
particles were easily stopped by the paper and so did not contribute to the darkening of
the emulsion.

Becquerel’s family was quite prodigious. Along with his grandfather, Antoine César,
his father, Alexandre Edmond, and his son, Jean, the four of them continuously held the
chair of physics at the Museum of Natural History in Paris from 1838-1948, a span of
110 years! The four of them studied many aspects of physics, including thermoelectric
phenomena, luminescence, infrared spectroscopy, magnetic polarization by crystals, and
magneto-optics. In fact, after his discoveries, Antoine Henri said, “These discoveries are
only the lineal descendants of those of my father and grandfather on phosphorescence, and
without them my own discoveries would have been impossible.”

The second step in the understanding of radioactivity came in 1898 when Marie and
Pierre Curie found that the element thorium (Z = 90) was also radioactive. In addition,
they discovered two new elements due to their radioactivity, which they named polonium
and radium. These latter two they found by chemically isolating them from their sample of
pitchblende. Pitchblende is a black mineral, mainly UO2, but it also has some impurities,
and these are what the Curies found. The Curies won the 1903 Nobel Prize in Physics,
jointly with Becquerel, for their investigation into radioactivity. In addition, Marie won
the 1911 Nobel Prize in Chemistry for the discovery of polonium and radium. At this
point, even though radioactivity was not at all understood yet, two questions had become
common: Where did the energy associated with the activity come from? and: Were all

14Specifically, Becquerel used uranyl disulfate, K2UO2(SO4)22H2O.
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elements radioactive (but perhaps with very long lifetimes)?

The third event in our story occurred in 1899 when Rutherford deduced that there
were two different types of Becquerel rays: α rays and β rays. They were distinguished by
their ability to penetrate matter: α rays were easily absorbed in a few centimeters of air
(Becquerel’s black paper absorbed them); β rays were more penetrating—it took several
cm of air before they were absorbed. Later it was determined that α rays were actually
the nuclei of 4He, and β rays were electrons. In 1900, Paul Villard in Paris observed a
third type of ray emitted by radium that was even more penetrating than β rays (but it
was not charged), and he called them γ rays. These, of course, were photons, but that
was not determined until 1914.

The final piece of the puzzle, the fourth step, was put in place in 1902 when Rutherford
and Frederick Soddy [Nobel Prize, Physics, 1921] developed their “trans-
formation theory.” This theory was an explanation of what was oc-
curring during radioactive decay: In modern terminology, a “parent”
nucleus was transformed into a “daughter” nucleus when an α or β ray
was emitted. Soddy had originally suggested the term “transmutation
theory,” but Rutherford objected, believing that people would think
they were proposing medieval alchemy. In fact, though, that was ex-
actly what they were doing: radioactivity was changing one element
into another! Another part of the transformation theory was the obser-
vation that the process of transformation decayed exponentially with
time. They discovered this while investigating a gas called “thorium emanation,” which
we now know was an isotope of radon, 220Rn. Most of the daughter elements were solids
at room temperature, so that they remained locked in the original rock. Radon, however,
is a gas, and so when it is created as a part of a series of radioactive decays it can be easily
isolated. Rutherford and Soddy found that no matter when they started observing, the
activity of 220Rn was reduced by half in one minute, and this allowed them to describe
radioactivity mathematically as an exponential decay.

3.8 Radioactive decay

Regardless of the type of decay (α, β, or γ) that a nucleus undergoes, it is a random
process. That is, given a single nucleus, I can’t tell you when that nucleus will decay; all
I can tell you is the probability that it will decay within a certain time. Given a large
number of identical nuclei, I can tell you what fraction of those nuclei will have decayed
after a certain time has passed. The reason for this probabilistic description is that the
underlying physical process that is occurring is quantum mechanical in nature. Our current
understanding is that the predictions of quantum mechanics are strictly probabilistic. That
is, while the Schrodinger equation (for example) is a deterministic differential equation
that predicts the future state of a particle given the current state, that future state is
usually a superposition state, i.e., a linear combination of possible states. When we make
a measurement of a certain property of that particle, we measure only one value, not a
superposition of values, and quantum mechanics is, in part, a prescription for turning the
deterministic solution of the Schrodinger equation into a set of probabilities for measuring
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particular values of a given property. We will discuss this in more detail in Chapter 7.
Experimentally, it is found that the number of unstable radioactive nuclei N(t) in a

sample decays exponentially with time

N(t) = N0 e−λt, (3.20)

where N0 is the number of nuclei at time t = 0 and λ is called the decay constant. You
can’t, of course, measure the number of nuclei in a sample (of rock, say), but you can
measure the activity A as a function of time. With an electroscope, for example, you can
measure how quickly the electroscope is charged, which means you are really measuring
the number of charged particles per second that your sample is emitting. The number of
decays per unit time is just the time derivative of N , which is called the “activity,”15

A(t) ≡ −dN

dt
= (λN0) e−λt, (3.21)

where λN0 ≡ A0 is the initial activity, and the minus sign is there to denote the fact
that while dN/dt is negative, A should be positive. Thus, the activity also decreases
exponentially with time.

The decay constant λ is related to the more familiar “half life,” τ

τ =
ln 2

λ
. (3.22)

How is this relation obtained? Simply from the definition of half life, which is that after
a time interval equal to one half life, the activity of a given sample decreases by a factor
of 2. Setting t = τ in Eq. (3.21) and requiring that A(τ) = A0/2 results in Eq. (3.22).
Another, equivalent, definition is that after a time interval equal to τ only one half of the
original nuclei remain (see Figure 3.2).

Compound Interest

The mathematics of radioactive decay are identical with the mathematics of compound
interest. Consider $1 invested for one year at an interest rate of 20%. After one year, the
bank returns your $1 and in addition gives you $0.20 interest so that you have $1.20 total.
If the bank compounds the interest semiannually, then after six months your account is
credited with $0.10, half the annual rate of interest, and during the second six months
not only does your principal earn interest, but the interest earns interest. At the end of
the year you receive $(1.10)(1.10) = $1.21, which is an extra cent more than if the bank
compounds only annually. In general, if the annual interest rate is p, where 0 < p < 1,
and the number of times per year that your investment is compounded is N , then after
one year you receive (

1 +
p

N

)N

15What are the units of activity? Well, the SI unit of radioactivity is one decay per second, also known
as 1 Bq (1 bequerel) in honor of Antoine. An older unit is 1 Ci (1 curie), which is equal to 3.7× 1010 Bq.
Why this strange number of decays? Because one gram of pure radium (which is mostly 226Ra) has this
activity. You can show that 1 g contains approximately 2.26× 1021 atoms, and with a half life of 5× 1010

s, 226Ra has an activity of 1 Ci. See Problem 59.
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Figure 3.2: Four individual nuclei are “born” at t = 0. Since their half life is τ = 6 hours,
the decay constant is λ = ln 2/τ ≈ 0.116/hr, and after 6 hours half of them have decayed.

times your original principal. This looks rather fishy, because it implies that we can obtain
more interest at the end of the year simply by requiring that compounding is performed
more often. This is true, but what happens if the bank compounds continuously? Does
the final amount approach infinity? No, because of the fact that

lim
N→∞

(
1 +

p

N

)N

= ep. (3.23)

In the case of an interest rate of 20% this results in the actual interest paid of $0.22 per
dollar.16 Of course, for radioactive decay, the percentage rate p is negative and is related
to the decay constant λ.

Average lifetime

As can be seen from Figure 3.2, each individual nucleus survives for a time equal to its
“individual lifetime,” and these individual lifetimes are randomly distributed, and vary
considerably within a sample. We have already encountered one useful type of average —
the half life τ . However, another useful quantity is the “average lifetime” of a nucleus.
That is, consider a nucleus that is born at t = 0. What is its life expectancy? In other
words, how long, on average, do we expect it to live before it decays? To calculate this,
we need to discuss the mathematics of probability, and the simplest system to consider is
a six-sided die.

If you roll a die many times, what is the average 〈n〉 of all the numbers that are rolled?
If the die is not loaded, you simply add all the numbers you roll, and divide by the number
of rolls

〈n〉 =
ΣN

i=1ni

N
, (3.24)

where ni is the value of the ith roll, there are N total rolls, and the sum runs from i = 1
to i = N . This simple formula, however, hides many of the subtle details of probability
theory. First, the denominator should be written as ΣN

i=1wi, where wi is the statistical

16In the parlance of banks, 20% is called the annual percentage rate (APR), and 22% is called the
annual percentage yield (APY).
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weight (or probability) of the ith roll. In the case of an honest die, wi = 1
6

for all i. so you
are really summing a lot of “1

6
”s. What if the die is loaded, and each side has a different

probability of coming up? In that case, each term in the sum of the numerator must be
multiplied by its probability wi

〈n〉 =
ΣN

i=1niwi

ΣN
i=1wi

. (3.25)

The denominator is sometimes called the “normalization.”17

Radioactive decay can be treated in exactly the same manner as a loaded die. The
probability that a particular nucleus will decay changes with time, and this change must
be taken into account. For a radioactive nucleus that is born at t = 0, the probability
that it will decay between time t and time t + dt is

probability = P(t)dt (3.26)

∝ e−λtdt,

where P(t) is called the “probability density.” Note that the probability for a nucleus to
decay exactly at time t is zero (i.e., take the limit as dt → 0), because if you are able to
measure accurately, you will never obtain a particular time exactly. Now, since time is
continuous (whereas dice rolls are discrete), the sums in Eq. (3.24) become integrals, and
the average lifetime 〈t〉 of one radioactive nucleus is

〈t〉 =

∫∞
0 te−λtdt∫∞
0 e−λtdt

. (3.27)

The integrand in the numerator consists of two factors, the quantity that we are averaging,
t, and the weighting factor, e−λt. The integrand in the denominator only includes the
weighting factor because it is there to normalize the answer. Also, notice that we only
need the functional form of the probability density P(t) up to an unknown multiplicative
constant. This is because we will always divide by the normalization, and any constant
factor appears in both the numerator and denominator.

You can show (see Problem 52) that when evaluated, the integrals in Eq. (3.27) result
in

〈t〉 =
1

λ
=

τ

ln 2
. (3.28)

The half life τ is the quantity that can be experimentally measured from a sample of
many radioactive nuclei, but the average lifetime 〈t〉 is a quantity that gives theoretical
(statistical) information regarding each individual nucleus.

Two-particle decay

The simplest example of radioactivity is “two-particle decay,” where an unstable nucleus
(the “parent”) decays into a stable nucleus (the “daughter”), and we wish to keep track

17We could also set wi = 1/6 for all i if the die was not loaded. In that case the denominator would be
unity, and the weights wi would be properly normalized.
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of how many of each type there are, as a function of time. For example, polonium-211
decays into a stable isotope of lead via α-decay

211Po → 207Pb + 4He, (3.29)

with a half life of τ = 516 ms. In this case, 211Po is the parent nucleus and 207Pb is the
daughter.

Let’s go through the mathematics of this case, where N1(t) denotes the number of
parent nuclei as a function of time, and the parent nuclei have a decay constant λ1. These
parents decay into daughter nuclei, whose number as a function of time is N2(t), and they
are stable.18 The differential equations that govern the number of each type of nucleus are

dN1

dt
= −λ1N1 (3.30)

dN2

dt
= +λ1N1. (3.31)

Equation (3.30) is simply a reproduction of Eq. (3.21), describing how the number of
parent nuclei changes with time. Equation (3.31) describes how the number of daughter
nuclei changes, and the fact that the right-hand-side is positive shows that they increase
with time, but their increase depends only on the decrease of parent nuclei. Note that the
sum of the two equations is zero

d

dt
(N1 + N2) = 0, (3.32)

which shows that the total number of nuclei is constant—they are simply changing from
one type to another.

The solution to Eq. (3.30) can be obtained by straightforward separation of variables

N1(t) = N10e
−λ1t, (3.33)

where N10 is the number of parents at t = 0. Once N1(t) is known, then Eq. (3.31) can
be solved by straightforward integration

N2(t) = N20 + N10

(
1− e−λ1t

)
, (3.34)

where N20 is the number of daughters at t = 0. Plots of the two solutions are shown in
Fig. 3.3.

18In general, of course, the daughters are also unstable, and decay into “granddaughters,” which may
also be unstable. As Abraham Pais puts it in Inward Bound (page 113)

Radioactive bodies contain unstable atoms of which a fixed fraction decay per unit time. The
rest of the decayed atom is a new radio-element which decays again, and so forth, ’till finally
a stable element is reached.
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Figure 3.3: Time histories of parent and daughter nuclei.

Three-particle decay

When the daughter nuclei are also radioactive — with a different half-life — the problem
becomes describable by three coupled differential equations. If the daughter nuclei have
a decay constant of λ2, and they decay into stable “granddaughters,” then the system of
equations is

dN1

dt
= −λ1N1, (3.35)

dN2

dt
= +λ1N1 − λ2N2, (3.36)

dN3

dt
= +λ2N2, (3.37)

where N3(t) denotes the number of granddaughters as a function of time. The solution
procedure is the same as with two particles. First, Eq. (3.35) is solved for N1(t) via
separation of variables. Then, Eq. (3.36) can be solved for N2(t) using the integrating
factor technique (since its a first-order equation with constant coefficients). Finally, when
N2(t) is known, Eq. (3.37) can be directly integrated to obtain N3(t). See Problem 55.

3.8.1 Natural and artificial radioactivity

When radioactivity was initially being investigated, and it was realized that the “rays”
carried enormous amounts of energy, the answers to two questions were being sought by
most scientists. First, where did the energy come from? Initially, the energy was thought
to be contained in the atom, but in 1903 Pierre Curie and Albert Laborde showed that 1
g of radium could heat 1.3 g of water from melting to boiling in 1 hour.19 This was quite a
bit of energy, and it caused some to consider abandoning the principle of the conservation
of energy. Second, were all elements radioactive? It was possible that elements only
appeared to be stable, but in reality had very long half lives.

Natural radioactivity

If we were to wait a long enough time, then all radioactive elements would decay, and only
stable elements would be left. The age of the Earth is finite, however, and any radioactive

19P. Curie and A. Laborde, C. R. Acad. Sci. Paris 136 673 (1903). An excellent discussion of the
debate involving the conservation of energy can be found in Pais, “Introducing Atoms and Their Nuclei,”
Chapter 2 in Volume I of Twentieth Century Physics, New York, 1995. (ERAU QC 7 .T84 1995) See also
Problem 59.
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Figure 3.4: A nuclide chart for the 4n decay series, which starts with 232Th and ends
with the stable element 208Pb. In between it creates several other nuclei that were ob-
served by Rutherford and Soddy, for example, 224Ra and 220Rn. Note that some nu-
clei, for example 216Po and 212Bi, can decay in two different ways. From HyperPhysics,
http://hyperphysics.phy-astr.gsu.edu/hbase/nuclear/radser.html

elements that were present at the time of the Earth’s formation must have a sufficiently
long half life in order to still be around in sufficient quantities to be observed. There are
three nuclides that have half lives that are comparable to the 4.5 Gy age of the Earth.
Those three are listed in the following table (along with 237Np).

element τ series stable end
232Th 14 Gy 4n 208Pb
237Np 2.3 My 4n + 1 209Bi (τ = 19 Ey)
238U 4.5 Gy 4n + 2 206Pb
235U 0.71 Gy 4n + 3 207Pb

Each of these elements is at the start of a “radioactive decay series,” in which successive
α and β decays occur until a stable element is reached. Since each α decay changes A by
4 units, and β decays do not change A, this means that each step in a given series will
consist of isotopes of atomic mass number A that differ by 4. Hence, all the elements in
the 232Th series, for example, will have mass numbers that are multiples of 4, or given by
4n. Those of the 237Np series will have mass numbers given by 4n + 1, etc.

The isotopes in the 237Np series are not naturally occurring on Earth because of the
short half life of 237Np compared to the age of the Earth. All other elements are ob-
served, with varying abundances. The reason is because it is thought that a supernova
(or supernovas) provided the material that eventually condensed to form the solar system.
The physics of supernovas is fairly well understood, including the heavy elements that
are produced in nuclear reactions during the violent explosion. Calculations show that
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approximately equal numbers of 238U and 235U are produced. However, the half life of
235U is much shorter than that of 238U, so that today in the Earth, there is significantly
more 238U than 235U.

There are no isotopes of any element above lead (Z = 82) in the periodic table that
are stable. This is why lead is the common end product of each series. Bismuth (Z = 83)
has one “quasi-stable” isotope, 209Bi, whose half life is 19 × 1018 years. It was originally
thought that 209Bi was stable, since no radiation had been detected. However, the mass
excess of 209Bi predicts that it should α-decay into an isotope of thallium, 205Tl, which it
does.

Rutherford and Soddy, for example, started with thorium (232Th), which decays after
several steps into thorium X (224Ra), and this then α decays into 220Rn, “thorium emana-
tion.” (See Fig. 3.4.) This thorium emanation, a gas,20 is what led them to their discovery
of the exponential decay law. They observed that the activity of this gas decreased rapidly,
with a half life of about 1 minute (today it is measured at τ = 55.6 s). Determining this
sequence of events was not simple. At first, they thought that thorium itself transformed
into the emanation. However, they soon discovered a previously unknown component of
thorium compounds, which they called thorium X and which could be chemically sepa-
rated from thorium. After separation, they found that it was the thorium X that produced
the emanation. This led them to believe that thorium itself was inactive. A second discov-
ery showed that the separated thorium continued to produce thorium X, and the activity
of the separated thorium X decreased with time. A glance at Fig. 3.4 reveals that the
situation is more complex that this, and it’s a wonder that Rutherford and Soddy were
able to deduce what they did.

There are two other long-lived radioactive isotopes that act as “clocks” and allow us
to determine the ages of rocks. These are rubidium (87Rb) and potassium (40K). Finally,
14C is continually produced in the atmosphere from the bombardment of cosmic rays, and
this is the basis for “carbon dating,” which can determine the ages of objects that have
been alive in the past, such as trees. We will discuss these techniques later.

Artificial radioactivity

In 1934, Irène Joliot-Curie and Frédéric Joliot produced the first “artificial” radioactive
substance, phosphorus-30. They bombarded aluminum21 with α-particles from the decay
of polonium

27Al + 4He → 30P + n.

20Radioactive uranium and thorium is spread throughout the Earth’s crust in the form of solid rock.
During the subsequent decays, most of the daughter product elements also chemically bind themselves in
solid form, with two exceptions. The first is, of course, the helium that is the byproduct of every α decay.
At standard temperature and pressure, helium is a gas, and it trapped in the rock in pockets. All of the
helium that we have was obtained from gas deposits, usually along with combustible ’natural gas.’ The
helium in your party balloons, therefore, is really the by-product of radioactivity. The second is radon.
It is also a gas at STP, and this gas is also trapped in the rock. It escapes from the ground into the
atmosphere, as does helium in small amounts, but radon is radioactive, and is the cause of about half
of the radiation exposure received by humans. When it builds up to high concentrations in the closed
basements of houses, it can be a serious health hazard, requiring ’mitigation’ for safety.

21Their sample was 100% of the isotope 27Al because it is the only stable isotope of aluminum.
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31P is the only stable isotope of phosphorus, so the 30P nucleus produced in the bombard-
ment undergoes β+ decay into the stable isotope 30Si

30P → 30Si + e+ + νe,

with a half life of about 2.5 minutes. Thus, they were able to “activate” normal matter,
i.e., take stable aluminum and create radioactive phosphorus, and for this they received
the Nobel Prize in Chemistry for 1935. They had found, in effect, the “philosopher’s
stone,” that age old quest to turn one element into another. Although they didn’t create
gold, their work had profound implications for the human race.

Subsequently, Enrico Fermi and his laboratory in Rome bombarded stable elements
with neutrons, and were able to create many new radioactive isotopes. For this he won
the Nobel Prize in Physics for 1938. It turns out that many particles will work as a tool
to transmutate a nucleus: protons, deuterons, α-particles, neutrons; but neutrons, due to
their neutral electric charge, tend to have the easiest time penetrating the nucleus.

3.8.2 γ decay

Nuclei have quantum mechanical excited states just like atoms do. From your studies
of chemistry, you know that an electron in a hydrogen atom, for example, can exist in
different discrete states, each of which has a different energy. Therefore, when the electron
makes a transition from a higher energy state to a lower energy state, it must, to conserve
energy, emit a photon with the proper energy. This is why atoms emit light. Nuclei also
have discrete energy levels, i.e., shells and subshells (see page 58), that can be calculated
using quantum mechanics, and when they make transitions between states, they too must
emit or absorb photons of the proper energy.

For electrons in atoms, the typical difference between energy levels is a few electron
volts, say 10 eV. For nuclei, however, the transition energy is much larger, thousands or
millions of electron volts. What type of photons do nuclei therefore emit? Since the energy
of a photon is proportional to its frequency, E = hν, the larger the energy the larger the
frequency (and the smaller the wavelength). If a nucleus undergoes a transition that gives
∆E = 106 eV, for example, the wavelength of the light (photon) emitted will be

λ =
hc

∆E
≈ 10−12 m,

which is a γ-ray. In our labeling of the electromagnetic spectrum, it is usually customary
to call light with a wavelength shorter than 100 pm a “gamma ray.”

What about light from electronic transitions in atoms? If ∆E = 10 eV, then λ ≈
10−7 m = 100 nm which is in the ultraviolet region of the spectrum. This, in fact, is
one way to determine how a photon was created: short-wavelength photons tend to come
from nuclear transitions, while long-wavelength photons come from atomic (electronic)
transitions, and extremely long wavelength photons (in the microwave or radio region of
the spectrum) come from molecular transitions between different vibrational or rotational
energy levels.
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Figure 3.5: An approximation to the potential energy function U(r) between an α-particle
and its nucleus. When the separation distance between the two is small, the potential en-
ergy is confining - this is similar to the color force potential energy in Eq. (2.15). However,
when the separation is large, the potential energy is repulsive (and is proportional to 1/r)
because of the Coulomb force. The dashed line labeled “E” denotes the typical kinetic
energy of an α-particle. From G. Gamow, Quantum Theory of the Atomic Nucleus, 1928.

3.8.3 α decay

The process of α decay consists of a parent nucleus breaking apart into two pieces, one
of which is an α-particle, the other of which is a smaller, daughter nucleus. The reaction
can be written

A
ZXN → A−4

Z−2X
′
N−2 + 4

2He2. (3.38)

What causes this breakup? You can envision the α-particle as a separate, tightly bound
entity existing within the parent nucleus, and as it bounces around inside the nucleus, it
attempts to escape the barrier of potential energy that exists due to the attractive strong
force. Of course, if it does escape the nucleus, the Coulomb repulsion between it and the
daughter nucleus will drive these two particles apart. It turns out that the height of the
potential energy barrier is larger than the kinetic energy of the α-particle when it is inside
the nucleus, so that from a classical point of view it will never escape. (See Fig. 3.5.)
Quantum mechanically, however, it can “tunnel” through the barrier with some nonzero
probability. We will study the details of that “quantum tunneling” process in Chapter 7,
but at this point we can determine if this decay is possible or not simply by calculating
Q for the reaction22

Q = (MZ,A −MZ−2,A−4 −M2,4) c2, (3.39)

where MZ,A is the mass of a nuclide with Z protons and A− Z neutrons, and M2,4 is the
mass of the α-particle. Even though Q should be calculated with nuclear masses, we can
instead use the atomic masses, since the number of electrons cancels out.

How can Q be measured? If the masses of all the particles involved are known, then in
principle Q can be calculated. In practice, however, only some of the masses are known,
and it is necessary to measure the kinetic energy of the ejected α-particle to determine
Q. However, the α-particle does not take away the entire reaction energy because not

22Of course, the probability of it occurring, i.e., the half-life, is more difficult to determine. George
Gamow developed a model of α decay in 1928.
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only must energy be conserved, but momentum as well. If the parent nucleus is initially
at rest (which it is in some reference frame), then the daughter nucleus and the emitted
α-particle must have equal momentum (in opposite directions) and they must share the
energy released. Therefore, the kinetic energy of the α particle must be less than Q. You
can show, using straightforward nonrelativistic mechanics, that

Kα ≈ A− 4

A
Q, (3.40)

where A is the mass number of the parent nucleus. For example, 235U decays into 231Th
with a half-life of 7.04× 108 years

235U → 231Th + 4He.

From a knowledge of the atomic masses, the value of Q can be calculated to be 4.68 MeV.
The kinetic energy of the emitted α particle is therefore Kα = 4.60 MeV. In fact, this is one
method that is used to obtain nuclear masses: measure the kinetic energy of the emitted
α particle, calculate Q, and therefore obtain the mass difference between the parent and
daughter nuclei.

3.8.4 β− decay, β+ decay, and electron capture

... the uranium radiation is complex, and there are at present at least two
distinct types of radiation—one that is very readily absorbed, which will be
termed for convenience the α-radiation, and the other of a more penetrating
character, which will be termed the β-radiation. — Ernest Rutherford, 1899

β− decay

The fundamental β− decay, which we have seen on page 22, is the decay of a neutron into
a proton n → p + e− + ν̄e, where a free neutron has a half life of about 10 minutes. In
general, neutrons inside nuclei are stable, but in a nucleus that is unstable to β− decay,
one of the neutrons transforms into a proton, giving the following general reaction

A
ZXN → A

Z+1X
′
N−1 + e− + ν̄e. (3.41)

As before, Q must be positive for the isotope A
ZXN to be unstable to β− decay. For

example, the reaction
228Ra → 228Ac + e− + ν̄e (3.42)

has a half life of 5.75 years (can you calculate Q?). Unlike in α decay, the electron is not
emitted with a definite energy. This is because there are three particles after the decay,
and this means that there are many ways to distribute the energy and momentum.

Equations (3.38) and (3.41) represent the heart of Rutherford and Soddy’s “transfor-
mation theory.” If an element emits α radiation, it is transformed into a different element
that is two spaces to the left on the periodic table (Z decreases by 2). On the other hand, if
it emits β− radiation, it is transformed into a different element one space to the right. This
transformation was part of the proof they needed to conclude that radioactivity was an
internal atomic process (recall that in 1902 Rutherford hadn’t yet discovered the nucleus).
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β+ decay

Nuclei can also decay via β+ (or positron) emission. In this case, a proton in the nucleus
transforms into a neutron. How does this occur? One of the rules of nuclear reaction theory
is that if you have one valid reaction (it conserves all the proper quantum numbers), then
you can form another possible reaction by moving particles from one side of the reaction to
the other, as long as you change that particle to its antiparticle. In addition, the reaction
arrow can be in either direction, as long as there is enough energy. Therefore, we can
manipulate Eq. (2.3) to give

p → n + e+ + νe. (3.43)

Of course, Q < 0 for this reaction, which means that the proton is stable.23 It can occur,
however, as part of a nucleus, as long as the binding energies of the respective nuclei result
in Q > 0. The general reaction can be written

A
ZXN → A

Z−1X
′
N+1 + e+ + νe. (3.44)

For example, the reaction
40K → 40Ar + e+ + νe (3.45)

has a half life of 1.251 Gy (can you calculate Q?). In this case, the element moves one
space to the left in the periodic table.

Electron capture

“Electron capture,” or “inverse beta decay,” is a reaction that can be obtained by moving
the electron to the left side in Eq. (3.43)

p + e− → n + νe. (3.46)

As you can show, Q < 0 here as well, so this will not happen to a stationary proton and
electron, but this reaction can occur as long as the electron and proton collide with enough
kinetic energy. The general nuclear reaction for electron capture is

A
ZXN + e− → A

Z−1X
′
N+1 + νe. (3.47)

Where does the electron come from? If the nucleus is in a neutral atom with orbiting
electrons, usually one of the innermost orbital electrons (in the K shell) is “appropriated”
by the nucleus for this task, although any electron will do. Any passing electron, however,
must penetrate the nucleus (remember that the weak force is very short range) for the
reaction to occur. Quantum mechanics shows that a K shell electron has a probability
distribution that significantly overlaps the nucleus, which means that it is already in a
good location for the weak force to do its job. In practice, although some nuclei are
unstable to both positron emission and electron capture, one or the other is usually much
more probable.

23There is a possibility that a proton might decay into a lighter hadron, such as a pion, but the rule
that the number of baryons is conserved seems to be correct. Observationally, the proton’s half life is at
least 6.6× 1033 years.
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Reaction energy

What are the reaction energies for the three different types of beta decay? As is the case
in α decay, you must use nuclear masses, because radioactivity is a purely nuclear process
and doesn’t involve the orbiting electrons. This means, in principle, if you are using a table
of atomic masses, such as Nubase, you need to subtract the proper number of electron
masses from each term in the calculation. However, also like α decay, we can judiciously
add and subtract electron masses, which will therefore turn the calculation into one that
uses atomic masses. For example, calculating Q for Eq. (3.41) using nuclear masses gives

Q = (MZ,A −MZ+1,A −me) c2, (3.48)

where the capital M stands for the nuclear mass. I will use a lower-case m to denote the
atomic mass, so that

mZ,A = MZ,A + Zme, (3.49)

(compare to Eq. (4.2)). Now, if I both add and subtract Zme to the right-hand-side of
Eq. (3.48), I get

Q = [(MZ,A + Zme)− (MZ+1,A + {Z + 1}me)−me + me] c
2, (3.50)

which reduces to
Q(β−) = (mZ,A −mZ+1,A) c2. (3.51)

Hence, if you use atomic masses, the reaction energy is simply the mass difference between
the parent and daughter atoms. This result means that in order to determine if an isotope
is unstable to β− decay, all that needs to be done is to compare its mass to the isobar
with one more proton. With a table of atomic masses, this can be done “by inspection.”

How about β+ decay? Unfortunately, in this case, the transformation means that if
the parent nucleus has Z protons, the daughter has Z − 1 protons, rather than Z + 1
protons. As before, the reaction energy using nuclear masses is

Q = (MZ,A −MZ−1,A −me) c2. (3.52)

(Note that the positron mass is identical to the electron mass.) If we use the same trick
of adding and subtracting electron masses, then the reaction energy can be expressed in
terms of atomic masses

Q = (mZ,A −mZ−1,A − 2me) c2. (3.53)

Only the masses of (Z − 1) electrons combined with MZ−1,A to give the atomic mass,
leaving two me unattached. Does this mean that we can’t determine β+ instability “by
inspection” as we could with β− instability? No, because whenever positron emission
occurs, electron capture can also occur, and the reaction energy for electron capture is
always greater than the reaction energy for positron emission by exactly 2mec

2! This
means that if we use atomic masses, the Q value for inverse beta decay is analogous to
Eq. (3.51), e.g., just the atomic mass difference

Q(e.c.) = (mZ,A −mZ−1,A) c2. (3.54)
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Figure 3.6: A nuclide chart depicting all stable nuclei in black, β− emitters in dark grey,
and β+ emitters in light grey. Note the “line of stability,” or the bottom of the “valley of
stability” running approximately along the line where Z = N , marked by the thin straight
line. Figure 6 from Audi et al., Nubase.

These two results, Eqs. (3.51) and (3.54) imply that if you have two neighboring isobars,
A
ZX and A

Z±1X, the one with the greater atomic mass is unstable to β-decay into the other.
If you look through the Nubase table of atomic masses (which are grouped by A), you
will see that there are never two neighboring isobars that are both stable. As Hans Bethe
says,

“There are, however, many (about fifty) isobar pairs in nature of the type A
ZX

and A
Z−2X, with both Z and A even. The intervening nucleus, A

Z−1X, of odd
charge, decays to one or the other of its neighbors, or sometimes to both.”24

This analysis of β decay comes to the conclusion that for any set of isobars — nuclei with
the same value of A — there is only one, or at most two, that are stable. For example, 129Xe
is the only stable isobar with A = 129, but both 130Xe and 130Ba are stable with 130Cs
decaying into both Since 208Pb is the heaviest stable nucleus, the above considerations
mean that you could guess that there are between 200 and 300 stable nuclei in nature. In
fact, there are exactly 255.

3.9 The Valley of Stability

This conclusion, that all isobars are unstable to either β− or β+ decay, except for one or
two, explains the existence of the so-called “valley of stability” in a nuclide chart, as shown

24Bethe, Elementary Nuclear Theory, page 11.
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Figure 3.7: Two “mass parabolas” for isobars, one odd (A = 135) and one even (A = 102).
Filled circles represent stable nuclides and open circles represent radioactive nuclides. The
dashed lines represent the theoretical prediction of the liquid drop model. Note that
there is only one stable nuclide for odd A, yet two for even A, as discussed in the text.
The vertical axis on both plots is approximately 1 MeV per division. Figure 2-15 from
Meyerhoff, Elements of Nuclear Physics.

in Fig. 3.6. The stable nuclei form a line in a plot of Z versus N , and any nucleus not on
this line is unstable to β-decay. The line is also the minimum mass line (atomic masses),
which means that the atomic masses of the isotopes become larger as you move away
from the line. If you were to produce a three-dimensional plot that showed the atomic
mass on the third axis (as a function of N and Z), the black line would be the bottom
of a valley, which is where the name “valley of stability” originates. Easier to draw, of
course, is a two-dimensional plot, selecting out one value of A at a time. Two of these
plots are shown in Fig. 3.7 for A = 135 and A = 102. For odd values of A, the nucleus
is “odd-even,” with either Z odd and N even, or vice-versa. Each of these configurations
is equally undesirable, so that there is only one curve denoting mass versus Z. For even
values of A, on the other hand, the nuclei must be either odd-odd or even-even. As we
have seen from a consideration of spin, the even-even configuration is much more desirable
— i.e., a lower potential energy — while the odd-odd configuration is so undesirable that
there are only four such stable nuclei. In the A = 102 case, the masses of the odd-odd
nuclei are significantly larger (i.e., a larger potential energy) so that they will always decay
to a lower energy state (lower mass), which means β decay into an even-even nucleus with
the same A. As you can see, ruthenium and palladium are the only stable nuclei with
A = 102, and rhenium-102 decays into both of them.
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Problems

38. From the values of the atomic mass excess, ∆c2, listed in Nubase, calculate the
atomic masses of the four stable isotopes of hydrogen and helium. Compare your answers
with the nuclear masses listed by CODATA.

39. Calculate and plot the values of B/A for the 20 stable nuclei with the lowest
A. That is, for all the stable nuclei of hydrogen (H) through neon (Ne), plot B/A versus
A. Nubase lists the stable isotopes as “stable.” If you use these values, you’ll need to
derive an equation relating B/A to the mass excess ∆.

40. Look up the Sun’s luminosity (defined as the total power radiated), and calculate
the number of net reactions (41H→ 4He +6γ+2νe) that occur in the Sun’s core per second.

41. From the answer to the previous question, calculate the flux (number per second
per square meter) of neutrinos at the Earth due to reactions in the Sun. HINT: You’ll
have to take into account the geometrical spreading of the neutrinos emitted by a point
source. NOTE: these neutrinos are continually passing through us and the Earth since
they interact so weakly.

42. “Mirror nuclei” are pairs of nuclei that have the same A (isobars) but switch their
proton and neutron number N ↔ Z. Consider two nuclei with identical A, where the first
has Z protons, and the second has Z + 1 protons. Assuming that the protons (and hence
the positive charge) are uniformly distributed over a sphere of radius R, show that the
extra Coulomb repulsive energy of the second nucleus (compared to the first nucleus) is
given by

6

5

(Z + 1
2
)e2

4πε0R
,

where the formula for the potential energy of a uniformly charged sphere is given in
Problem 8.

43. The energy in Problem 42 is not the only difference in the masses of the two
nuclei. We can solve the binding energy equation (3.2) for MZ,N

MZ,N = (Zmp + Nmn)−B/c2

= (Zmp + Nmn)− (BCoulomb + Bstrong) /c2,

where I’ve split up the binding energy B into a Coulomb component (due to electrostatic
forces) and a strong component (due to the strong force). QCD proposes (and experiments
confirm) that the strong force affects protons and neutrons equally, which means that as
long as A is constant (true for our mirror nuclei pair) then the Bstrong term is the same for
both nuclei. But the Coulomb energy is different, as you have calculated. (a) Obtain an
expression for the difference in mass between two mirror nuclei, i.e., MZ+1,N−1−MZ,N . (b)
Evaluate this predicted mass difference for the pair 11B and 11C, and compare it with the
measured mass difference, which you can find in Nubase. To evaluate the mass difference,
you’ll need to assume a value for nuclear radius, Eq. (3.10), using the appropriate value
of R0 = 1.07 fm, since the radius R appears in the expression for the Coulomb energy.

44. Problem 43 can be turned around, and, taking the experimentally measured mass
difference of two mirror nuclei to be correct, use that value to determine the value of R0.
Do this for the mirror pair 11B and 11C in Problem 43 as well as the mirror pair 15N and
15O.
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45. Polonium has two isotopes that are unstable to α decay, 210Po and 212Po. The
reactions, along with their half lives are

210Po → 206Pb + α τ = 138 d

212Po → 208Pb + α τ = 299 ns

Calculate the reaction energy Q for both reactions, and explain the different results as
well as the different half lives in terms of nuclear magic numbers.

46. List the elements that have Z equal to a nuclear magic number. How many stable
isotopes of each are there? NOTE: the average value is 3.2 isotopes per element.

47. If the nuclear radius is given by R = R0 A1/3 with R0 = 1.4 fm, what is the
density of nuclear matter in kg/m3? How does this compare with the density of water?

48. (a) Show that when r = R + b, the nuclear density in Eq. (3.12) is approximately
one fourth of its central value, ρ(R+b) ≈ ρ0/4. (b) Show that when r = R−b, the nuclear
density is approximately three fourths of its central value, ρ(R − b) ≈ 3ρ0/4. (c) Sketch
(by hand) the nuclear density ρ as a function of r as given by Eq. (3.12). Be sure to label
the axes and any special locations on the curve.

49. Derive the first part of Eq. (3.18) by adding the magnetic moment z components
of the proton and neutron to obtain the z component of the deuteron. Use the definition
of g found in Eq. (3.15).

50. The quadrupole moment q of a charge distribution ρ(x, y, z) is defined as

q ≡
∫

ρ(3z2 − r2)dV. (3.55)

Kellog et al. made the following measurement for the deuteron

〈z2〉
〈r2〉 =

∫
ρz2dV∫
ρr2dV

≈ 1

3
(1.14). (3.56)

This measurement is consistent with the D and S state superposition discussed in Section
3.6. For this problem, show that if ρ is spherically symmetric, that is ρ(r) is only a function
of r, then the Kellog measurement should be exactly 1

3
.

51. (a) Derive Eq. (3.22) from Eq. (3.21) using the definition of half life. (b) Show

that the exponential decay rate of e−λt is equal to
(

1
2

)t/τ
.

52. Show that the average lifetime 〈t〉 of a given radioactive nucleus is not the half
life τ , but is 〈t〉 = τ/ ln 2. That is, evaluate the integrals in Eq. (3.27) [HINT: Show that∫∞
0 t exp(−λt)dt = λ−2.]

53. Muons have a decay half life of τ = 1.523 µs. What is their average lifetime?
54. The number e can be defined by the property

eε ≈ 1 + ε for ε ¿ 1.

For any small value of ε, any number r raised to the power ε will differ from 1 by an
amount proportional to ε. However, only for r = e will the proportionality constant be 1.
(a) Using the definition equation above, show that

ε log10 e ≈ log10(1 + ε).
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(b) Use this expression to calculate e by using small values for ε, i.e., let ε = 0.1, 0.01,
0.001, . . .. Make a table showing that your value for e gets more and more precise as ε
gets smaller and smaller. (c) Show that this way of calculating e is equivalent to

e = lim
N→∞

(
1 +

1

N

)N

.

55. Consider a three-isotope radioactive decay chain. There are N1 atoms of isotope
1, N2 atoms of isotope 2 and N3 atoms of isotope 3; isotope 1 has a decay constant λ1,
isotope 2 has a decay constant λ2. Isotope 1 decays into isotope 2, which then decays into
isotope 3, which is stable.

(a) Write down the three differential equations that govern Ni(t), and then solve them,
assuming that the initial values for Ni are arbitrary.

(b) Investigate two interesting limits. First, what happens if λ1 À λ2. Second, what
happens if λ1 ¿ λ2. For each case, assume N2 and N3 are initially zero, and sketch Ni(t)
for all three species.

56. Some nuclei can decay in two different ways. For example, 212Bi can both α decay
into 208Tl (36% of the time) as well as β decay into 212Po (64% of the time). (a) If the
decay constants for these processes are λ2 and λ3, respectively, obtain a formula for the
total half-life τ for the decay of 212Bi (in terms of λ2 and λ3)? (b) If the half-life of 212Bi
is 60.55 minutes, calculate values for λ2 and λ3.

57. (a) Calculate the Q value for the reaction that produced the first artificial radio-
isotope

27Al + 4He → 30P + n.

Since the aluminum was stationary in the target, and since Q < 0, the α-particle needed
to impact the aluminum with a kinetic energy at least as large as −Q in order to make
the reaction possible. (b) Where did the Joliot-Curies get an α-particle with this much
energy? They obtained it from a sample of polonium undergoing α decay. The question
is, which isotope? Well, there are five possibilities. In the U-238 and Th-232 decay series
there occur five polonium isotopes that decay via α emission, and their mass numbers
are 210, 212, 214, 216, and 218. For each of these isotopes, calculate the kinetic energy
of the emitted α particle, see Eq. (3.40), and determine if it is large enough to produce
“radio-phosphorus” from the above reaction.

58. In the earth today, natural uranium is composed of 0.72% 235U and 99.27% 238U.
(There is a trace of 234U, approximately 0.01%, which has a short half life of 245.5 ky for
α-decay, so it should be nonexistent, but it is populated via the radioactive decay series
starting with 238U.) Where did these two isotopes of uranium come from, and why do they
exist in this proportion? Uranium is produced in supernovae through a rapid neutron
capture process (the so-called r-process), and astrophysicists predict that the production
ratio in supernovae of 235U to 238U is 1.65. Given that the half life for 235U is 704 My,
and that for 238U is 4.468 Gy, your task is to extrapolate back in time to determine when
the supernova occurred that provided the material for the cloud of gas and dust that
eventually formed the solar system. (Unfortunately, there is other evidence, mostly from
meteorites, that suggests that there was not just one supernova, but several over a period
of time, so that the current proportion of uranium isotopes is less exact.)
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59. In 1903 Pierre Curie and Albert Laborde found that 1 g of radium can heat 1.3
g of water from its melting point to its boiling point in 1 hour! (a) How much energy
is this (in Joules)? Use the known specific heat of liquid water. (b) What percentage of
the mass of the radium is converted into energy in 1 hour? Simply use E0 = mc2 — no
radioactivity yet.

Now we want to explain this experiment using radioactivity theory. The radium of
the Curies was actually 226Ra, which is part of the 238U natural decay series. It has a
half life of 1.6 ky, and it undergoes α-decay into 222Rn. (c) What is the activity of 1 g
of 226Ra? Use the known half-life. (d) In 1 hour, how many decays occur? (e) Given the
energy observed by Curie and Laborde, what must be the energy released in each decay?
(f) Calculate the Q value of the α-decay: 226Ra → 222Rn + α. How does this compare
with the value calculated in part (e)?

[The reason why your answers don’t match is that 222Rn undergoes α-decay into 218Po
with half life of 3.8 days. (The Curies called 222Rn “radium emanation.”) The situation,
therefore, is more complicated than a parent decaying to a daughter because the daughter
is itself radioactive. In this case, when the parent is much longer-lived than the daughter,
both parent and daughter decay at the rate of the parent, so you need to include the
energy of the 222Rn decay in your calculation in parts (e) and (f).]

60. Classical decay kinematics. This problem allows you to work through the for-
malism of particle decay kinematics using nonrelativistic kinematics that you are familiar
with. Consider a ball of mass M moving to the right with speed V . Inside the ball is a
firecracker, and at time t = 0 it explodes, breaking the ball into two equal pieces, each of
mass M/2. Assume that the two pieces head off symmetrically in opposite directions, each
at an angle θ with respect to the velocity direction of the original ball. If the firecracker
released energy Q into the system, then the kinetic energy of the two pieces is larger than
the initial kinetic energy. (a) Apply the conservation of momentum (vector) and energy
(scalar) to obtain an expression for the angle θ (or simply cos θ) as a function of Q. (b)
What is the result when Q = 0? Does it make sense? (c) Use a Taylor expansion of
your result to obtain an approximate expression for θ as a function of Q in the limit when
Q ¿ MV 2/2. Do the same in the limit when Q À MV 2. What information do these
limits give you? (d) Evaluate numerically the angle θ in the case where a 8Be nucleus is
traveling with a kinetic energy of 100 keV when it breaks up into two 4He nuclei. See
Problem 13.

61. Derive Eq. (3.40). Assume that the parent nucleus has mass M, is at rest, and
decays into two particles of masses M (the daughter nucleus) and m (the α particle), which
are moving in opposite directions (with speeds V and v, respectively) with a total kinetic
energy Q. First, show that in the non-relativistic limit (Kα = 1

2
mv2 and KM = 1

2
MV 2)

the kinetic energy of the α particle is exactly

Kα = Q
M

M + m
.

Second, make reasonable approximations to the masses to obtain Eq. (3.40).
62. Can you determine a series of radioactive decays (α or β or a combination of both)

that will transform an isotope of lead into an isotope of gold? Use the Nubase table to
determine the decay processes of each isotope.
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63. Estimate the number of positrons emitted by a banana each second due to the
decay of radioactive potassium that it contains.

64. Plot ∆ versus Z for A = 184 and A = 185 on two separate graphs. Do this for
elements 72 through 79 (i.e., Hf through Au). Label the stable isotopes in your plot. Do
you obtain something similar to Figure 3.7?

65. There are approximately 7 kg of radioactive 14C produced each year in the atmo-
sphere produced via the following reaction

n +14 N → 14C + p,

where the neutrons come from cosmic ray bombardment reactions. How many atoms is
that?

66. There are two stable isotopes of carbon: 12C and 13C. A third isotope, 14C, is
unstable to β decay in the following reaction: 14C → 14N +e−+ ν̄e, with a half life of 5700
years, but it exists in the atmosphere due to the fact that it is continually created from
cosmic ray bombardment. It turns out that the two processes of creation and decay are in
equilibrium, because the steady-state concentration of 14C in the environment is observed
to be constant. This fact can be used to “carbon date” organic materials; however, we
need first to determine the steady-state concentration of 14C in the environment. For
this problem, we will assume that there are no 13C atoms, only 12C and 14C, because the
percentage of 13C atoms is very small. Therefore, “pure” carbon consists of mostly 12C
with a small fraction of 14C atoms. This fraction is what we wish to determine.

(a) One gram of pure carbon emits 15.3 electrons per minute (that is, its activity is
15.3 min−1). From this piece of information, calculate how many 14C atoms there are in
one gram of pure carbon. (b) Calculate how many total carbon atoms (of either isotope)
there are in one gram. (c) Therefore, what is the steady-state fraction of 14C atoms in the
environment?

Solutions

38. For example, the mass excess of 4He is ∆c2 = 2424.9156 keV, which means that
the helium atom has a mass, from Eq. (3.6)

M4,2 = ∆ + 4 u = 2.4249156 MeV/c2 + 4× 931.494043 MeV/c2 = 3728.401 MeV/c2.

This is the atomic mass, so to compare with CODATA, I need to subtract the masses of
the two electrons, i.e., subtract 2× 0.510998 MeV/c2, which gives me an α-particle mass
of 3727.379092 MeV/c2. This matches the CODATA value. This calculation also shows
that the binding energy of the two electrons must be smaller than the precision of these
values. In fact, it’s on the order of 10 eV, which is barely resolvable in the Nubase and
CODATA data.

39. A sample calculation uses Eq. (3.2), which says

B = (Zmp + Nmn − {A(1 u) + ∆− Zme}) c2,
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where I’ve assumed that ∆ is the atomic mass excess, exactly what is listed in Nubase.
Or, since we want the quantity B/A,

B

A
=

(
Z(mp + me) + Nmn

A
− (1 u)− ∆

A

)
c2.

For 16), Z = 8, N = 8, A = 16, and ∆c2 = −4737.0014 keV. Plugging these values in, I
obtain B/A = 7.976208 MeV. See the figure for a plot of all the results. Notice that there
is a general increasing trend: B/A increases with increasing A which means that fusion
reactions will be exothermic! We’ll see that for higher values of A, beyond iron, there is a
decreasing trend, which means that fission reactions are exothermic.

40. As calculated in the text, there is 26.21 MeV = 4.199×10−12 J released per fusion
reaction. The solar luminosity is L¯ = 3.846×1026 W, which implies 9.159×1037 reactions
per second. Or, since 1012 is one trillion, this is about 100 trillion trillion trillion reactions
per second.

41. For each fusion reaction two neutrinos are emitted (1.832 × 1038 ν/s), but they
are emitted into 4π steradians, which means that at the distance of the Earth, the area
that they have spread out into is 4πR2

ES, where RES = 149.9 million km. For the flux of
neutrinos at the Earth, I get

flux =
1.832× 1038 s−1

4πR2
ES

= 6.487× 1014 neutrinos

s m2 ,

which, for a thumbnail of area 1.5 cm2, implies that about 100 billion neutrinos pass
through my thumbnail each second.

42. The Coulomb potential energy, from Problem 8, is

Ui =
3

5

Q2
i

4πε0 R
,

where Q1 = Ze and Q2 = (Z + 1)e. The difference in these energies is

∆U = U2 − U1 =
3

5

e2

4πε0 R

[
(Z + 1)2 − Z2

]
=

3

5

(2Z + 1)e2

4πε0 R
.



SOLUTIONS 87

43. (a) Using the formula in the problem statement, I obtain a mass difference of

MZ+1,N−1 −MZ,N = mp −mn −∆B/c2.

First, the result you obtained in Problem 42 is actually −∆B, because the Coulomb energy
is repulsive, and so counts as “negative” binding energy. Second, this is the nuclear mass
difference, but of course when we compare with the data tables they list atomic masses.
There is a one electron difference between our nuclei/atoms, so assuming we have atomic
masses, I get

MZ+1,N−1(atomic)−MZ,N(atomic) = mp −mn + me +
3

5

(2Z + 1)e2

4πε0 R

1

c2
.

Since the mass difference between a proton and neutron is -1.293 MeV, and taking R0 =
1.07 fm and A = 11, I get

MZ+1,N−1(atomic)−MZ,N(atomic) = (−1.293 + 0.511 + 3.994) MeV/c2 = 3.211 MeV/c2,

and the tabulated mass difference is 0.002129 u = 1.983 MeV/c2. This is not too close,
but we did make an assumption about R0. One technique that is used is to solve for R0,
and this is an independent determination of the nuclear size, separate from that obtained
by scattering electrons.

44. What is the radius prediction for 11B and 11C?
45. From Nubase, the mass excesses (in keV) are

206Pb -23 785.4
208Pb -21 748.5
210Po -15 953.1
212Po -10 369.4
4He 2424.9

This gives Q = 5.407 MeV for the decay of 210Po, and Q = 8.954 MeV for the decay of
212Po. The long half life of 210Po and the low energy of the emitted α means that the
α particle doesn’t really have that much desire to leave the cozy nucleus — its neutrons
make the 125th and 126th neutrons in 210Po, and so it’s fairly tightly bound (recall that
126 is a magic number). On the other hand, the α particle can’t wait to get out of 212Po
— it leaves in 299 ns and has almost twice as much energy as the α particle from 210Po.

46.

Z 2 8 20 28 50 82 126
X He O Ca Ni Sn Pb -
# 2 3 6 5 10 4 -

Tin (Sn) has the most number of stable isotopes (10) of any element, and lead (Pb) is the
last element with any stable isotopes. In fact, lead-208 is “doubly magic.” The average
number of stable isotopes per element is 3.2, so most of these beat that average. For
calcium, I counted 48Ca because it has a half life of 53 Ey = 53 × 1018 years, which, for
all intents and purposes, is stable.
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47. The density is the mass per-unit-volume, so if we take the mass of one nucleon to
be the average of the proton and neutron mass, m1 = 1.674 × 10−27 kg, and the volume
of a nucleus to be V = 4

3
πR3 = 4

3
πR3

0A, I get

ρ =
m1

4
3
πR3

0

= 1.46× 1017 kg/m3.

This is about 1014 times denser than water.
48. (a) When r = R + b, then ρ/ρ0 = (1 + e)−1 = 3.71−1 ≈ 4−1. (b) When r = R− b,

then ρ/ρ0 = (1 + e−1)−1 = 1.37−1 ≈ (4/3)−1.
49. Even though the spin vectors add, since we do not know their directions, we can’t

add them. However, the z components also add, and we do know their values. So the z
component of a deuteron’s magnetic moment is

µz,d = µz,p + µz,n,

where I’ve assumed there is no magnetic moment due to orbital angular momentum. In
units of the nuclear magneton µN this becomes

ms,dgd = ms,pgp + ms,ngn.

Since the proton and neutron are spin 1
2

but the deuteron is spin 1, the values of for ms

give Eq. (3.18)

gD =
gp

2
+

gn

2
.

51. (a) Evaluating Eq. (3.21) at t = τ gives

A(τ) =
A0

2
= A0 e−λτ ,

and taking the natural log of both sides results in Eq. (3.22)

τ =
ln 2

λ
.

(b) Applying the well-known laws of exponents, as well as the relation between τ and λ,
gives

e−λt =
(
e−λ

)t
=

(
e− ln 2/τ

)t
=

(
e− ln 2

)t/τ
=

(
1

2

)t/τ

.

52. The average lifetime is defined as

〈t〉 =

∫∞
0 te−λtdt∫∞
0 e−λtdt

=
1/λ2

1/λ
=

1

λ
.

The normalizing denominator is straightforward to evaluate:
∫∞
0 exp(−λt)dt = λ−1. The

numerator can be evaluated by a method called “parametric differentiation.” Starting
with the normalization integral, take the derivative of both sides with respect to λ

− d

dλ

∫ ∞

0
exp(−λt)dt = − d

dλ

1

λ
.
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The derivative can be brought inside the integral because the limits of the integral do not
depend on λ. This brings down a −t from the exponential, resulting in the integral that
we wish to evaluate ∫ ∞

0
t exp(−λt)dt =

1

λ2
.

Therefore, the average lifetime is just 〈t〉 = 1/λ.
53. 〈t〉 = τ/ ln 2 = 2.197 µs.
54. (a) The desired equation is obtained by taking the logarithm (base 10) of both

sides. (b) The table shows the result getting closer to e = 2.718281.

ε e
0.1 2.593742
0.01 2.704814
0.001 2.716924
0.0001 2.718146
0.00001 2.718268

(c) Again, using the laws of exponents and logarithms, the equation derived in (a) can be
written

log10 e ≈ 1

ε
log10(1 + ε) = log10(1 + ε)1/ε,

and taking the anti-logarithm of both sides gives

e ≈ (1 + ε)1/ε,

where the approximation gets better in the limit ε → 0. Of course, letting N = 1/ε results
in the desired definition.

56. (a) When a particle can decay into two daughters, Eqs. (3.30) and (3.31) become

dN1

dt
= −λ2N1 − λ3N1 = −(λ2 + λ3)N1,

dN2

dt
= +λ2N1,

dN3

dt
= +λ3N1,

which expresses the fact that both decay rates are proportional to the number of parent
particles. Of course, the total rate is just the sum of the two rates,

λ = λ2 + λ3,

which means that

τ =
ln 2

λ2 + λ3

.

(b) Also, the fraction of each decay is related to the percentage of time the particle follows
that “decay mode,”

λ2

λ
= 0.36,

λ3

λ
= 0.64
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which means that

λ2 = 0.36 λ = 0.36
ln 2

τ
=

0.36 ln 2

60.55 min
= 6.87× 10−5 s−1.

Similarly, λ3 = 1.22× 10−4 1/s.
57. You can show that the reaction energy is just the difference in the mass excesses

of the products minus the reactants,

Q =


∑

i

∆i −
∑

f

∆f


 c2.

Using the Nubase values for ∆ I get

Q = (−17, 196.66 + 2, 424.9156) keV− (−20, 200.6 + 8, 071.3171) keV = −2.6425 MeV.

How much energy does the α particles from polonium have? One of the decays is

210Po → 206Pb + α,

which, again using Nubase, gives Q = 5.497 MeV. The kinetic energy of the α particle is
reduced by a factor of 206/210, resulting in Kα = 5.393 MeV, which is plenty.

You’ll find that all of the α particles from polonium have about 5 MeV of kinetic
energy, so we are not able to determine which isotope is responsible using this analysis.

58. Even though we don’t know the number of 235U or 238U atoms in the Earth today
or when the solar system was born, we do have information regarding their ratio. Today,
it’s just 0.72/99.27, and after the supernova it was 1.65 (determined through modeling the
nucleosynthesis that occurs during supernovae). Therefore, we have

N5

N8

=
N05

N08

e−λ5t

e−λ8t
,

and we can solve for the only unknown, t. I get t = 6.54× 109 years
59. (a) The energy required is Q = mc∆T = 544.7 J for 1.3 g of water heated by

100◦C. (b) E0 = mc2 gives 6.05×10−10 %. (c) 3.66×1010 decays/s. This is the definition of
a “curie.” (d) 1.32× 1014 decays in one hour. (e) If we know how many decays in on hour
(part d), and how much energy is produce (part a), we can calculate the energy per decay
that must have been released: 25.819 MeV. (f) The reaction energy for the α decay of the
radium is Q = 4.863 MeV. This is much less than what is needed. However, more energy
is emitted because the radon decays into polonium, which then decays into astatine, lead,
bismuth, thallium, and more radon, finally becoming the stable isotope 206Pb.

60. The table lists the conserved quantities both before and after the decay, where
the x direction is the initial direction of travel of the mass M , and the y direction is
perpendicular direction into which the decay products move.

before after

energy 1
2
MV 2 + Q = 2

(
1
2

(
M
2

)
v2

)

px MV = 2
(

M
2

)
v cos θ

py 0 =
(

M
2

)
v sin θ −

(
M
2

)
v sin θ
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Note that I’ve added Q to the energy before the explosion because it is there as potential
energy, waiting to be released chemically and turn into kinetic energy. (a) From the px

equation, v cos θ = V . Using this to eliminate v from the energy equation, after some
algebra I get

cos2 θ =
MV 2

MV 2 + 2Q
.

(b) If Q = 0 then cos2 θ = 1 and θ = 0, as expected: the two pieces just keep moving
forward in the initial direction. (c) Rewriting the equation as

cos2 θ =
1

1 + 2Q
MV 2

,

and expanding the left-hand-side for small θ, and expanding the right-hand-side for small
Q (i.e., 2Q ¿ MV 2), I get (

1− 1

2
θ2

)2

≈ 1− 2Q

MV 2
,

or, to lowest order in θ

θ ≈
√

2Q

MV 2
.

On the other hand, if Q is large, then cos2 θ ≈ MV 2/2Q → 0, so that θ → 90◦, as
expected. (d) For 8Be, the atomic mass is M = 8.005305 u = 7456.9 GeV À 100 keV,
so the non-relativistic approximation should be good. The 4He atomic mass is 4.002603 u
(doubled results in 8.005206 u, which is almost the mass of 8Be), and the mass difference
is Q = 0.00099 u = 92.2 keV, which is just about equal to 100 keV, so neither of the
approximations we developed in part (c) will work.25

cos2 θ =
100 keV

100 keV + 92.2 keV
= 0.52,

and θ = 43.8◦.
61. Before the decay, the initial energy is Mc2 and the initial momentum is zero.

After the decay, the total energy is

Mc2 + mc2 +
1

2
MV 2 +

1

2
mv2,

and the zero momentum condition implies that MV = mv. The difference in the rest
energies is just Q so that Q = MV 2/2 + Kα. Since we want to solve for Kα, it makes
sense to eliminate V from these two equations, which gives

Q =
1

2
M

(
mv

M

)2

+ Kα = Kα

(
m

M
+ 1

)
.

A simple rearrangement gives the desired result. Second, if we assume that the mass
number of the initial particle is A, i.e., M ≈ Amp, then the masses of the daughter
particles are M ≈ (A− 4)mp and m ≈ 4mp. Plugging these in gives Eq. (3.40),

Kα ≈ A− 4

A
Q.

25Using the more accurate values of mass excess from Nubase results in 91.8 keV.
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63. There are various values given for the mass of a banana and the amount of
potassium that it contains, but a good approximation is that there is 450 mg of potassium
in a medium-sized banana. Most natural potassium is 39K (93.3%) and 41K (6.7%). But
there is 0.0117% radioactive 40K as well, or a fraction f = 1.17 × 10−4. The activity A
(decays per second) of the radioactive potassium in a banana is

A = λN0 =
ln 2

τ

fm

M40

=
ln 2

(1.251× 109 y)

(1.17× 10−4)(450 mg)

(39.96 u)
≈ 14 s−1.

Most of the time, 89.28%, 40K decays via electron emission into 40Ca. The rest of the time,
10.72%, it decays via electron capture into 40Ar. Only 0.001% of the time does it emit a
positron. So this reduces the above answer by 10−5, giving 1.4 × 10−4 positrons/sec, or,
you’d have to wait about 7000 seconds (over an hour) between positrons.26

65. The mass of one 14C atom is

14 u + ∆ = 14 u + 3019.893 keV/c2 = 14.003242 u.

The total number of radioactive carbon atoms is therefore

N =
Mtot

M1

=
7 kg

14.003242 u
= 3.01× 1026.

26Engelkemeir, Flynn, and Glendenin made this measurement in 1962 (Phys. Rev. 126 1818-1822,
“Positron Emission in the Decay of K40.”) where they determined a ratio of β+/β− = 1.12× 10−5, which
gives a percentage of 1.00× 10−3%.



Chapter 4

Introduction to Atomic Physics

If we adopt Rutherford’s conception of the constitution of atoms, we see that
the experiments on absorption of α-rays very strongly suggest that a hydrogen
atom contains only one electron outside the positively charged nucleus.

— Niels Bohr, 1913

4.1 Properties

As Ernest Rutherford showed (see Appendix B), atoms are composed of a small, massive,
positively charged nucleus surrounded by several light, negatively
charged electrons. Since the discovery of the neutron by James Chad-
wick [Nobel Prize, Physics, 1935] in 1932, the nucleus has been known to
include positively charged protons (the nucleus of hydrogen) and elec-
trically neutral neutrons. In its normal state each atom is electrically
neutral, with the number of electrons equal to the number of protons in
the nucleus — this number, known as the atomic number, determines
the type of element. The number of neutrons is not constrained, but
determines the isotope.

Since we know the constituent particles of the atom, we can enu-
merate their intrinsic properties, in the same manner as we have done for elementary
particles as well as nuclei. These properties are mass, electric charge, and color, which
are measures of how strongly a particle interacts via the gravitational force, the electric
force, and the color force, respectively; spin and magnetic moment, which are inherently
quantum; and size.

Color

White. The nucleus consists of colorless protons and neutrons and so must be colorless
itself. Of course, nuclei can interact via the strong (color) and weak nuclear forces, but
only if they are very close, since these forces are short range. In its normal state, however,
the electrons surrounding the nucleus repel other atoms and do not allow any two nuclei
to approach close enough for nuclear reactions to occur. It is true that some nuclei are
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radioactively unstable and will decay regardless of any surrounding electrons, but this is
a nuclear property (see Chapter 3) not an atomic property.

Electric charge

Neutral. In its normal state, an atom has the same number of electrons and protons,
and the electron and proton have an identical electric charge (although of opposite sign).
Of course, an atom can be “ionized,” where one or more electrons are removed, so that
the remaining “ion” is positively charged, but this is not an equilibrium atomic state. In
addition, the negative electric charge due to the “cloud” of electrons does not necessarily
exactly cancel the positive electric charge in the nucleus—that is, atoms and molecules
sometimes have electric dipole moments. The residual electric force between otherwise
neutral atoms is what is responsible for gases condensing into liquids, and also partially
responsible for atoms bonding to form molecules (see Problem 36). The latter effect is
very similar to the strong force (a residual color force) bonding nucleons into nuclei.

Spin

Since the spin — intrinsic angular momentum — is a vector, the total spin of a system is
just the vector sum of the individual spins. In the case of an atom, the individual spins
are those of the nucleus along with each electron. However, we don’t know which direction
the spin vector points, because of the limitations prescribed by the Heisenberg uncertainty
principle—see Section 2.3. The z components of the individual spin vectors do just add,
and therefore we can use the same technique as in Chapters 2 and 3 to determine whether
the atom has integer spin or half integer spin (even though we can’t predict, at this point,
what the actual value of the spin quantum numbers will be).

Magnetic moment

While spin determines the allowed quantum states, due to the Pauli Exclusion Principle,
the interaction between charged particles with spin is due to their magnetic dipole mo-
ments. Magnetic dipoles interact in a similar manner to electric dipoles, and they also
experience forces and torques due to external magnetic fields. The Stern-Gerlach experi-
ment (see Appendix C) is a prime example of how the spin of an atom is inferred from a
measurement of its magnetic moment.

The net magnetic dipole moment of an atom consists of the vector sum of the con-
stituent dipole moments. To determine the magnitude of the magnetic moment from a
knowledge of the spin vector, we must know each particle’s “g-factor,” along with the
typical magnitude of the magnetic moment. For example, nucleons have a much smaller
magnetic moment than electrons. Recall — Secs. 2.4 and 3.6 — the electron magnetic mo-
ments are measured in units of “Bohr magnetons,” µB, and nucleons in units of “nuclear
magnetons,” µN , where

µN

µB

=
me

mp

≈ 1

1836
¿ 1. (4.1)
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This means that, unless all the electron magnetic moments cancel, the contribution of the
nucleus to the total magnetic moment can usually be ignored. This was the case in the
Stern-Gerlach experiment, where 46 of the electrons in the silver atoms were paired up,
so that their net magnetic moment was zero, and only the last, 47th, unpaired electron
contributed to the magnetic moment of the silver atom. The magnetic moments of the
nuclei of the two stable isotopes of silver are µ = −0.113570µN for 107Ag, and µ =
−0.1306905µN for 109Ag, which means that they are far smaller than the magnetic moment
of the single, unpaired electron µ ≈ −1.001µB. See Problem 67 for a closer look at the
silver nucleus.

Mass

In Chapter 3 we assumed that the atomic mass was simply the nuclear mass plus the
masses of any electrons. In fact, this is only approximately true because there is some
binding energy that keeps the atom together

matom = mnucleus + Zme − Batom

c2
(4.2)

≈ mnucleus + Zme.

In nuclear reaction calculations, the approximation is a good one because atomic binding
energies Batom are only about 10 eV (see Problem 10), but nuclear binding energies (and
reaction energies) are on the order of 106 eV! So any error introduced by not considering
the atomic binding energy is smaller than other uncertainties in a nuclear calculation.

In addition, while it is fairly easy to measure atomic binding energies by measuring
their ionization energies (which are the same), it is very difficult to do so by measuring
separately the atomic and nuclear masses and then solving Eq. (4.2). As you can see from
Problem 10, both the nuclear and atomic masses need to be known to better than one
part in 108 in order that a difference (a difference of two very nearly equal numbers) of
10 eV is statistically significant. This level of precision is the minimum required (for the
hydrogen atom) — the problem gets worse with each nucleon added, so that it’s practically
impossible for heavy atoms.

Size

As in the case with nuclei, we must be precise about what we mean by “size.” Let’s take
as an example the hydrogen atom. The nucleus, consisting of one proton, is about 1 fm in
diameter. However, the electron “cloud” is spread out over a much larger volume. In fact,
the quantum mechanical result (see Chapter 7) is that the electric charge density due to
the electron is spherically symmetric and has the form

ρ(r) = ρ0e
−2r/a0 , (4.3)

where a0 ≈ 0.05 nm is the Bohr radius. Of course, the value of ρ0 is determined by the
fact that the total charge must be equal to the electron charge. That is, the integral of
the charge density over all space must be

∫
ρdV = −e, where e ≈ 1.6 × 10−19 C (see
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Problem 68). Even though the charge is spread out over an infinite volume (the charge
density decays exponentially with distance from the proton, but never goes to zero), the
Bohr radius is considered to be the “size” of the hydrogen atom. Why is this? There are
at least three reasons, two of which won’t make any sense until you solve the Schrodinger
equation for the hydrogen atom, so we will discuss them in Chapter 7. The simplest reason,
however, which comes from observation, is evidenced by the way that atoms are packed in
a solid. The geometrical array of atoms in a solid is arranged so that the distance between
neighboring atoms is an equilibrium distance. If neighboring atoms were closer than this
equilibrium distance their electron clouds would repel, and if they were further apart they
would attract. It is logical, therefore, to call this equilibrium “nearest-neighbor” distance
the size of the atom. As you might expect, this turns out to be approximately the Bohr
radius.

Amazingly enough, using this idea, it turns out that all neutral atoms are approxi-
mately the same size. That is, they are each approximately spherical with a radius that
varies between 0.3 nm and 0.7 nm (or around 10a0). Why is this? Because the outermost
electron “sees” a nucleus of charge +Z surrounded by Z − 1 electrons, or a net charge of
+e. This looks electrically like a proton, so that the outermost electron “thinks” it is in
a hydrogen atom, and must orbit at the Bohr radius. Section 4.2.3 gives a slightly more
sophisticated answer.

Dimensional Analysis

“Your units are wrong!” cried the teacher.
“Your church weighs six joules — what a feature!
And the people inside
Are four hours wide,
And eight gauss away from the preacher.”

— David Morin

We can obtain an approximation for the size of an atom by using a technique called
dimensional analysis.1 To indicate how it works, let’s try to determine the period of
a simple pendulum without actually solving the differential equation that results from
Newton’s second law. The first step is to ask yourself “What quantities can the period
possibly depend on?” In this case, I would include the properties of the pendulum, such
as the string length `, the mass of the bob m, and the maximum amplitude θ0. The period
also might depend on the strength of the restoring force, characterized by the acceleration
due to gravity g. The second step is to write down the period as a product of these
quantities raised to arbitrary powers

T = `a mb gc θd
0. (4.4)

Now, at the very least the dimensions must match on both sides of any valid equation,

1An excellent treatise on this technique is P. W. Bridgman, Dimensional Analysis, Yale University
Press, 1922. It is also called “similitude.”
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so I can express the dimensions of Eq. (4.4) as

[T ]1 = [L]a [M ]b
(

[L]

[T ]2

)c

, (4.5)

where I’ve used [M ], [L], and [T ], for the dimensions of mass, length, and time, respectively.
Notice that the parameter d doesn’t appear because θ0 is a dimensionless quantity, and
will give us no dimensional information. Equating powers of each dimension results in
three equations for the powers of mass, length, and time, respectively

b = 0

a + c = 0 (4.6)

−2c = 1.

Solving these equations results in a = 1
2
, b = 0, and c = −1

2
, and, therefore, the formula

for the period must be of the form

T = f(θ0)

√
`

g
. (4.7)

Again, since the parameter θ0 is dimensionless, the functional form of the dependence of
T on θ0 is arbitrary. A study of a simple pendulum shows that if θ0 is small, f(θ0) ≈ 2π,
but that f increases as θ0 increases.

A complete system of so-called “natural” units was devised in 1899 by Max Planck, in
which h̄, G and c are set to unity. See the box on the next page for another view.

Atomic Radius

Applying dimensional analysis to the hydrogen atom, an electron “orbiting” a proton, I
hypothesize that the possible quantities that determine its size are its properties, such as
e, a measure of the strength of the electric force between the proton and electron; me, a
measure of the electron’s inertia;2 and ε0, also a measure of the strength of the attractive
electric force. (It could be true that the gravitational force plays a role—if so, then we’d
need to include G. But the gravitational force is very weak compared with the electric
force, so we have good reason to ignore it.) If you include only these three parameters,
you’ll find that the resulting system of equations for the values of the exponents is over-
determined, i.e., there are no solutions (see Problem 69). However, if you include a fourth
quantity, h, Planck’s constant, then you’ll find that the problem is solvable. The fact
that a solution requires the inclusion of h means that the size of the atom is quantum
mechanical in nature, and that without quantum mechanics, atoms would not have a well-
defined size. In other words, it implies that quantum physics must play an important role
in atomic structure. Our second step is now clear: the atomic radius r can be expressed
as a product

r = ea mb
e εc

0 hd. (4.8)

To express this dimensionally, we need to introduce another dimension, charge, which I’ll
denote by [Q]. Since, in the SI system, ε0 has the units C2/Nm2, and h has the units J s,

2I’ll make the approximation that the proton is very massive and therefore stationary.
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Electromagnetic mass. The technique of dimensional analysis can be ap-
plied to a sphere of electric charge, such as the electron, in order to determine
its “electromagnetic mass,” i.e., the mass that it has due to the electric field
energy. It is another method to determine the classical electron radius that
you calculated in Problem 8. Consider a sphere of electric charge q and radius
r. What quantities might its mass depend on? Since the work necessary to
assemble the charge depends on the electric force, the mass should depend on
q, r, and also ε0 (which determines the strength of the electric force). If we
set the mass equal to the product

m = qa rb εf
0 , (4.9)

then the set of equations for the powers are four equations for only three
unknowns, a, b, and c

−f = 1

b− 3f = 0 (4.10)

2f = 0

a + 2f = 0.

The system is obviously overdetermined (e.g., the first and third equations are
inconsistent). What does this mean physically? We originally guessed that
since the sphere of charge was in empty space, the only possibilities were those
that dealt with the electric force. But empty space does have properties, in the
sense that the electric force is carried by photons, which travel at the speed of
light. Therefore, we should include c in our list of possible dependencies, and
use the formula

m = qa rb εf
0 cd. (4.11)

In Problem 71 you can show that the electromagnetic mass must take the form

m = D q2

ε0rc2
, (4.12)

where D is an unknown dimensionless constant. This is identical to the result
we found in Problem 8 for the classical electron radius.

I can express the dimensions of Eq. (4.8) as

[L]1 = [Q]a [M ]b
(

[Q]2[T ]2

[M ][L]3

)c (
[M ][L]2

[T ]

)d

. (4.13)

Again, equating powers of each dimension results in the set of equations for mass, length,
time, and charge, respectively

b− c + d = 0

2d− 3c = 1 (4.14)
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2c− d = 0

a + 2c = 0,

allows us to determine that a = −2, b = −1, c = 1, and d = 2. Therefore the formula for
the size r of the atom is

r = C ε0h
2

mee2
. (4.15)

As is the case with all dimensional analysis, there is no way to determine the dimensionless
numerical factor C, but we’ll see that if C = 1/π, then r equals the Bohr radius. Inter-
estingly, the fourth equation in Eq. (4.14) requires a = −2c, which means that e and ε0

always occur as e2/ε0. This makes sense because they both determine the strength of the
electric force between two particles of charge e.

Have all possible dependencies been considered? For example, are relativistic effects
important? Should we include the speed of light c in our analysis? Problem 70 investigates
this possibility.

4.2 The Bohr Model

After 1911, when Ernest Rutherford convincingly demonstrated that the atom was com-
prised of a small, massive, positively charged nucleus, the question remained, “How do
the electrons fit into the picture?” Niels Bohr decided to try to answer this question. One
possible answer was that the atom is essentially a miniature solar system, with the elec-
trons (point particles, as shown by Thomson) orbiting the nucleus due to the attractive
Coulomb force. However, there was a problem. It was realized that if this “atomic solar
system” were correct, atoms would not be stable, since Maxwell’s electromagnetic theory
predicted that a charged particle radiated energy in the form of electromagnetic waves if
it was accelerating. The resulting loss of orbital energy would cause the electron to spiral
into the nucleus, implying that atoms should not exist!

How bad was the problem? Well, an electron with charge −e, moving uniformly in a
circular orbit of radius r with speed v and orbital frequency ν = v/2πr should radiate
electromagnetic waves with a frequency equal to ν and with a total power given by3

P =
2

3c3

e2

4πε0

v4

r2
, (4.16)

which is called the Larmor formula, named after Joseph Larmor (1857-1942) who first
derived it in 1897. The single electron in the ground state of the hydrogen atom has
an orbital radius equal to the Bohr radius, r = a0 ≈ 0.529 Å, and it moves with a speed

3This is called “synchrotron” radiation, which is the name given to the radiation by charged particles
accelerated in curved paths. This name comes from the machines which accelerate charged particles to
high speeds in particle accelerators. It is to be compared with brehmsstrahlung radiation (which means
“braking radiation” in German) which occurs when charged particles are accelerated in straight paths.
The formula in Eq. (4.16) is the non-relativistic approximation, which is valid for electrons in hydrogen
atoms. At relativistic speeds, the radiation is emitted not only at frequency ν, but at multiples of ν as
well — 2ν, 3ν, etc. Finally, most of the power is radiated in a direction perpendicular to the plane of the
orbital circle.
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v ≈ 2.2×106 m/s. Therefore, classically, we would expect the electron to emit synchrotron
radiation of frequency 6.58 × 1015 Hz, which is in the extreme ultraviolet region of the
spectrum. More important, the radiated power that the Larmor formula predicts is about
50 nW, which is small in macroscopic units, but converting to units more relevant to
electrons in atoms, this power is about 3× 1011 eV/s. Since the electron’s orbital energy
is on the order of a few eV, you can show that the electron would spiral into the proton
in about 10−11 s (see Problem 73).

If hydrogen atoms were this unstable, it was hard to see how the universe as we know
it could exist. Bohr realized that a drastically new approach was needed, and that the
solution would not be found in classical physics.

4.2.1 Angstrom and Balmer

The spectra of many elements had been observed and measured in the latter half of
the 19th century.4 In 1859, for example, Kirchhoff discovered sodium lines in the solar
spectrum, and deduced that sodium must be present in the sun. Subsequently, in 1868,
Ångstrom made the most accurate (up to that time) measurements of the visible spectrum
of hydrogen. There are four lines in this part of the spectrum, and he measured their
wavelengths to be

λ

Hα 6562.1 Å
Hβ 4860.7 Å
Hγ 4340.1 Å
Hδ 4101.2 Å

As you can see, the precision of Ångstrom’s measurements was about 10−5, quite good
for 1868. Now that these wavelengths were known, how are they to be interpreted? It
is clear that discrete lines imply some kind of internal structure to the hydrogen atom,
but what kind? One of the pastimes for physical scientists in the late 1800s was to try to
determine formulas that could predict these spectral lines. Although just a formula does
not necessarily explain anything, it can be a first step toward a deeper understanding.

In 1885, a schoolteacher, Johann Balmer, determined a formula that matched Angstrom’s
wavelengths

ν = Rc
(

1

4
− 1

n2

)
where





n = 3 → Hα

4 Hβ

5 Hγ

6 Hδ

(4.17)

Here, c is the speed of light and R is Rydberg’s constant, an experimentally determined
quantity. Matching his formula to Angstrom’s measurements results in a determination
of the Rydberg constant

R = 1.0972× 107 m−1,

which is very close to the currently accepted value of 1.097 373 156 8525(73)×107 m−1.
Balmer, in fact, did more than this. He interpreted the “4” in Eq. (4.17) as “22” and

4It might be helpful to review App. A.
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thought that there might be other spectral lines if “22” were replaced by other integers
squared. So he generalized his formula to obtain

ν = Rc

(
1

n2
2

− 1

n2
1

)
, (4.18)

where n1 > n2, and each choice of n2 results in a different “series.”5 Although in principle
there are an infinite number of series, there are currently six of them that have been
named. They are listed in the following table.

if n2 = 1 → Lyman series (1906), UV
2 Balmer series (1885), visible
3 Paschen series (1908), IR
4 Brackett series (1922), IR
5 Pfund series (1924), IR
6 Humphreys series (1953), far IR

In the table I’ve listed the names of the experimental discoverers, along with the date
of discovery and the region of the spectrum that the spectral lines occur. The line in
the table marks the time that Bohr developed his atomic model. He knew, of course,
about Balmer’s generalized formula that explained Angstrom’s measurements, as well as
the Lyman and Paschen measurements, and it seemed clear that more series would be
observed as soon as the technology for observing in the far infrared improved.

Bohr’s goal was to explain Balmer’s generalized formula in the context of Rutherford’s
nuclear atom without the problem of instability. In essence, he realized that the atom
must exist in a “stationary state,” i.e., without the emission of radiation, and that when
an atom made a transition between these stationary states it would emit (or absorb) a light
quanta of a particular energy. Through the Planck/Einstein relation E = hν this meant
that the emitted light had a particular frequency, giving rise to a spectral line. There
were two problems with this proposal. First, how do atoms remain in a stationary state?
Second, what is the process by which they make transitions between these states? Bohr
was honest and stated that he didn’t know the answers to these questions; he specifically
said, “...there obviously can be no question of a mechanical foundation of the calculations
given in this paper.”6 However, he said that what worked for Planck and the blackbody
spectrum works here for the hydrogen spectrum: “...the essential point in Planck’s theory
of radiation is that the energy radiation from an atomic system does not take place in
the continuous way assumed in the ordinary electrodynamics, but that it, on the contrary,
takes place in distinctly separated emissions...” Essentially, there must be something to
this crazy business, otherwise it wouldn’t work so well.

5Actually, Balmer’s formula was for the wavelengths

λ =
1
R

(
n2

1n
2
2

n2
1 − n2

2

)
,

and Balmer, in comparing to Angstrom’s measurements, used n2 = 2 and found the quantity 4/R =
364.56× 10−7 cm, which translates to R = 1.0972× 107 m−1.

6Bohr, 1913.
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There are (at least) three ways to derive the quantization condition for Bohr’s model
of the hydrogen atom.

1. The way Bohr did it. Since Bohr was the first to make the calculation, he made
several arguments to make his model palatable to physicists of the time. He used as
much classical physics as he could, and introduced Planck’s and Einstein’s quantiza-
tion in an ad hoc manner, making sure, of course, that his Correspondence Principle
was satisfied. This makes his method rather convoluted and difficult to follow.

2. Quantizing the electron’s orbital angular momentum (remember that in 1913 electron
spin was unknown). While this makes physical sense, it is actually wrong. It is true

that the orbital angular momentum (~L) of the electron is quantized, but it depends
on a separate quantum number `, not the principal quantum number n, as Bohr’s
model suggests.

3. Forcing the de Broglie wavelength of the electron to fit in its confining box (the
attractive force of the nucleus). While de Broglie’s idea was not introduced until
1923, this is actually a more “modern” way of looking at the hydrogen atom. When
any particle governed by the Schrodinger equation is confined in a finite volume,
it is required that an integral number of wavelengths fit in that volume (simply
because the Schrodinger equation is a wave equation). This requirement is identical
to standing waves on a string, where the resonant frequencies are determined through
the boundary conditions that the ends of the string must remain fixed, and therefore
the allowed wavelengths are λn = 2L/n, where L is the length of the string and n = 1,
2, 3, . . ., ∞.

4.2.2 Bohr’s approach

Niels Bohr’s atomic model of 1913 is justly famous because he was able to pick out the
essential pieces necessary to explain the emission lines of hydrogen. He made contradictory
assumptions, but his intuition told him that this was necessary to make progress. Of
course, even though his model correctly predicts the bound energy levels of the electron-
proton system, it got the angular momentum wrong, and it could not predict the electron’s
wave function (that would have to wait another 12 years). This mixture of success and
failure was typical of the old quantum theory, which was a hybrid of classical physics
and ad hoc quantization rules. As stated above, the experimental evidence that Bohr
used to develop his model was Balmer’s generalized formula, Eq. (4.18), for the discrete
wavelengths that constitute the spectrum of hydrogen. At that time Rydberg’s constant
R was simply an experimental constant, and there was no deeper understanding of its
physical meaning.

The theoretical concept that Bohr used to explain Balmer’s formula was the idea of
Planck and Einstein that the energy of radiation was quantized E = hν. Planck’s constant
h was just another experimental constant that had been measured in two different ways: a
fitting of the blackbody spectrum to Planck’s formula, and a comparison of photoelectric
effect data with Einstein’s prediction. If h times the frequency ν in Eq. (4.18) is interpreted
as the energy of the radiation (light quanta) that the atom emits, it must be accompanied
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by a loss of internal energy of the atom itself (physicists weren’t ready to give up energy
conservation just yet). That is, in the process of emitting a photon of frequency ν, the
atom is transformed from a state with energy E1 to another with energy E2

hν = E1 − E2. (4.19)

Balmer’s formula then requires that the atom is allowed to exist with one of a series of
discrete energies, and it gives explicitly the possible values of that energy in terms of the
integer n. That is, combining Eqs. (4.18) and (4.19) gives

E1 − E2 =

(
−Rch

n2
1

)
−

(
−Rch

n2
2

)
, (4.20)

which implies that the energy must take the form

En = −Rch

n2
+ C. (4.21)

Since the Balmer formula is a condition on only the difference in energies, Bohr could only
determine the energy up to an additive constant C. While this turns out to be the correct
expression for the energy levels, if you examine it closely, it does not really explain the
Balmer formula. It simply replaces a quantization of wavelengths with a quantization of
energies. It does not say what the energy of the atom is. In particular, Bohr wanted to
predict the value of R. It turns out that the most illuminating way to determine R is
to use method 3 from above. But in order to determine the allowed wavelengths of the
electron, we need to know what the electron wavelength is, and for that we turn to Louis
de Broglie.

4.2.3 The de Broglie wavelength

In 1923, Louis de Broglie proposed that, just as light waves have a particle nature (i.e.,
photons), electrons (particles) have a wave nature, and their wavelength is given by

λ =
h

p
. (4.22)

Some physicists wondered why Einstein did not think of this, as all the elements were
“under his nose,” so to speak. Einstein knew, of course, that a “light quanta” had an
energy E = hν. In addition, from his special theory of relativity, he had developed the
relationship between a photon’s energy and it’s momentum7

E = pc. (4.23)

A combination of these two gives the photon momentum p = h/λ, which Einstein also
knew. In some sense, all de Broglie did was to turn this equation around. He asked the

7This is the so-called “ultrarelativistic” approximation, which applies to particles moving close to the
speed of light. Photons, of course, move at the speed of light, so by definition they are ultrarelativistic.
For slow, nonrelativistic particles, the relationship is E = mc2 + p2/2m, where p2/2m is the particle’s
kinetic energy. See Chapter 5 for the derivation of these relations.
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question, “If waves with a wavelength λ have a momentum p, then why don’t particles
with a momentum p have a wavelength λ?” At that time there had been no hint that
electrons had any wave properties at all. The wave-particle duality of light had been hotly
debated since Einstein’s proposal in 1905, but de Broglie’s suggestion was out of the blue.
As Abraham Pais relates

On September 10, 1923, [de Broglie] proposes that E = hν hold not only
for photons but also for a ‘fictitious associated wave’ assigned to electrons.
On September 24, he notes that accordingly one might anticipate diffraction
phenomena for electrons.. . . Einstein says of this work: ‘I believe it is a first
feeble ray of light on this worst of our physics enigmas.’8

If we shine this ‘feeble ray of light’ on the hydrogen atom, it suggests a method to discretize
(i.e., quantize) the electron’s orbit. In the case of standing waves on a string, the boundary
conditions at the ends require that both ends be nodes, or that an integral number of half
wavelengths fit on the string: L = nλ/2. For an electron in a circular orbit, there are
no “ends,” but we can require that when the ‘fictitious associated wave’ makes one full
circumference, it is in phase with itself. That is, we require that the electron constructively
interfere with itself — if it destructively interfered with itself, there would be no electron!
The mathematical statement of this condition is that if the electron is in a circular orbit
with circumference C, then there must be an integer number of wavelengths in that same
distance, or C = nλ, where n = 1, 2, 3, . . ., ∞. Since the circumference of a circle is just
C = 2πr, we have

2πr =
nh

mev
. (4.24)

This quantization condition turns out to be identical to method 2 above, since the elec-
tron’s orbital angular momentum is L = mvr, and solving Eq. (4.24) for mvr gives
mvr = nh̄. This means that the angular momentum is quantized, not in units of h,
but in units of h̄.9

While Eq. (4.24) is a quantization condition, it does not tell us the possible values of
the radius, nor the possible values of the electron’s velocity. For that we need another
relation between r and v, and this Bohr took from classical physics: Kepler’s third law as
applied to the Coulomb force between the proton and electron. Recall that Newton was
able to derive Kepler’s third law for a stable circular planetary orbit by realizing that the
gravitational force of the Sun must be the cause of the planet’s centripetal acceleration.
That is, the radial component of Newton’s second law

Fr = mar

applied to the planet gives
GM¯m

r2
= m

v2

r
, (4.25)

8Pais, Inward Bound, p 252. The “diffraction phenomenon for electrons” that de Broglie predicted was
first demonstrated by Clinton Davisson and Lester Germer in 1927.

9As we have already seen, both orbital and spin angular momentum is quantized in units of h̄, but we
will see below that this quantum number n here determines the energy and radius of the electron’s “orbit.”
Angular momentum has a different quantum number; so in this respect the Bohr model is incorrect.
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where M¯ is the mass of the Sun, and m is the mass of the planet. This can be rearranged
to give Kepler’s third law: T 2 ∝ r3. In the present case, where the force is the Coulomb
force between a nucleus of charge Ze and an electron of charge −e, the radial component
of Newton’s second law applied to the electron gives

1

4πε0

Ze2

r2
= me

v2

r
, (4.26)

where I’ve assumed that the nucleus is infinitely massive, and therefore stationary.10 Treat-
ing Eqs. (4.24) and (4.26) as two equations in two unknowns (r and v), the unknowns can
be solved for, with the result that the orbital radius and velocity are both separately
quantized

rn =
n2

Z

ε0h
2

πmee2
, (4.27)

vn =
1

n

Ze2

2ε0h
. (4.28)

The implications of these equations are extremely profound. First, the orbital radius,
the size of the atom, agrees with the result of our dimensional analysis in Eq. (4.15), with
the dimensionless factor C = n2/Zπ. Second, for the “ground state” (n = 1) of hydrogen
(Z = 1), the orbital radius is equal to the “Bohr radius,”

r1 ≡ a0 =
ε0h

2

πmee2
≈ 0.529 Å. (4.29)

Atomic size. As alluded to earlier, all neutral atoms have approximately the
same size. I argued that this is because the outermost electron is shielded from
the full nuclear charge by the other electron and therefore only “sees” a single
positive charge +e. In fact, this shielding is not perfect, as you might have
suspected, and in addition, as you try to place more and more electrons into
a small space they tend to repel each other. A correct, quantum-mechanical
calculation results in the fact that the average radial distance of the outermost
electron is approximate rave ≈ na0, where n is the principle quantum number
of that last electron. Since many electrons can fit in each shell, the largest
value of n in stable elements is 5. [Cesium (Z = 55) and above have 2 electrons
in the 6s subshell, but not until mercury (Z = 80) are the 4f and 5d subshells
filled, so effectively n = 5 is the highest electron level.]

Third, and most important, a knowledge of rn and vn allows us to calculate the energy of
each of these stationary states, and to compare the resulting prediction with Eq. (4.21).
The total energy of the electron is just the sum of its kinetic energy plus potential energy

E = K + U =
1

2
mev

2 − 1

4πε0

Ze2

r
. (4.30)

10The factor of Z in Eq. (4.26) allows us to treat all “hydrogen-like” atoms, that is, atoms with only
one electron, all other electrons having been removed.
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Inserting the quantized values of rn and vn results in a quantized value for the total energy

En =
Z2

n2

(
−mee

4

8ε2
0h

2

)
, (4.31)

where the expression in parentheses is just E1 ≈ −13.6 eV, as claimed in Chapter 1. More
important, however, is that a comparison with Eq. (4.21) results in a theoretical prediction

Landau levels. (This box is optional.) This method of quantizing a clas-
sical trajectory can also be used when studying charged particles executing
cyclotron motion in an applied magnetic field. A particle of charge q in a
magnetic field of strength B travels in a circle in a plane perpendicular to
the magnetic field direction. (For simplicity we’ll ignore any motion along the
magnetic field — in any case, this motion is not quantized.) Just as with an
electron orbiting the proton in hydrogen, Eq. (4.24) is the requirement that
an integral number of de Broglie wavelengths fit on the circumference of the
circular path. The second, classical, equation needed that relates r and v is
just the analogue to Eq. (4.26),

qvB = me
v2

r
, (4.32)

which states that the magnitude of the Lorentz force (qv × B) causes the
centripetal acceleration. Combining these two results in the allowed values for
r and v, just as in Eqs. (4.27) and (4.28),

rn =

√
nh̄

qB
, (4.33)

vn =

√
nh̄qB

m
. (4.34)

And following the hydrogen atom derivation, we can calculate the allowed
energy levels

En =
1

2
mv2

n =
1

2
h̄ωcn. (4.35)

Just as with the Bohr derivation, this is not quite correct. The reason is
that we have used a mix of classical and quantum concepts, which results in
the right idea, but with incorrect details. We’ll see in Chapter 6, that the
correct answer is identical to the quantum harmonic oscillator energy levels,
En = 1

2
h̄ωc(n+ 1

2
). This means that cyclotron motion is in some sense identical

to harmonic oscillation.

for R. Letting Z = 1 (for hydrogen), I get11

R∞ =
mee

4

8cε2
0h

3
. (4.36)

11The subscript ∞ in Eq. (4.36) indicates that the mass in the numerator is the electron mass.
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If you evaluate the right hand side of Eq. (4.36), the resulting value matches the experi-
mental value of R, and this gave Bohr confidence in his model. The important physical
fact is that all the quantities on the right hand side of Eq. (4.36) were measured in dif-
ferent types of experiments: ε0 was measured by Coulomb using charged pith balls, h
was measured by comparing Planck’s formula with blackbody radiation, c was measured
by Michelson and Morley, and e was measured by Thomson following an electron in a
magnetic field. The fact that all these disparate physical constants come together to equal
a constant that shows up in atomic spectra is solid evidence for Bohr’s theory, and also
indicates that atomic spectra must be quantum and electric in nature.

4.2.4 Ionized helium and deuterium

Bohr’s model, of course, could not explain the spectrum of other atoms with more than
one electron. This did not stop Arnold Sommerfeld (among others) from trying to gener-
alize Bohr’s model by allowing the electrons to orbit in elliptical trajectories rather than
circles. He also attempted to include relativistic effects by allowing the electron’s speed to
approach c. These extensions met with only limited success, however, because ultimately
the spectra of heavier elements were much more complex than that of hydrogen, and a
complete explanation would have to wait until 1926 when a true quantum mechanics was
developed. In fact, in 1923 Arnold Sommerfeld stated, “All atempts made hitherto to
solve the problem of the neutral helium atom have proved to be unsuccessful.”12

In any case, one example to which Bohr’s model could be applied successfully was
singly-ionized helium. He+, also known as He II, consists of only one electron orbiting an
α particle. While it was not known exactly what the composition of the α particle was,
it was clear that it was four times as massive as the hydrogen nucleus, and had twice the
positive electric charge. In the observation of the spectral lines, the Rydberg constant R
is an easily measurable quantity, and Eq. (4.31) implies that R(Z), the Rydberg constant
for any single-electron atom with nuclear charge Ze, is given by

R(Z) = Z2 mee
4

8cε2
0h

3
. (4.37)

Comparing the results for helium and hydrogen should give the ratio 4, because for helium
is Z = 2. However, the experimental value of the ratio was found to be

R(He)

R(H)
= 4.0016. (4.38)

While this is a small discrepancy, it was well within the experimental precision. Bohr
quickly realized his mistake: by assuming that the nucleus remained stationary he had
effectively ignored the mass of the electron, and instead of me in Eqs. (4.31) and (4.37),
what was needed was the reduced mass (see Appendix F)

µ =
Mme

M + me

, (4.39)

12Quoted in Pais, Inward Bound, page 215.
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where M is the nuclear mass. Of course, in the limit me ¿ M , the reduced mass is
approximately µ ≈ me. For hydrogen

µH =
mpme

mp + me

= me


 1

1 + me

mp


 ≈ (0.999455)me, (4.40)

and for helium
µHe ≈ (0.999864)me, (4.41)

so that the ratio of the Rydberg constants is

R(He)

R(H)
=

4µHe

µH

= 4.00163, (4.42)

exactly in agreement with experiment. After this success, critics of the Bohr model quickly
dropped their opposition.

Deuterium is another case where the theoretical prediction required the use of the re-
duced mass. A stable isotope of hydrogen, deuterium has a natural abundance on Earth of
only 0.0115%. In 1931, Harold Urey [Nobel Prize, Chemistry, 1934] was
able to produce hydrogen with a high concentration of the A = 2 iso-
tope, which he then identified spectroscopically.13 You can show (see
Problem 81) that the spectral lines of deuterium are slightly shifted
compared to those of hydrogen. The spectrum from a sample of hy-
drogen that contains both isotopes shows both sets of lines, and the
relative intensity of the lines reveals information about the relative con-
centration of the two isotopes. The discovery of deuterium and other
stable isotopes of low Z elements were a strong impetus to definitively
determine the structure of the nucleus — recall the struggle with the
proton-electron model in Section 2.3.2. Urey also looked for spectral lines from tritium,
but didn’t see any because its short half life meant that its natural abundance on Earth
is very low.

4.3 The periodic table

Does Bohr’s model explain the periodic table? No, but it comes close. To explain the
periodic table would require a complete quantum mechanical analysis of the hydrogen atom
that we will study in Chapter 7. However, I can state some results and give qualitative
reasons for them.

First, Bohr got the energy levels (of hydrogen, at least) correct. Equation (4.31), with
the modification that me be replaced by the reduced mass µ, correctly gives the allowed
energies of all one-electron atoms as a function of the principle quantum number n. We
shall see in Chapter 7, however, that when a particle is confined in a three-dimensional
box (which is essentially what an electron attracted to a proton is) there must be three

13The fact that 1H, also known as “protium,” is lighter than deuterium means that protium evaporates
faster than deuterium from hydrogen that has been liquefied, and therefore the remaining hydrogen has
a higher concentration of deuterium.
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quantum numbers that define the state of the particle — one for each dimension. In
the case of a spherically symmetric atom, the other two quantum numbers—which we
have seen before—are ` and m`, which determine the magnitude of the orbital angular
momentum and its z-component, respectively.14 In addition, each electron has another
“degree of freedom,” in that it can vary its spin quantum number ms to be either ±1

2
, i.e.,

it can be either spin up or down. (Recall that for each electron s = 1
2

is an unchanging
fundamental property.) This structure holds for all atoms, even those with more than one
electron: each electron is characterized by four quantum numbers,15 and no two electrons
can have the same set (so sayeth Pauli).

What are the possible allowed values for these quantum numbers? Bohr was again
correct in showing that n could take on integer values from 1 through ∞. However, for
each value of n, the (orbital) angular momentum quantum number can take on any integer
value as long as ` < n. The reason for this comes from the solution of the Schrodinger
equation for a hydrogen atom, so it is essentially a mathematical requirement about the
behavior of the solution. It can be understood qualitatively, however, by looking at well-
known results for the classical orbits in a 1/r (gravitational) potential. There, the total
energy of the particle (or planet) is determined by the semi-major axis of the elliptical
orbit. The angular momentum depends on the eccentricity of the orbit, with the minimum
value of zero corresponding to a straight line orbit, and the maximum value occurring for
a circular orbit. In the quantum case, for a given energy (determined by n) there will
be a maximum amount of angular momentum (determined by `), which is just what the
inequality ` < n states. Finally, as we have seen, the z-component of a vector cannot
be larger than the vector itself, so that restricts the third quantum number to the values
|m`| ≤ `. The second restriction on m`, the fact that neighboring values must differ by
1, comes from the requirement that the solution to the Schrodinger equation must be
well-behaved.

Putting all this together, along with the requirements of the Pauli exclusion principle
(no two electrons with the same four quantum numbers), tells us how many electrons can
fit in each “subshell,” where a subshell is defined as all the quantum states with the same
n and `. These subshells are listed in Table 4.1. For example, the lowest energy level,
n = 1, has only one subshell, because ` = 0 and m` = 0 are required, but since ms can be
either ±1

2
, this means that two electrons can fit in this subshell, called the “1s” subshell.

Each electron is in a different quantum state—as required by Pauli—because one has the
quantum numbers (1,0,0,1

2
) and the other has (1,0,0,−1

2
).

Another result that Bohr could not predict is that as soon as there is more than one
electron in the atom, the energy depends not only on the quantum number n but also on
` (see the box on page 8). That is, the 2s subshell (` = 0) has a lower energy than the
2p subshell (` = 1), which is why it is filled first.16 This means that the third electron
(i.e., lithium) occupies the 2s subshell, and it is not until boron (Z = 5) that the fifth
electron occupies the 2p subshell. The reason for this is that the Coulomb potential is
a special case. Only when U ∼ 1/r are the energy levels independent of `. A second

14This means that Bohr was incorrect in believing that n also determined the magnitude of the electron’s
orbital angular momentum.

15The four quantum numbers are usually listed in the following order (n, `, m`, ms).
16The pre-quantum notion that particles like to occupy the lowest energy state is still valid.



110 CHAPTER 4. INTRODUCTION TO ATOMIC PHYSICS

n ` subshell # e− noble gas Z
1 0 1s 2 He 2
2 0 2s 2
2 1 2p 6 Ne 10
3 0 3s 2
3 1 3p 6 Ar 18
3 2 3d 10

Table 4.1: Allowed numbers of electrons in each subshell, denoted by n`, where n = 1, 2,
3, . . ., and ` = 0, 1, 2, denoted by s, p, d, respectively. The last column lists the atomic
“magic numbers,” which result in especially stable electronic configurations. The higher
atomic magic numbers are 36 (Kr), 54 (Xe), 86 (Rn), 118 (Uuo).

electron, however, experiences a potential due to both the nucleus and the “cloud” of the
first electron, so the net potential is not proportional to 1/r (see Problem 83). This special
nature is also true classically. A key result from classical mechanics is Bertrand’s theorem,
which states that for central force laws of the form Fr ∼ −rn there are only two values of
n for which all orbits are closed (meaning that the orbiting particle returns to the same
locations). These two values are n = −2 (gravitational force) and n = 1 (Hooke’s law
spring force).17

4.4 Moseley’s Law

Had the European War no other result than the snuffing out of this young life,
that alone would make it one of the most hideous and most irreparable crimes
in history. — Robert Millikan, referring to Henry Gwyn-Jeffreys Moseley18

Until 1914, the atomic number of an element had no physical meaning. It was just the
listing of the known elements in order of atomic weight, as shown in the table below.

element: H He Li Be B C N O · · ·
atomic “number”: 1 2 3 4 5 6 7 8 · · ·

atomic weight: 1 4 7 9 11 12 14 16 · · ·
With some pairs of elements, like cobalt and nickel, and tellurium and iodine, it was not
clear whether they should be placed in order of their atomic weight or in an order that
better fit their chemical properties. Mendeleev guessed correctly that chemical properties
were more important than atomic weight. In addition, it was not known how many (if
any) missing elements there were. For example, only in the previous twenty years had the

17A large quantity of research is aimed at understanding the relationship between the properties of
classical orbits and quantum states.

18After his groundbreaking scientific work in 1913 and 1914, Moseley joined the Royal Engineers after
the outbreak of World War I, and died in 1915 at age 27 in Gallipoli, Turkey.
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Figure 4.1: X-ray spectrum of molybdenum. The continuum X-ray spectrum is produced
by electrons with 35 keV of kinetic energy (i.e., it was accelerated through a potential dif-
ference of 35 kV). This means that if it gives up all its kinetic energy to the bremsstrahlung
X-rays, those photons would have a wavelength of λ = hc/E = 0.035 nm. This is just
the lower cutoff of the spectrum. In addition, secondary X-rays (also called characteris-
tic X-rays) from molybdenum are seen in the spectrum. In particular, the Kα and Kβ

lines are seen, corresponding to the 2 → 1 and 3 → 1 transitions. From HyperPhysics,
http://http://hyperphysics.phy-astr.gsu.edu/hbase/quantum/xrayc.html

entire column of noble gases been discovered. In addition, after the discovery of helium19

in 1895 it was speculated that there were two elements between hydrogen and helium —
popular suggestions were “nebulium” and “coronium,” two other elements thought to exist
only in the sun. It was the work of Henry Moseley in 1913-1914 that correctly revealed
the atomic number of all elements up to gold (Z = 79), and also determined the number
of missing elements. He did it with X-rays.

X-rays had been known since 1895, when Roentgen realized that
radiation was coming from the collecting plate of his vacuum tube.
As we understand it today, the cathode rays (electrons) emitted
bremsstrahlung (braking radiation) as they slowed down when they hit
the target. These high-energy photons are emitted with a continuum
of wavelengths and are called “primary X-rays.” The maximum energy
such an X-ray photon could have is if the electron lost all its kinetic
energy (for an electron to be annihilated, and therefore give up its
rest energy also, positrons would have to be present). A typical X-ray
photon has an energy of 1 keV, which means that the voltage across
Roentgen’s vacuum tube must have been at least 1 kV.

In 1897 it was found that when these primary X-rays impinged upon another sub-
stance, that substance gave off “secondary X-rays.” A typical X-ray spectrum showing

19An unknown spectral line had been observed in the solar corona in 1868 by Pierre Janssen during a
solar eclipse. This new element was postulated to exist only on the sun, so it was called helium. It was
discovered on Earth in 1895 by Cleve and Langer in Sweden: they dissolved uranium-laden rock in acid
and collected the gas bubbles that escaped. The spectrum of this gas positively identified it as helium.
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both types is shown in Fig. 4.1. Slowly, over the course of the next fifteen years, dif-
ferent substances were found to emit different types of secondary X-rays. One of the
differences was that each substance emitted X-rays with a discrete set of wavelengths
(rather than the primary X-rays that were a continuum). It was similar to the op-
tical spectrum of a gas, in which each element had a different “spectral fingerprint.”
In the case of X-rays, however, there was some regularity among the
elements,20 and Moseley discovered this regularity. It took Moseley
and his predecessors several years to unravel the details of the X-ray
spectra, especially given that X-ray diffraction was discovered only in
1912 by Max von Laue [Nobel Prize, Physics, 1914]. The history of these
investigations is interesting and informative, but is best left for later.
For now, I will explain Moseley’s work as we currently understand it.

When a primary X-ray encounters a neutral atom, it can be ab-
sorbed and eject an orbiting electron from that atom. When it does so,
another orbiting electron from the same atom can “drop down” and fill
the hole left behind. This transition between energy levels is accompanied by the emission
of a photon of the appropriate energy. In the specific case where a 1s electron is ejected
(i.e., from the K shell) and an n = 2 electron makes a transition to fill the empty hole,
the photon that is emitted is called a Kα X-ray. This is similar to the Hα line of the
hydrogen spectrum. If we assume that Bohr’s model holds (at least approximately) for
this many-electron atom, then the transition is from n = 2 to n = 1, and Eqs. (4.18) and
(4.37) predict the frequency of the emitted X-ray to be

ν = Z2
eff

3R∞c

4
. (4.43)

Here I’ve ignored the reduced mass (the approximation inherent in the use of R∞ gets
better as the nuclear mass increases) and Zeff is the effective nuclear charge that the
transitioning electron sees. Because this electron is originally in the n = 2 energy level,
and there is still one electron left in the 1s subshell, that electron shields the full nuclear
charge Ze and makes it appear to be (Z − 1)e, which means that Zeff ≈ Z − 1.

What Moseley first did was to plot
√

ν versus Z for ten elements between calcium
(Z = 20) and zinc (Z = 30), and his results are shown in Fig. 4.2. The prediction given
by Eq. (4.43) is, of course, a straight line

√
ν =

√
3R∞c

4
(Z − 1), (4.44)

which matches the data quite well. Two quantitative checks can be made. First, that

the slope of the line is
√

3R∞c/4 = 4.967 × 107
√

Hz. Second, that the Z intercept is

unity. A least squares fit to Moseley’s data (Problem 84) shows that the measured slope
matches the predicted slope to within 0.5%, and that the Z intercept is 1.13. Although
this is not exactly unity, it was within the experimental precision. Moseley knew that
this represented shielding of the nuclear charge, but at that time Bohr thought that for
elements with Z > 7, there were four electrons in the K shell. Remember, Bohr had just

20Only for hydrogen and the alkalis did the optical spectra show some regularity.
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Figure 4.2: Moseley’s plot of the frequency of the Kα and Kβ X-rays from various elements.
The Kβ photons come from a transition between n = 3 and n = 1, and therefore are of a
slightly higher energy and frequency; in particular, the factor 3

4
in the expression for the

Kα line is replaced by 8
9
. The experimental points fall on a straight line to within 0.5%.

A portion of Figure 3 from Moseley, 1913.

developed his hydrogen model the previous year and no one had been able to apply it
successfully to other elements. Also, spin and the Pauli exclusion principle were ten years
away.

After the success of these initial experiments, Moseley then went on to determine Z
for all known elements up to uranium (Z = 92), and was able to conclusively show that
seven were “missing.” These seven were protactinium (Z = 91, discovered 1917), hafnium
(Z = 72, discovered 1923), rhenium (Z = 75, discovered 1925), technetium (Z = 43,
discovered 1937), francium (Z = 87, discovered 1939), astatine (Z = 85, discovered 1940),
and prometheum (Z = 61, discovered 1945). Some of these, for example technetium, had
been suspected previously, due to the chemical properties of the surrounding elements,
but Moseley was the first to show that there was a definite hole in the periodic table. (See
App. J for a list of other discoveries.)

Problems

67. In this problem, you will develop an argument to show that the contribution of
the nucleus to the magnetic moment of silver is negligible, which is why Stern and Gerlach
were able to ignore it. Silver has two stable isotopes, 107Ag and 109Ag, whose nuclei contain
47 protons and 60 (or 62) neutrons. (a) Using what you know about how nucleonic spins
add, can you guess what the total spin of these nuclei are? Of course, you don’t know how
to calculate the exact value of the spin, but you can make an educated guess. Back up your
guess with a logical argument. (b) Now that you know the spin quantum number, what
is your best guess for the magnetic moment? Consider which of the nucleonic magnetic
moments cancel and which do not. Again, back up your answer with an argument.

68. Obtain the correct value for ρ0 by integrating the charge density in Eq. (4.3) over
all space and setting the integral equal to −e. Remember that in spherical coordinates
the volume element is dV = r2dr sin θdθ dφ.
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69. Attempt to obtain the size of the hydrogen atom using dimensional analysis
assuming that r depends only on e, me, and ε0. What mathematical problems do you
encounter?

70. Attempt to obtain the size of the hydrogen atom using dimensional analysis as-
suming that r depends on e, me, ε0, as well as h and c. Do you encounter any mathematical
problems in this case?

71. Use dimensional analysis to show that the mass of a sphere of charge in empty
space takes the form of Eq. (4.12) if you assume dependences of the form of Eq. (4.11).

72. Show that the classical orbital frequency of an electron orbiting a positive charge
Ze is

ν =

√
Ze2

4πε0

1

4π2mer3
.

Use a similar technique to that used in calculating gravitational orbits: solve the radial
component of Newton’s Second Law using the fact that the force of attraction causes the
centripetal acceleration.

73. How quickly does an electron orbiting a proton spiral into the proton? In other
words, how long should hydrogen atoms survive, from a classical point of view? The
electron radiates energy at a rate given by Eq. (4.16), its orbital radius r decreases, and
to answer the question above we will need to know the rate at which r changes. Since the
chain rule gives

P ≡ dE

dt
=

dE

dr

(
−dr

dt

)
,

if you can obtain the relationship E(r), then you can obtain a differential equation involv-
ing dr/dt, which can then be solved for r(t). The minus sign denotes the fact that as the
electron radiates, r decreases with time. HINT: use the result of the previous problem.

74. If an accelerating charged particle emits electromagnetic radiation, shouldn’t an
accelerating massive particle emit gravitational radiation? The answer is yes. (a) Starting
with the Larmor formula in Eq. (4.16), replace the electric quantities, 1/4πε0 and e, with
gravitational quantities, G and m, and obtain a “gravitational Larmor formula.” (b)
Calculate the power that the Earth emits in the form of gravitational waves. How long
will it take for the Earth to spiral into the Sun?

75. In 1871, George Stoney guessed (incorrectly) that the frequencies of three of
the lines that Ångstrom had measured for hydrogen (see page 100) were harmonics of a
fundamental vibration frequency ν1. That is, he proposed the wavelength ratios

λ1 : λα : λβ : λδ = 1 :
1

20
:

1

27
:

1

32

where λ1 is a wavelength that corresponds to a fundamental frequency ν1. (a) Determine
the frequency ν1 of the “fundamental vibration.” (b) Why did Stoney not include the Hγ

line in his list?
76. Show that the speed of an electron in a hydrogen atom, in the Bohr orbit labeled

by n, is given by αc/n, where α is the fine structure constant.
77. Consider a particle of mass m in a stable circular orbit about a point where the

central force is of the form Fr = −k/r2. (a) Show that U = −2K, where U is the particle’s
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potential energy and K its kinetic energy. (b) Show that the total energy E = K + U of
the particle can be written in two ways

E = −K =
1

2
U.

78. Consider an electron in state n of the hydrogen atom. (a) Assuming that it is
in a circular orbit with radius rn (i.e., the Bohr model), derive a formula for its orbital
frequency ν. (This is the frequency at which classical theory would predict it to radiate.)
(b) Derive a formula for the frequency of emitted radiation when the electron makes a
transition from state n to state n − 1. (c) Evaluate (and compare) these two formulas
numerically when n = 10, 100, 1000.

79. Obtain an approximate analytic expression for the frequency of emitted radiation
when an electron makes a transition from state n to state n−1, in the limit where n →∞.
(You might find the binomial expansion or the Taylor series helpful.) Compare this with
your formula from part (a) of Problem 78. (This problem and Problem 78 are an example
of Bohr’s Correspondence Principle. That is, the classical prediction—in this case the
radiation by a circulating electron—must equal the quantum prediction in the limit when
the quantum number is large.)

80. Rederive the Bohr model in the case where the two objects are attracted not
electrically, but gravitationally. Since both the Coulomb force and Newton’s Universal
law of gravitation are inverse square laws, the derivation follows the same steps. Apply
your “Bohr-gravity” formula to the case of the Sun and the Earth. What is the quantum
number n of the state that the Earth is in? Should Bohr’s Correspondence Principle
apply?

81. (a) Assuming Bohr’s model, calculate the wavelengths of the Balmer lines Hα

through Hδ in ordinary hydrogen (1H) and in deuterium (2H) (HINT: You’ll need to take
into account the reduced mass.) What is the difference between the wavelengths? Do you
agree with Urey’s calculations of ∆λ below from his 1932 discovery paper? (His units are
Ångstroms.)

(b) Calculate the wavelengths of the Balmer lines in tritium (3H). Do you think these
would have been detectable by Urey? (c) Do you think that Urey’s measurements above
definitively prove the existence of deuterium?

82. Fill in the next four rows of Table 4.1. Refer to a periodic table to determine
which subshells are filled first.

83. The electric potential that an electron “sees” due to a proton (at the origin)
is e/(4πε0r). This is the potential that is used, in quantum mechanics, to solve the
Schrodinger equation and calculate the wave function ψ for that electron. It is, of course,
related to the electric field generated by the nucleus Er = e/4πε0r

2. This is good for
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hydrogen, but what happens when we consider helium? A simple model, which is too
simplistic but gives a feeling for the complexity inherent in a “three-body problem,” is
to assume that the first electron is in the ground state n = 1. Then the second electron
experiences not only the electric field due to the nucleus (with charge +2e) but also the
field due to the first electron. Of course, the first electron is affected by the second electron,
and so the ground state is modified, but we’ll ignore that for this problem. Here, I’m asking
you to calculate the electric field Er(r) due to the first electron in the ground state. The
charge density of the first electron in the ground state can be found from the Schrodinger
equation (Chapter 7) is21

ρ(r) =
−e

π

(
Z

a0

)3

e−2Zr/a0 ,

where a0 = 4πε0h̄
2/me2 is the Bohr radius. Your task in this problem is to calculate Er

due to this ρ. The simplest method, since the system is spherically symmetric, is to use
Gauss’s Law to obtain the radial component of the electric field. Of course, for use in the
Schrodinger equation, the potential V must be obtained from an integration of ~E.

84. Moseley’s first measurements of the wavelengths of the Kα lines of different ele-
ments are given in the following table.

element Z λ
Ca 20 3.368 ×10−8 cm
Ti 22 2.758 ”
V 23 2.519 ”
Cr 24 2.301 ”
Mn 25 2.111 ”
Fe 26 1.946 ”
Co 27 1.798 ”
Ni 28 1.662 ”
Cu 29 1.549 ”
Zn 30 1.445 ”

Use linear regression techniques (i.e., a least-squares analysis) to obtain the slope and Z
intercept of the best fit line. How well does it match the predicted values?

Solutions

67. (a) Both isotopes of silver have odd A, so that means the nuclei have half integer
spin, but we don’t know which half integer. However, using the fact that all even-even
nuclei have zero spin, we might guess that the 60 (or 62) neutrons pair up and contribute
zero to the total spin. Also, 46 of the 47 protons might also pair up, leaving only one
unpaired proton. Thus, the spin of the entire nucleus would be equal to the spin of this

21If you are curious, the wave function of the first electron is

ψ100 =
1√
π

(
Z

a0

)3/2

e−Zr/a0 ,

and the charge density is given by ρ = −e|ψ|2.
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proton, which is s = 1
2
. In fact, this is the case: both nuclei are spin 1

2
(see Nubase). This

doesn’t have to be the case. Consider 59Co (Z = 27, N = 32), which has a nuclear spin
of 7

2
. This means that it’s not true that all pairs of protons and pairs of neutrons have

oppositely aligned spin, but it’s a reasonable first guess. (b) If all the pairs of spins add to
zero, then their magnetic moments must cancel, so that means that the magnetic moment
of the nucleus would simply be the magnetic moment of the unpaired proton, which is
µz = 2.793 µN . The measured values are −0.113570µN for 107Ag, and −0.1306905 µN for
109Ag. Obviously, there is something more complicated going on.

68. The angular integrals are just 4π

∫ π

0
sin θdθ

∫ 2π

0
dφ = (2)(2π) = 4π,

so we have to solve
4π

∫ ∞

0
r2ρ(r)dr = −e

for ρ0. Since
∫∞
0 rne−ardr = n!

an+1 , the left hand side of the above equation is

4πρ0

∫ ∞

0
r2e−2r/a0dr = 4πρ0

(
2!

(2/a0)3

)
,

which results in

ρ0 =
−e

πa3
0

≈ −3.44× 1011 C

m3
.

69. Our guess for the form of r is

r = ea mb
e εc

0.

As in the text, equating powers of dimensions on each side of the equation gives a set
similar to Eq. (4.14), except that all the values of d are zero

b− c = 0

−3c = 1

2c = 0

a + 2c = 0,

Immediately we see that the second and third equation are not consistent. In fact, the
entire system is overdetermined, as there are too many equations for the number of free
variables. The set of equations is not linearly independent.

70. Now we have to add a term to our guess for r

r = ea mb
e εc

0 hd ce.

This means that equating dimensions, as in Eq. (4.13), results in

[L]1 = [Q]a [M ]b
(

[Q]2[T ]2

[M ][L]3

)c (
[M ][L]2

[T ]

)d (
[L]

[T ]

)e

.
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Now, however, we have an underdetermined system, which means that there’s not enough
information to solve for all 5 exponents.

b− c + d = 0

2d− 3c + e = 1

2c− d− e = 0

a + 2c = 0,

The last equation again tells us that e and ε0 must be grouped as e2/ε0. The first equation
minus the sum of the second and third results in b = −1, as before. But I then obtain
only two equations for the final three exponents, c = d− 1 and c− e = 1. This system is
underdetermined. A more likely solution to the problem of introducing relativistic effects
is to assume that the radius is

r = ea mb
e εc

0 hd f
(

v

c

)
,

where f is a dimensionless function of β = v/c. This will result in Eq. (4.15) multiplied
by f , and other considerations will be needed to determine the functional form of f .

71. With the addition of the factor of cd, Eqs. (4.10) become

−f = 1

b− 3f + d = 0

2f − d = 0

a + 2f = 0

These four equations with four unknowns can be easily solved: a = 2, b = −1, f = −1,
and d = −2, which results in Eq. (4.12).

72. For a stable circular orbit Newton’s second law, stating that the electric force
causes the centripetal acceleration, is

1

4πε0

Ze2

r2
=

mv2

r
,

where Ze is the charge of the central nucleus, and m and e are the mass and charge of the
orbiting electron. Given that the orbital velocity can be written v = 2πrν, simply solving
for ν gives the answer.

73. From the previous solution, Newton’s second law (which is just Kepler’s third law
in this case) can be written in the form

v2r =
1

4πε0

Ze2

m
.

When Z = 1 and r = 0.0529 nm, this results in an orbital speed of v/c = 0.0073, which
is nonrelativistic. So at least in the electron’s initial (Bohr) radius, it is appropriate to
use the nonrelativistic Larmor formula. Of course, as r decreases, v must increase, so
that when r = 2.82 fm, the orbital speed must be equal to c so that Larmor’s formula
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is no longer valid. However, it will still be useful to give an order-of-magnitude estimate
of the “collapse time” for the spiralling electron. For stable orbits you can show that the
potential and kinetic energies are related by U = −2K, and that the total energy of the
orbiting object is E(r) = K + U = 1

2
U = −Ze2/8πε0r. (See Problem 77.) This means

that
dE

dr
=

Ze2

8πε0r2
.

We needed to obtain E as a function of r only, to make sure that we were differentiating
with respect to the entire dependence on r. Using the stable circular orbit speed v,
expressing P in terms of r, and noting that dr/dt must be negative if the electron is
radiating, I obtain

e2

6πε0 c3

1

r2

(
Ze2

4πε0mr

)2

=
Ze2

8πε0r2

(
−dr

dt

)
.

Algebraic manipulation gives the simple ordinary differential equation

dr

dt
= −A

r2
where A =

Ze4

12π2ε2
0m

2c3

which can be integrated using separation of variables to give

r(t) = 3
√

r3
0 − 3At.

If the electron starts out at an orbital radius of r0, then r → 0 when t = tcollapse = r3
0/3A.

This “collapse time” can be written in a form that allows straightforward calculation

tcollapse =
r3
0

4cZ

(
4πε0

e2

)2 (
mc2

)2
=

1

Z

(
r0

1 fm

)3

1.05× 10−25 s,

where I’ve used the fact that e2/4πε0 = 1.44 MeV fm, and mc2 = 0.511 MeV. For an
electron in the ground state of the hydrogen atom, r0 = 0.529 Åand Z = 1, the collapse
time is 1.55× 10−11 s. Hydrogen atoms would not last long.

74. (a) Making the substitution of gravitational constants for electric constants results
in a power formula

PG =
2

3c3
Gm2 v4

r2
.

(b) For the Earth, m = 6×1024 kg and v ≈ 30 km/s. Plugging these in, I get PG = 2.3×1012

W. While this may seem like a large value, the Earth has a lot of energy, and if you calculate
the collapse time as in the previous problem, you get 1.4×1029 s which is 4.6×1021 years,
much longer than the age of the universe.

Actually, the Larmor formula is due to “dipole” radiation, which exists because there
are two kinds of electric charge, and the electric dipole moment of the hydrogen atom
oscillates as the electron orbits the proton. However, there is only one kind of mass, and
for nonrelativistic speeds the gravitational waves are “quadrupole” radiation, which is due
to the fact that the moment of inertia of the Sun-Earth system is oscillating as the Earth
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orbits the Sun. The correct formula is smaller than the Larmor formula by a factor that
is on the order of ∼ v2/c2, and can be written22

P =
32Gm2ω6r4

5c5
.

This calculation gives 200 W for the power radiated by the Earth, and a correspondingly
longer collapse time.

75. There are several things that you can do with Angstrom’s measurements. First, as
he did, you can calculate an average value for R, the Rydberg constant. If you calculate a
different value for each line, then the average and standard deviation are R = 1.09722(2)×
107 m−1. (a) If you assume, as Stoney did, that the Hα line has a frequency that is
the 20th harmonic of the “fundamental” frequency, then you obtain for that frequency
ν1 = 22, 842, 722, 451, 654 Hz. Doing the same for Hβ and Hδ, taking the average and the
standard deviation, I get ν1 = 2.28431(3)×1013 Hz, which translates to an electromagnetic
wavelength of 13.1 µm. This is in the far infrared part of the spectrum. Of course, radio
waves hadn’t been utilized for commercial purposes in 1871, but one question that might
be asked is, what is the significance of this fundamental frequency? What does it tell us
about the atomic structure? (b) The Hγ line does not fit into this scheme, because it is
30.24 times the fundamental frequency. So it’s not an exact harmonic.

76. The orbital speed of an electron in state n is

vn =
1

n

Ze2

2ε0h
=

Z

n

(
e2

4πε0

) (
1

h̄c

)
c =

Z

n
αc,

The terms in parentheses are commonly encountered products. The first you saw in
Problem 34 and is e2/4πε0 ≈ 1.44 MeV fm, and the second is listed on page 9 and is
h̄c ≈ 197 MeV fm. The ratio of these is just the fine structure constant α ≈ 1/137.

77. This analysis shows that a similar structure exists for both Newtonian gravity
and electrostatics, since they are both represented by inverse square force laws.

(a) The radial component of Newton’s 2nd Law for the particle in orbit says Fr = mar,
which is

k

r2
= m

vr

r
,

or
k

r
= mv2.

This is a condition between v and r for circular orbits. The kinetic energy is, of course,
K = mv2/2, and the potential energy U , obtained from Fr = −dU/dr, is U = −k/r. The
orbital condition above can thus be expressed as

−U = 2K.

This is a simplified version of the “virial theorem.”

22Weinberg, Gravitation and Cosmology, page 272.
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(b) The total energy is E = K + U , so that using the virial theorem to eliminate K
gives

E = K + U =
(
−U

2

)
+ U = +

U

2
.

Similarly, eliminating U results in E = −K.
78. (a) The orbital frequency of an object in a circular orbit is just ν = v/2πr. In

state n, we have obtained the speed vn and the orbital radius rn from Bohr’s model, so
we can simply plug those in. I get for this classical frequency

νC =
Z2

n3

mee
4

4ε2
0h

3
=

Z2

n3

α2mec
2

h
= Z2 α2mec

2

2h

(
2

n3

)
,

where I’ve written the formula in three ways. First, in terms of fundamental constants;
second, combining those constants into the fine structure constant α; and third, a form
convenient for comparison in part (c). The numerical value of the coefficient of Z2/n3

is 6.6 × 1015 Hz. So in the ground state of hydrogen (Z2/n3 = 1) the electron “should”
classically radiate light with a wavelength 45.6 nm, which is in the extreme ultraviolet.
(b) The energy of state n can be written

En = −Z2

n2

α2c2me

2
.

The frequency of light emitted due to a transition is given by En−En−1 = hν so that the
Bohr frequency is

νB = Z2 α2c2me

2h

(
1

(n− 1)2
− 1

n2

)
.

(c) Rather than comparing the frequencies, νC and νB, we only really need to compare
the terms in parentheses, as the rest of the factors are identical. In the following table I
list n, the term in parentheses from νC divided by 2, that is 1/n3, the term in parentheses
from νB divided by 2, and the fractional error between the two, (νC − νB)/νB:

n classical Bohr fractional error
101 10−3 1.173× 10−3 −1.474× 10−1

102 10−6 1.015× 10−6 −1.497× 10−2

103 10−9 1.002× 10−9 −1.500× 10−3

104 10−12 1.000× 10−12 −1.500× 10−4

79. This is a straightforward continuation from the last problem. Expanding one of
the terms in the expression for νB for large n, I get

1

(n− 1)2
= (n− 1)−2 =

1

n2

(
1− 1

n

)−2

≈ 1

n2

(
1 +

2

n

)
.

From this is subtracted 1/n2 so that the factor in parentheses becomes (2/n3), which
exactly matches the expression for νC . Conclusion: in the limit of large n, the classical
and quantum predictions for the frequency emitted by the hydrogen atom are identical.
This is Niels Bohr’s “Correspondence Principle.”
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80. The equation for a stable circular orbit in a gravitational system (i.e., Kepler’s
third law) is v2r = GM , where M is the mass of the central object. When the electric
force replaces the gravitational force, G is replaced by 1/4πε0, and M is replaced by Ze.
In addition, however, the mass of the secondary object does not cancel in Newton’s second
law, and an additional factor of e/m is needed, where e and m are the charge and mass of
the secondary object. Hence, in the Bohr model results for En, rn, and vn, the following
replacement is needed to describe a gravitating system

Ze2

4πε0me

→ GM.

For the energy and radius, I get

En = −G2M2m3

2h̄2n2
, rn =

h̄2

GMm2
n2.

For the Earth-Sun system, M = M¯ = 2× 1030 kg and m = M⊕ = 6× 1024 kg. I get that
the “Bohr radius” is r1 ≡ a0 ≈ 10−137 m, which is extremely small. Since the Earth-Sun
distance is 1.5× 1011 m, this means that the Earth is in the n ≈ 1074 quantum state. Yes,
Bohr’s Correspondence Principle definitely applies!

81. Bohr’s model assumes that the nucleus is infinitely massive, and does not move
as the electron orbits. However, we know from gravitation theory that both the satellite
and the central object orbit their common center of mass. In this case, the “two-body
problem” can be reduced to a “one-body problem” by a transformation of coordinates
that introduces the reduced mass of the system µ. (See Appendix F.) For a large nuclear
mass M and a small electron mass me the reduced mass can be written

1

µ
=

1

me

+
1

M
=

1

me

(
1 +

me

M

)
.

Bohr, of course, retained only the first term, but for this problem you need to calculate
it exactly. (a) For hydrogen, the proton-electron mass ratio is 1836.152 673, and the
deuteron-electron mass ratio is 3670.482 958 (both from the CODATA sheet), which means
that for 1H, me/M = 5.446× 10−4, and for deuterium, me/M = 2.724× 10−4. Therefore,
the Hα line has a wavelength of

λ =
36

5R∞

me

µ
=

36

5R∞

(
1 +

me

M

)
= 656.112 nm

(
1 +

me

M

)
.

In the infinite nuclear mass limit (this is the meaning of the subscript on R∞), the wave-
length should be 656.112 nm. However, with the correction for a proton nucleus, I get
656.470 nm, and for a deuteron nucleus I get 656.291 nm. This is a difference of 0.179 nm,
which agrees with Urey’s result, and Ångstrom should have been able to detect it if he
had been looking for it. However, the abundance of deuterium is very low (only 0.0115%
on Earth), so in a typical sample of hydrogen the line strength would be very weak and
possibly not visible with his apparatus. (b) For tritium, use the fact that M ≈ 3mp.

82. Examining a periodic table that lists the electronic configurations of each neutral
atom, you can see that the subshells are not filled in the order expected, but that some s
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subshells (` = 0) are of lower energy than the previous p or d subshells. The following table
lists the approximate order of filling. In some cases, there are exceptions. For example,
chromium (Cr, Z = 24) should have its valence electrons in the subshells 4s23d4, following
vanadium perfectly. However, one of the 4s electrons fills the 3d subshell instead, and it
is not until manganese that the “proper” order is restored. The table below ignores these
slight discrepancies.

n ` subshell # e− noble gas Z
1 0 1s 2 He 2
2 0 2s 2
2 1 2p 6 Ne 10
3 0 3s 2
3 1 3p 6 Ar 18
4 0 4s 2
3 2 3d 10
4 1 4p 6 Kr 36
5 0 5s 2
4 2 4d 10
5 1 5p 6 Xe 54
6 0 6s 2
4 3 4f 14 lanthanides
5 2 5d 10
6 1 6p 6 Rn 86
7 0 7s 2
5 3 5f 14 actinides
6(?) 2 6d(?) 10
7(?) 1 7p(?) 6 Uuo 118

Note that each noble gas has a filled p subshell as its last filled subshell.
83. Gauss’s law, ε0

∫ ~E · d ~A =
∫

ρdV , under the usual assumption of spherical sym-
metry, results in

Er(r) =
1

4πε0r2

∫ r

0
ρ(r′) 4πr′2 dr′

=
−eZ3

πε0r2a3
0

∫ r

0
r′2e−2Zr′/a0dr′.

Changing the integration variable from r′ to s′ = 2Zr′/a0 results in the integral

Er =
−e

8πε0r2

∫ s

0
s′2e−s′ds′

where s = 2Zr/a0. This integral can be done “by parts” to give
∫ s

0
s′2e−s′ds′ = −(s′2 + 2s′ + 2)e−s′

∣∣∣
s

0
= 2− (s2 + 2s + 2)e−s.

The radial electric can now be written in its full glory, replacing the physical variable r

Er(r) =
−e

4πε0r2
+

e

4πε0r2

{
2Z2r2

a2
0

+
2Zr

a0

+ 1

}
e−2Zr/a0 .
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The first term is the field of a point electron at the origin, and the second gives the
reduction of that field due to the spread out “cloud” of charge. As r →∞ the second term
vanishes, leaving the field of a point charge. This result nicely illustrates Newton’s shell
theorems, which state that when you are outside of a spherical mass or charge distribution,
it appears as if all the mass or charge is concentrated at the origin. Clearly, this electric
field is not the Coulomb electric field, so that the quantum energy levels of the second
electron will not depend on n alone, but also on `.

EXTRA: Quantum mechanics expresses not the forces, but the potential energy. So
for this case, the electric potential can be obtained from the integration V =

∫ ~E · d~̀, and
the simplest method is to integrate radially from ∞ to r. To evaluate this, we’ll need the
following integrals

∫ r

∞
dr

r2
= −1

r∫ r

∞
e−βrdr = −e−βr

β
∫ r

∞
e−βr

r
dr = −E1(βr)

∫ r

∞
e−βr

r2
dr = can you evaluate this?

where E1 is the exponential integral, defined by

E1(z) ≡
∫ ∞

z

e−t

t
dt,

which is a function that cannot be expressed in terms of other elementary functions, but
whose properties have been tabulated.23 In these formulas, β = 2Z/a0. For those of
you who are mathaholics, the exponential integral is related to the incomplete Gamma
function Γ,

E1(z) = Γ(0, z).

The incomplete Gamma function is defined as

Γ(a, z) ≡ Γ(a)−
∫ z

0
e−tta−1dt,

and the reason it is called “incomplete” is because the gamma function is the full integral

Γ(z) =
∫ ∞

0
e−ttz−1dt.

The Gamma function is related to factorials

Γ(n + 1) = n!,

where n is an integer.24

84. Using standard linear regression formulas for
√

ν versus Z, I obtain a slope of
4.9912× 107

√
Hz, which is 0.48% larger than the current theoretical value. Flipping the

axes and applying linear regression to a plot of Z versus
√

ν (because we want the “y”
intercept), I get a Z intercept of 1.13, very close to unity.

23See, e.g., http://mathworld.wolfram.com/ExponentialIntegral.html.
24See, e.g., http://mathworld.wolfram.com/GammaFunction.html



Interlude

Now that we have obtained a brief overview of the physics that the twentieth century has
to offer, it’s time to pause a moment and reflect on the different epistemology that we
have encountered. What kinds of things can we say “for certain,” and what questions are
not “askable”? Since all of our intuition has been built in a macroscopic world of balls and
blocks and inclined planes, what language must we use when we talk about the atomic
and subatomic worlds? How do we interpret the equations that govern this world? Does
the interpretation matter?

Two quotes capture much of the new way of thinking. The first is the quote on page
10 by Linus Pauling on the wave-particle duality. I recommend that you re-read it at this
time. In fact, a re-reading of all of Chapter 1 is a good idea. Another quote, this one
concerning the dynamics of quantum phenomena, is by Abraham Pais, and lays out how
we must think about processes such as photon emission and absorption, nuclear decay,
etc.

At a moment which cannot be predicted an excited atom makes a transition to
its ground state by emitting a photon. Where was the photon before that time?
It was not anywhere; it was created in the act of transition.

At a moment which cannot be predicted a beta-radioactive nucleus decays into
another nucleus, an electron, and a neutrino. Where were the electron and
neutrino before that time? They were not anywhere; they were created in the
act of beta-disintegration.

An atom absorbs a photon and goes into an excited state. Where is the photon
after the absorption? It is not anywhere; it is extinct, annihilated.

Is there a theoretical framework for describing how particles are made and how
they vanish? There is: quantum field theory. It is a language, a technique, for
calculating the probabilities of creation, annihilation, scatterings of all sorts of
particles: photons, electrons, positrons, protons, mesons, others, by methods
which to date invariably have the character of successive approximations. No
rigorous expressions for the probability of any of the above-mentioned processes
has ever been obtained.25

Pais describes how creation and annihilation occur — it is nothing but the philosophy of
the “exchange particle” view that I described in Section 2.2. That is, there are no “forces”

25Pais, Inward Bound, page 324-5.
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or “fields,” but particles interact locally, and sometimes that interaction involves changes
in momentum and energy, and sometimes creation and annihilation.

Actually, and this is now a preview of Chapters 6 and 7, in this third formulation, we do
talk about fields (this is why it is called quantum field theory), but in a different manner.
That is, it is not that particles have fields (such as the electric field of an electron), but
that particles are fields. Now, though, a field is a function that describes the probability
of finding the particle at a particular location — this is the wave function of quantum
mechanics that we will consider in Chapter 7. This field formulation is what allows us to
calculate the probabilities that Pais was talking about.

If the best we can do is to describe particles using this probabilistic formulation it begs
the question: where was the particle before we measured its location? We will discuss the
philosophy of quantum mechanics after you have learned the mathematical formalism, but
for now there are two quotes by Niels Bohr and one by Asher Peres that succinctly state
some of the concepts that we will wrestle with in Chapters 6 and 7 concerning what it
means to make a measurement, and what happens in between measurements.

“No phenomenon is a phenomenon until it is an observed phenomenon.”

“Nothing exists until it is measured.”

“Unperformed experiments have no results . . .We then discuss . . . a compar-
ison of the results of experiments which were actually performed, with those
of hypothetical experiments which could have been performed but were not.
It is shown that it is impossible to imagine the latter results in a way com-
patible with the results of actually performed experiments . . . and quantum
mechanics.” — Asher Peres

Portrait of the theoretical physicist as a young boy (by Leon Lederman):
Mother: “Johnny, what are you doing?”
Johnny: “I’m drawing a picture of God.”
Mother: “Don’t be silly. Nobody knows what God looks like.”
Johnny: “They will when I’m finished.”



Chapter 5

Introduction to Special Relativity

Einstein’s special theory of relativity is a description of kinematics and dynamics in four-
dimensional “spacetime,” and in particular, how to describe the motion of objects from
different points of view, that is, by observers in different reference frames. It is essentially
a reformulation of Newtonian mechanics, correct for all particle velocities. In fact, New-
tonian mechanics turns out to be a special, limiting case, valid when velocities are small
compared with the speed of light c.

Since its development by Einstein over a century ago, a virtual cottage industry has
existed, consisting in the delineation and resolution of a multitude of counterintuitive
paradoxes. Even though everyday Newtonian physics is contained within special relativity,
the consequences of the principle of the constancy of the speed of light introduces profound
effects that we do not experience in everyday life.

Common paradoxes, such as the “twin paradox,” where a person’s rate of aging depends
on their speed of travel, and the “pole and barn paradox,” where the observations of a
pole fitting inside a barn depends on the observer’s frame of reference, will be covered in
this chapter. More exotic effects, such as the appearance of a cube that is moving near
the speed of light, are beyond the scope of this book.

Einstein’s own words

Einstein was led to his theory of relativity by the observation of certain electromagnetic
effects. Specifically, he asked himself the following question, “How does a magnet induce
current in a nearby conductor?” The induced current depends only on the relative motion
of the magnet and conductor, but the physical explanation — in terms of a magnetic
field or an electric field — depends on which object is “actually” moving. This apparent
contradiction led Einstein to abandon Newton’s concepts of “absolute time” and “absolute
space,” and to replace the Galilean transformation between two reference frames, moving
with respect to each other, with the Lorentz transformation.

As with any other piece of fundamental physics, it is always useful to go first to the
primary source; in this case, here are the first two paragraphs of Einstein’s seminal paper
on this subject in 1905, “On the electrodynamics of moving bodies.”

It is known that Maxwell’s electrodynamics — as usually understood at the
present time — when applied to moving bodies, leads to asymmetries which

127



128 CHAPTER 5. INTRODUCTION TO SPECIAL RELATIVITY

do not appear to be inherent in the phenomena. Take, for example, the re-
ciprocal electrodynamic action of a magnet and a conductor. The observable
phenomenon here depends only on the relative motion of the conductor and
the magnet, whereas the customary view draws a sharp distinction between
the two cases in which either the one or the other of these bodies is in motion.
For if the magnet is in motion and the conductor at rest, there arises in the
neighbourhood of the magnet an electric field with a certain definite energy,
producing a current at the places where parts of the conductor are situated.
But if the magnet is stationary and the conductor in motion, no electric field
arises in the neighbourhood of the magnet. In the conductor, however, we find
an electromotive force, to which in itself there is no corresponding energy, but
which gives rise — assuming equality of relative motion in the two cases dis-
cussed — to electric currents of the same path and intensity as those produced
by the electric forces in the former case.

Examples of this sort, together with the unsuccessful attempts to discover
any motion of the earth relatively to the “light medium,” suggest that the
phenomena of electrodynamics as well as of mechanics possess no properties
corresponding to the idea of absolute rest. They suggest rather that, as has
already been shown to the first order of small quantities, the same laws of elec-
trodynamics and optics will be valid for all frames of reference for which the
equations of mechanics hold good. We will raise this conjecture (the purport
of which will hereafter be called the “Principle of Relativity”) to the status of
a postulate, and also introduce another postulate, which is only apparently ir-
reconcilable with the former, namely, that light is always propagated in empty
space with a definite velocity c which is independent of the state of motion of
the emitting body. These two postulates suffice for the attainment of a sim-
ple and consistent theory of the electrodynamics of moving bodies based on
Maxwell’s theory for stationary bodies. The introduction of a “luminiferous
ether” will prove to be superfluous inasmuch as the view here to be devel-
oped will not require an “absolutely stationary space” provided with special
properties, nor assign a velocity-vector to a point of the empty space in which
electromagnetic processes take place.1

The “unsuccessful attempts” were, of course, the experiments by
Michelson and Morley. Albert A. Michelson [Nobel Prize, Physics, 1907]
performed his first experiment measuring the speed of light in different
directions in 1881 while working in Helmholtz’s laboratory in Berlin,
and of course got a null result. That is, the velocity of the Earth
as it orbited the Sun did not affect the speed of light as it moved
through the ether. Then, in 1887, when he was at the Case School of
Applied Science in Cleveland, he joined forced with Edward Morley,
a chemist from Western Reserve College, and they again got a null
result. The experiment has been performed many times since then, always with the

1From a translation by W. Perrett and G.B. Jeffery, The Principle of Relativity, 1923.
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same result. Although Einstein alludes to these experiments, they were not the main
motivation for his development of special relativity. As he states, the motivation was the
asymmetry in Maxwell’s equations, along with the fact that Lorentz had already shown
that transformations of Maxwell’s equations were inconsistent with Newton’s Laws and
Galilean Relativity (see Sec. 5.3.2).

The standard way to develop the principles of special relativity is to follow Einstein.
This method starts with Einstein’s two postulates mentioned above, and derives time
dilation and length contraction using a light ray as a clock. Here, I want to take a
different approach, one that is due to Peter Scott and Bill Burke.2 It starts with an
experimental fact and deduces what theoretical conclusions are needed to explain the
observation. The experimental fact that we will use is the observation of muons from
cosmic rays. Appendix G describes the process of muon creation and observation, and
constitutes good background reading at this time.

Before the muon observations can be analyzed, however, I need to introduce a graphical
device known as a “spacetime diagram,” which is essential to the understanding of special
relativity.

Spacetime diagrams

An extremely useful way to conceptually understand (as well as make quantitative cal-
culations) special relativity is the spacetime diagram. A spacetime diagram is nothing
more than a one-dimensional position-time graph, familiar from elementary mechanics,
with two simple changes: (i) an interchange of the x and t axes, and (ii) a rescaling of the
spatial axis so that it has dimensions of time. That is, rather than x versus t, a spacetime
diagram is a plot of t versus x/c. The trajectory of a particle is called its “world line.” A
particle with constant speed v therefore has a world line that makes an angle θ with the
positive t axis that is given by v = c tan θ. Velocities are also scaled by the speed of light,
c, so that it is common to refer to β ≡ v/c, instead of v. Importantly, a photon (that is,
light) has a world line that makes a 45◦ angle with the positive t axis. In other words, it
has a slope of unity. Figure 5.1 depicts these features.

Why do I scale distances so that they have dimensions of time? It turns out that in
relativity, space and time are treated on equal footing, so the fabric in which events occur
is called spacetime. Because they have equal status, it makes sense to measure them in
the same units. In a similar vein, it would be strange to measure north-south distances
in meters and east-west distances in feet. From this viewpoint, the speed of light is just a
conversion factor between our usual distance units and our usual time units. For example,
a “light-year” is a unit of length equal to the distance that light travels in one year. Hence,
the speed of light can be written as

c = 3× 108 m/s = 1
light-year

year
. (5.1)

Therefore, if x = 5 light-years, say, then

x

c
=

5 light-years

1 light-year/year
= 5 years. (5.2)

2Scott and Burke, Special Relativity Primer.
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Figure 5.1: Spacetime diagram depicting the world line of a photon (dashed line) and the
world line of a massive particle (solid line). The particle is shown starting at the origin,
moving to the right and then moving back to the left. The speed of any particle can be
determined by the angle its world line makes with a vertical line parallel to the t axis.
That is, v = c tan θ.

Why do I scale velocities to the speed of light? Since it turns out that c is a cosmic
speed limit, it makes sense to compare all speeds to c. More fundamentally, however, we’ll
see that it is impossible to determine how fast you are traveling in an absolute sense. You
can only tell how fast you are traveling with respect to another object. In addition, all
observers, regardless of their motion, measure light to travel at the same speed, c. For
these reasons, the speed of light is the natural speed in the universe. If you tell someone
how fast you are moving, and they reply with the query, “Compared to what?”, the speed
of light is the only possible comparison.

Both of these rescalings compel some physicists to set c ≡ 1 so that it does not appear
in any equations. However, in this chapter I will leave it explicitly in the equations, but
it is important to remember that it is simply a conversion factor.

It is possible to portray two spatial dimensions (and time, of course) using a perspective
portrayal of three dimensions on two-dimensional paper, as shown in Fig. 5.2. All the
essential physics, however, can be shown in a two-dimensional spacetime diagram with
just one spatial dimension.

5.1 Time dilation

An investigation into the phenomenon of time dilation cuts to the heart of what special
relativity is, and how it differs from classical (i.e., Galilean) relativity. The first concept
to be very clear about is that of a clock. We will need to assume that our clocks tick
uniformly and homogeneously. What this means is that their ticking rate does not depend
on time nor on the clock’s location. Of course, since a clock is how we actually measure
time, we cannot tell if it were not uniform, so we just have to assume it.
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Figure 5.2: Spacetime diagram with two spatial dimensions, x and y. Since light travels
at speed c, the set of all possible photon world lines that pass through the origin forms a
cone with its vertex at the origin. This is called the “light cone.” All massive particles
must have world lines that are “within” this cone, or closer to the t axis. From Scott and
Burke, Special Relativity Primer, Figure 4.

For our first thought experiment (Gedanken experiment), a muon will act as our clock.3

The average lifetime of a muon,4 as measured by the muon itself, is t0 = 2.2 µs. Even
though this is just an average, because some muons exist for longer time intervals and
some shorter, it will be convenient to assume that they all live for exactly 2.2 µs before
decaying into an electron. Our thought experiment is given by the following scenario.

Imagine that we have a number of identical clocks (muons). They are all
created simultaneously at the origin, and subsequently they move away from
the origin (in both the positive and negative x directions) at different constant
speeds. (One spatial dimension is all that is needed for this experiment.) Let’s
now follow one of the muons. If it moves at speed v, it will have traveled a
distance x = vt by the time it decays at time t, as measured by another clock
that remains at the origin. How is t (the spacetime coordinate) related to t0
(the muon’s lifetime)?

“What?” you say. “Isn’t it obvious? They are equal, t = t0.” This is exactly what
Newton and Galileo would say. But they are wrong! Experiments show that

t20 = t2 − x2

c2
. (5.3)

A plot of the spacetime locations (x/c, t) of the decays of each of the muons results in a
hyperbola, shown in Fig. 5.3. It seems rather strange that a moving clock, as represented

3Refer to Chap. 2 for a discussion of muons and to App. G for a description of their production in
cosmic rays.

4The precise value is 2.197 019(21) µs, but in this chapter, we only need two significant digits.
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Figure 5.3: The locus of points in spacetime at which muons decay after moving a distance
x/c at speed v. The horizontal dashed line is the Newtonian prediction t = t0, and is a
good approximation when v ¿ c. The diagonal dashed lines are, of course, the world lines
of photons, i.e., the light cone.

here by a muon, and a stationary clock would measure different time intervals between the
same two events (in this case the creation and decay of the muon), but as Scott and Burke
point out, “The hyperbola represents a description of the experimental data for real clocks,
and is not subject to dispute.”5 This means that our task as physicists is not to mold this
result into our pre-existing notions of space and time, but to explain this observation. In
this case it requires a completely new and different conception of spacetime.

Muon experiments

As explained in App. G, particles from outside the Earth’s atmosphere (called cosmic
rays) collide with the molecules in the atmosphere and create many secondary particles,
some of which are muons. The altitude at which most of the muons are created in this
process is near 20 km, and these muons are subsequently observed on the ground. Let’s
assume that the muons are of very high energy, and that they travel at almost the speed
of light. If this is true, then the maximum distance they could travel before decaying is

d = v t0 ≈ c t0 = (3× 108 m/s)(2.2 µs) = 660 m, (5.4)

which means that they would not reach the ground! They would decay, on average, far
above the ground.

However, since they are observed reaching the ground, and since they do not travel
faster than the speed of light c, we can determine what their average lifetime must be —
as measured by someone on the ground — in order to explain the observations. A clock
on the ground measures their lifetime to be

t ≈ d

c
=

20 km

c
≈ 6.6× 10−5 s = 30 t0. (5.5)

5Scott and Burke, Special Relativity Primer.
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This means that cosmic ray muons that are moving close to the speed of light — relative
to the ground — survive about 30 times longer than stationary muons in the laboratory.
This is what is meant by time dilation.

Proper time and the spacetime interval

Can we draw a general conclusion from this result? Yes. First, it is important to distin-
guish the two times that we have been discussing. The first, t, is called the coordinate
time. It is the time measured by clock tied to the coordinate system (x/c, t) in which we
measure the location of events. The second, t0, is called the proper time.

The proper time is the elapsed time between two events as measured by a clock
that is at the same spacetime location as both events.

That is, a clock always measures its own proper time, because it is always at the origin of
its own frame of reference, the origin of its own coordinate system.

You may have noticed that in special relativity an “event” is elevated to a special
status. An event occurs at a specific location and specific time, i.e., at a specific point
in spacetime. The proper time interval between two events is given by the “spacetime
interval.” For example, if a firecracker’s fuse is lit at (x1/c, t1) and the firecracker explodes
at (x2/c, t2), then a clock attached to the firecracker will record a proper time interval
∆t0 between the two events given by

(∆t0)
2 = (t2 − t1)

2 − (x2 − x1)
2

c2
= (∆t)2 − (∆x)2

c2
. (5.6)

This quantity, (∆t)2 − (∆x)2/c2, is called the spacetime interval.6 A clock tied to the
coordinate system will record a time interval ∆t (called coordinate time) and a space
interval ∆x between the two events. This definition is consistent with the muon experiment
above. A clock tied to the ground measures a coordinate time interval of 6.6 × 10−5 s
between muon creation and decay as well as a spatial distance of 20 km between the two
events. A clock attached to the muon, however, recorded a proper time interval of 2.2 µs
with no spatial displacement.

The relativistic factor γ

More information can be gleaned from Eq. (5.6) by noting that, if the muon is traveling at
a constant speed, which we are assuming, the coordinate distance it travels ∆x is simply
its speed v times the coordinate time interval ∆t. Replacing ∆x by v∆t in Eq. (5.6) and
rearranging to solve for ∆t gives7

∆t =
1√

1− v2

c2

∆t0 =
1√

1− β2
∆t0 ≡ γ ∆t0, (5.7)

6It is also common to denote (∆s)2 = (∆x)2− c2(∆t)2 as the spacetime interval. This differs from our
definition by a factor −c2, and thus has the same invariant character.

7This is the correct application of the constant velocity relation that we misapplied in Eq. (5.4).
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where γ is the relativistic factor introduced back in Chapter 1. This equation states the
general conclusion that stationary clocks observe moving particles to survive longer than
expected, which means that stationary clocks observe the moving clocks to “run slow.”
The moving clocks thus experience a time dilation.

With this result, and our determination from Eq. (5.5), we can deduce how fast the
muon was actually moving (relative to the ground). Since the muon’s lifetime must increase
by a factor of 30 in order to be observed at the ground, Eq. (5.7) states that this factor of
30 is nothing more than the relativistic factor γ. Setting γ = 30 and solving for β gives

β2 = 1− 1

γ2
= 1− 1

900
, or β ≈ 0.9994. (5.8)

Our typical cosmic ray muon therefore travels at 99.94% of the speed of light.

Inertial reference frames and the invariance of the interval

The spacetime interval between two events, as defined by Eq. (5.6), is a quantity that is
invariant. That is, all observers measure the same value for ∆t0, regardless of the fact that
they may measure different values for ∆t and ∆x. We have been talking about stationary
reference frames (e.g., the frame tied to the Earth) and moving reference frames (e.g., the
frame tied to the muon), but there really is no way to tell who is moving and who is not.
We could just as correctly take the muon as stationary and the Earth as moving. On the
other hand, it is possible to determine if a reference frame is accelerating, and this brings
us to another definition:

An inertial reference frame is one in which Newton’s first law holds true.

That is, when you perform an experiment in which you release an object at rest, if it
remains at rest then your reference frame is inertial. If, however, your object does not
remain at rest, but accelerates, then you might conclude that there is a mysterious force
acting on it (in accordance with Newton’s second law). Of course, there is no force, but
rather your reference frame is accelerating, and is therefore not inertial. A frame that is
moving at constant velocity is a natural choice for an inertial frame.8 If we now consider
two inertial reference frames that are in relative motion, and we investigate how each of
them measure events, we’ll find that the spacetime locations of events (i.e., positions and
times) will be different, but observers in the two frames will measure the same spacetime
interval between two events. That is, if there are two events, then one observer will
measure the coordinates (x1/c, t1) and (x2/c, t2) as before. But the other observer (who
is in what we will call the “primed frame”) measures the coordinates (x′1/c, t′1) and (x′2/c,
t′2). Although x1 6= x′1 in general, and the other coordinates will also have different values
in the two frames, it will always be true that

(∆t)2 − (∆x)2

c2
= (∆t′)2 − (∆x′)2

c2
. (5.9)

8Free fall in a gravitational field is also an inertial reference frame. But including gravity leads us into
the domain of general relativity, which is beyond the scope of this book.
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This invariance is very similar to the measurement of the distance between two spatial
locations using two different coordinate systems. While the x and y coordinates of the two
points as measured in the two systems will, in general, be different, the Euclidean distance
between the two points, ∆L, is invariant — measurements in any coordinate system will
give the same result

(∆L)2 = (∆x)2 + (∆y)2. (5.10)

Minkowski Spacetime

The minus sign in Eqs. (5.6) and (5.9) has far reaching consequences.
First, it indicates that instead of the Euclidean geometry of flat
space, spacetime is described by a hyperbolic geometry, also known as
Minkowski spacetime, after Hermann Minkowski (1864-1909).9 The fact
that time was now inextricably linked to space was poetically described
by Minkowski in 1908

The views of space and time which I wish to lay before
you have sprung from the soil of experimental physics, and
therein lies their strength. They are radical. Henceforth
space by itself, and time by itself, are doomed to fade away into mere shadows,
and only a kind of union of the two will preserve an independent reality.

Second, in the standard distance formula of Euclidean geometry, the plus sign implies
that the shortest distance between two points is a straight line. This can be proved by
integrating the differential form of Eq. (5.10)

dL =
√

(dx)2 + (dy)2 ⇒ L =
∫ 2

1

√√√√1 +

(
dy

dx

)2

dx. (5.11)

To actually evaluate L it is necessary to know y(x), the shape of the curve connecting the
two points. A technique from advanced calculus, called “calculus of variations,” can be
used to show that when y(x) is a straight line, then L is a minimum. Similar mathematical
steps can be used to show that the world line that joins two spacetime events with a
constant slope results in the largest proper time. That is, integrating the differential form
of Eq. (5.6) gives

dt0 =

√√√√(dt)2 −
(

dx2

c2

)
⇒ ∆t0 =

∫ 2

1

√√√√1−
(

1

c

dx

dt

)2

dt. (5.12)

Again, in order to evaluate the proper time interval ∆t0 that elapses on a clock traveling
from event 1 to event 2, the function x(t) must be known. The two integrals in Eqs. (5.11)
and (5.12) are not path independent. This property is investigated mathematically in
Problem 92 for a simple case where x(t) consists of piecewise straight line segments.
However, the fact that the largest elapsed proper time comes about when x(t) is a straight
line is a general result, and is shown graphically in Fig. 5.4. The “straight line” path

9Minkowski did not win a Nobel prize, but he probably would have had there been one in mathematics.
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Figure 5.4: The “straight line” path (A) between events 1 and 2 results in a longer elapsed
proper time than the curved path (B). That is, τA > τB. Any other path that appears to
denote a longer “distance” between 1 and 2 will result in an even shorter elapsed proper
time. From Scott and Burke, Special Relativity Primer.

between events 1 and 2 is indicative of a constant velocity, dx/dt = v, and results in a
proper time for which Eq. (5.12) can be easily integrated to obtain ∆t0 = ∆t/γ. Here, ∆t
is the elapsed coordinate time, and this result confirms what we have already deduced in
Eq. (5.7).

5.2 Length contraction

An unescapable conclusion that is intimately connected to time dilation is the fact that
objects are measured to be shorter when they are moving with respect to the measuring
reference frame. Let’s take the example of the cosmic ray muon again. In the rest frame of
the Earth, the distance between the ground and the height at which the muon is created
is 20 km. However, in the reference frame of the muon, the Earth is moving while the
muon is stationary. In addition, the muon lives for only 2.2 µs, which means that even if
the Earth is moving at close to the speed of light (from the muon’s point of view) only
660 m will have passed by in those 2.2 µs — this is the same calculation as in Eq. (5.4).
Therefore, the 20 km object (the atmosphere) must have contracted to 660 m, again from
the muon’s point of view.

More rigorously, Newton would say that since the muon’s lifetime is ∆t0 it must travel
a distance v∆t0. On the other hand, Einstein would say that moving clocks run slow,
so that the muon travels a distance v∆t = vγ∆t0 > v∆t0. In other words, the distance
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traveled by the muon — measured in the Earth’s frame — is10

∆x = γv∆t0, (5.13)

which is 20 km. From the muon’s point of view the Earth is moving at speed v, which
means that the distance the Earth has traveled is v∆t0 = ∆x/γ < ∆x. This means that
the muon thinks that the distance from the top of the atmosphere to the ground is only
660 m, and therefore it is possible for it to cover that distance in only 2.2 µs.

How to measure lengths

How do you actually measure the length of a moving object? Before we consider this
problem, we need to decide how to measure the length of a stationary object. Consider a
rod that is at rest in a particular coordinate system. You can mark the location at one
end of the rod with an event in spacetime (position and time), and then wander over to
the other end of the rod and do the same. But because the rod is at rest, there is no time
dilation, which means that the spatial distance between the two events will not depend on
the temporal distance between the two events. This length that you have just measured
is called the proper length, L0.

The proper length of an object is the length measured in a reference frame in
which the object is at rest.

How do you measure the length of a moving rod? In this case, you don’t have the
luxury of marking the position at one end of the rod, and then wandering over to mark
the position of the other end of the rod at a later time. The rod has moved in the time
between the two events, so the distance you have measured is not the length of the rod. To
account for this motion, there are two methods that can be used. First, you can measure
the positions of the two ends of the rod at the same time. This means that you need a
partner to mark the location of one end while you mark the location of the other. However,
the two events, while they are simultaneous in your frame, they are not simultaneous in
the frame that is moving with the rod.11 To relate your length measurement, L, to the
proper length, L0, therefore, requires a transformation from your frame to the moving
frame. This transformation is called the Lorentz transformation, and a correct analysis of
this measurement method must wait until Section 5.3.2.

The second method is to remain at one location and mark the two times at which the
two ends of the moving rod pass your location, and then multiply by the relative velocity
of the two frames. This method requires the use of the invariance of the spacetime interval
as stated in Eq. (5.9). The two events of interest are event A, when the front end of the

10This can also be obtained directly from the invariance of the spacetime interval. Replacing ∆t in
Eq. (5.6) with ∆x/v results in

(∆t0)2 =
(∆x)2

v2

(
1− v2

c2

)

which can be rearranged to give Eq. (5.13).
11As we will see below, the simultaneity of events depends on which reference frame is making the

observation.
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rod passes you at t = tA, and event B, when the back end of the rod passes you at t = tB.
The spatial distance between the two events is, of course, ∆x = 0 (they occur at the
same spatial location), and the temporal distance (what you measure with your clock) is
∆t = tB − tA. By definition,

∆t =
L

v
. (5.14)

What about the same quantities as measured by an observer traveling with the rod? Of
course, the spatial distance is just the proper length, ∆x′ = L0, because that observer
does not care how much time passes between the two events, and the temporal distance
in that moving frame, ∆t′, is the length of the rod (this time the proper length) divided
by the relative velocity, ∆t′ = L0/v. Inserting these values into Eq. (5.9) gives

(
L

v

)2

− 02 =
(

L0

v

)2

− L2
0

c2
, (5.15)

and solving for L gives

L2 = L2
0

(
1− v2

c2

)
or L =

L0

γ
. (5.16)

Since γ > 1, the length you measure is always less than the proper length. The rod’s length
has contracted. For the muon, the proper length of the distance it travels is L0 = 20 km,
but its relativistic factor is γ = 30 so that the muon perceives the distance traveled as
L = 660 m.

Which observer is correct? The muon or the one tied to the Earth? They both are
correct! Each observer records a set of internally consistent measurements, and possessing
a knowledge of only those measurements would give neither observer cause for alarm.
There is absolutely nothing strange when observers look only at their own measurements.
It is only when two observers, in two different inertial reference frames, compare their
measurements do they realize that they have obtained different values for the temporal and
spatial intervals between events. A closer look reveals, however, that they still measure the
same value for the spacetime interval. To understand their results and how they differ,
and to be able to predict the measurements of other observers, a knowledge of how to
transform the results is needed.

5.3 Transformations between reference frames

A transformation between two coordinate systems, or reference frames, is simply a relation
between the position and time coordinates of an event as measured by observers in the two
frames using the two different coordinate systems. The form of the transformation is de-
termined by the geometry of the space and time in which the measurements are made. The
Galilean, or Newtonian, transformation assumes that both time and space are absolute.
In addition, it is assumed that space itself is flat, or Euclidean. At speeds small compared
to the speed of light, this is approximately true, and since c is so large compared with
everyday motion, it is not surprising that Galileo and Newton obtained this approximation
to the correct transformation, called the “Lorentz transformation.” Because the method



5.3. TRANSFORMATIONS BETWEEN REFERENCE FRAMES 139

Figure 5.5: Geometry of a transformation between two inertial coordinate systems. Ref-
erence frame O is stationary, while reference frame O′ moves with speed u (relative to O)
in the positive x direction. At t = t′ = 0 both origins coincide, the y and y′ directions are
the same, and the z and z′ directions are the same. In the figure, the z and z′ axes are
suppressed for clarity.

of obtaining the transformation equations is identical for both Galileo and Lorentz, I will
develop the Galilean transformation in some detail so that any assumptions we make are
clearly stated. Then, when I derive the Lorentz transformation equations, some of those
assumptions will have to be modified, but the method will be exactly the same.

5.3.1 Galilean transformation

If two different observers measure the spatial location and the time of the same event, it is
useful to know how the measurements of the two observers compare. That is, how can we
transform the quantitative results of one observer to obtain those of the second observer?
Galileo and Newton asked this question, and they were able to answer it in the following
manner.

Galileo developed his understanding through his study of projectiles in the uniform
gravitational field near the Earth’s surface. He realized that any trajectory was parabolic,
and, more important, that the horizontal and vertical motions were independent. This
meant that if one observer saw a parabola, another observer, moving with the same (con-
stant) horizontal velocity of the projectile, would see the projectile simply rise and fall, as
if it had initially been thrown straight upward.

Consider Fig. 5.5, where and event P takes place at a specific position and time. An
observer in the unprimed frame O (sometimes called the “lab frame”) measures the event
to take place at (x, y, z) and time t. An observer in the primed frame O′ (sometimes called
the moving frame or the “rocket frame,” which is moving with speed u in the positive x
direction relative to the lab frame12) measures the same event at (x′, y′, z′) and time t′.
Both of these reference frames are intertial. How are the sets of coordinates related? The

12I use u for the relative speed of the two frames because the point P may be moving, and its speed
will be denoted by v and v′ as measured by observers in the two frames.
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first, and most fundamental underlying idea is that

t = t′. (5.17)

This relation means that time is absolute — all observers, regardless of their frame of
reference, experience the same time. As Newton put it

Absolute, true and mathematical time, of itself, and by its own nature, flows
uniformly on, without regard to anything external...13

This proposition, which seems obvious, turns out not to be true, which we have discovered
by measuring muon lifetimes. The second relation, also obvious, is that the coordinates
perpendicular to the relative motion of the two coordinate systems are equal

y = y′ (5.18)

z = z′. (5.19)

This will also be true relativistically, and can be shown quite easily by having someone in
the O′ frame drag a piece of chalk along a wall that is stationary in the O frame. This
line on the wall must be the same distance from the x axis that the chalk is from the x′

axis.
Finally, what about the x and x′ coordinates? Since x′ is the distance between the

y′ axis and point P (at time t′), and the distance between the y and y′ axes increases
uniformly with time, it must be true that

x = x′ + ut′. (5.20)

This just expresses the fundamental notion that the total length of a straight line is the sum
of the lengths of the segments that make up the line. Of course, we could write x = x′+ut
since t = t′ by Eq. (5.17), but Eqs. (5.17)–(5.20) take the form of a transformation, in
which the unprimed variables (x, y, z, t) are expressed as function of the primed variables
(x′, y′, z′, t′). In this way, knowing the space and time coordinates of an event as measured
in one coordinate system, we can predict the coordinates of the same event as measured
in another coordinate system.

How do velocities of objects, as measured by the two observers, transform? We should
obtain, of course, the “relative velocity” formula that you have learned in elementary
mechanics. If point P labels the position of an object that happens to be moving, then we
can take its position as a function to time to be a series of events, each with a spatial and
temporal location in each frame of reference. If, for example, the velocity components are
known in O′, then the Galilean transformation equations can be differentiated to give the
velocity components in the O frame.

To show how this works, let’s differentiate Eq. (5.18) with respect to t. This, of course,
will give us the y-component of velocity in the O frame

dy

dt
=

dy′

dt
=

dy′

dt′
, (5.21)

13Newton, Principia, 1687.
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where the second equality holds because time is absolute. The left-hand-side of Eq. (5.21)
is the definition of vy, and the right-hand-side is the definition of v′y. A similar analysis
results in vz = v′z.

The x component of velocity is slightly trickier. Equation (5.20) differentiated gives

dx

dt
=

dx′

dt
+

d

dt
(ut′) =

dx′

dt′
+ u, (5.22)

where again, absolute time has been invoked. This last result can be written more concisely

vx = v′x + u, (5.23)

which is nothing but the relative velocity formula.
The final transformation is that of the accelerations. Because the relative velocity of

the two frames u is not a function of time, the accelerations are identical. A time derivative
of Eq. (5.23) gives

ax = a′x, (5.24)

with a similar transformation for the other coordinates. Since the accelerations are the
same, and the force on an object is the same, then Newton’s second law takes the same
form in all inertial reference frames! This is just Einstein’s Principle of Relativity.

5.3.2 Lorentz transformation

How did Lorentz develop his transformation? Why was he unhappy with the Galilean
transformation? Because, although Eqs. (5.17)–(5.20) correctly showed that Newton’s laws
had the same form in all reference frames, when he applied the Galilean transformation to
Maxwell’s equations of electrodynamics, the form of Maxwell’s equations were modified,
which was not in accordance with Einstein’s Principle of Relativity. Even before Einstein’s
work in 1905, therefore, it was realized that Newton’s laws of dynamics were not consistent
with Maxwell’s equations. So Lorentz developed a transformation between two coordinate
frames that were moving at a constant velocity relative to each other, with the requirement
that the form of Maxwell’s equations was invariant (a slightly different requirement than
the Galilean transformation). In other words, Lorentz proved a “theorem of corresponding

states.”14 This theorem says that if ~E and ~B are the electromagnetic fields in a coordinate
system (~x, t) that is at rest relative to the ether, then in a second coordinate system (~x′,
t′) moving with velocity ~u relative to the first, then, to first order in u/c, ~E ′ and ~B′ are

the same functions of (~x′, t′) as ~E and ~B are of (~x, t), if the coordinates transform as
Eqs. (5.25) and (5.26), below.

What is the ether? It was believed that electromagnetic waves must propagate in
some medium — just like sound waves propagate in a gas or solid — and that medium
was called the “luminiferous æther,” or ether for short. The ether was supposed to be at
rest with respect to Newton’s absolute space, and it was thought that its existence allowed
a measurement of the absolute velocity of light — with respect to the ether. However,
Einstein showed in 1905 that it was possible to understand the Lorentz transformation in

14Pais, Subtle is the Lord, page 124.
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a “relative” manner, such that the speed of light was constant in all reference frames, and
no ether was required.

A simple method to obtain the Lorentz transformation is to assume a linear transfor-
mation between the primed and unprimed coordinates. The correct transformation might
not be linear, but one should always make the simplest attempt first. The simplest “guess”
is therefore

x

c
= A

x′

c
+ B t′ (5.25)

t = C
x′

c
+ D t′, (5.26)

and our task is to determine A, B, C, and D. Of course, Eqs. (5.18) and (5.19) must still
hold due to the chalk-on-the-wall argument. In addition, we require that in the limit of
low speeds, i.e., when u/c → 0, the Lorentz transformation should be approximated by
the Galilean transformation in Eqs. (5.17) and (5.20).

We can obtain B and D from the muon thought experiment by assuming that the muon
remains at the origin (at rest, of course) of the primed frame, O′. Further mathematical
simplification occurs if the muon is created at time t = t′ = 0, when the two origins are
co-located. This makes the coordinates of event 1 (muon creation)

x1 = 0 x′1 = 0
t1 = 0 t′1 = 0

(5.27)

The coordinates of event 2 (muon decay) are, and I’ll leave off the subscript 2 in the
interest of notational simplicity,

x′ = 0 (5.28)

t′ = t0 = 2.2 µs, (5.29)

because in its own frame, the muon doesn’t move and lives for 2.2 µs. What about the
coordinates of event 2 in the unprimed frame? The time, as we discovered above, is
dilated,15 t = γrt

′, and the position is simply the position of the origin O′ after a time t:
x = ut = uγrt

′, or
x

c
= βr γr t′, (5.30)

where

γr ≡ 1√
1− β2

r

and βr ≡ u

c
, (5.31)

are the usual relativistic quantities for the relative velocity of the two frames. These two
facts mean that

B = βr γr (5.32)

D = γr. (5.33)

15Recall that we used the invariant interval to get

t′2 = t2 − x2

c2
= t2 − u2

c2
t2 =

t2

γ2
r

.



5.3. TRANSFORMATIONS BETWEEN REFERENCE FRAMES 143

What about A and C? The muon thought experiment doesn’t give us any information
because x′ = 0 for all time, so the coefficients of x′ can take on any values and the
transformation in Eqs. (5.25) and (5.26) will still correctly describe the muon creation
and decay. One way to determine A and C is to enforce the invariance of the interval.
(Remember, the fact that the interval is invariant is an experimental fact, so it must be
true.) Starting with the partially complete transformation equations that we have just
determined

x

c
= A

x′

c
+ βr γr t′ (5.34)

t = C
x′

c
+ γr t′, (5.35)

we can insert these expressions into the right-hand-side of

t′2 − x′2

c2
= t2 − x2

c2
. (5.36)

Note that this is identical to Eq. (5.9) since the coordinate values for event 1 are all zero.
The final step is to require that the coefficients of both x′ and t′ match (see Problem 95).
The final result is the complete Lorentz transformation

x

c
= γr

x′

c
+ βr γr t′ (5.37)

t = βr γr
x′

c
+ γr t′. (5.38)

A final check is to make sure that these reduce to the Galilean transformation in the
limit of small velocities. Approximating the relativistic factor by γr ≈ 1 + β2

r/2, and
keeping terms of order βr or smaller, Eqs. (5.37) and (5.38) become

x

c
≈ x′

c
+

ut′

c
(5.39)

t ≈ ux′

c2
+ t′. (5.40)

The first equation is identical to Eq. (5.20), but the second equation has an extra term.
What has happened? Is the small velocity limit incorrect? No, because we can show
that ux′/c2 is actually of order β2 (and therefore should be ignored) in the following way.
The position x′ (if the object is moving slow compared with the speed of light) can be
approximated by x′ ≈ v′xt

′, where v′x is its speed as measured in the primed frame. Using
this replacement, Eq. (5.40) can be written

t ≈ t′
(

1 +
uv′x
c2

)
= t′ (1 + βrβ

′
x) ≈ t′, (5.41)

where β′x ≡ v′x/c. Since the second term has two powers of velocity, βrβ
′
x, it is of order β2,

as claimed. (Notice that the notation has become more cumbersome, but it is necessary
because there are several velocities that must be distinguished.)
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Figure 5.6: The spacetime diagram depicting the twin paradox. Paul’s world line is just
the t axis — he remains at the origin. Peter’s world line consists of two segments, each
inclined at an angle θ with the t axis, where tan θ = v/c = 0.96, or θ = 43.83◦.

5.4 Paradoxes

There are several situations in which the special relativistic result appears initially incor-
rect or inconsistent. A closer look, however, reveals that there is no inconsistency, and
that the relativistic result is correct and can be confirmed by experiment.

5.4.1 The twin paradox

The twin paradox is usually stated as follows:

On their twenty-first birthday, Peter leaves his twin Paul behind on the earth
and goes off in the x direction for seven years of his time at (24/25) = 0.96 the
speed of light, then reverses direction and in another seven years of his time
returns at the same speed. (a) What is Peter’s age on his return? (answer: 35
years) (b) How old is Paul at the moment of reunion? (answer: 71 years)

When Peter returned from his fourteen years of traveling he was still young
enough to learn some relativity. But the more he studied the more puzzled he
became. He and his brother Paul, being in relative motion, “each should see the
other’s clocks running slow.” This simple slogan, put in Paul’s mouth, made
it easy enough to understand why Peter’s clocks—and Peter’s aging process—
ran slow, so that Peter was the younger of the two on his return. “But if the
slogan is valid,” Peter asked. “then would not I—if I had investigated—have
found Paul’s clocks running slow? So how did he age more than I?” What is
the way out of Peter’s difficulties?16

16Taylor and Wheeler, Spacetime Physics, pages 71, 94.
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Figure 5.6 shows the world lines for both Peter and Paul. The seeming paradox is resolved
by noting that the world lines of the two twins are not identical. In fact, in this inertial
reference frame, Paul’s world line is straight, while Peter’s world line is curved. Given
that they start and end at the same spacetime location, it’s a direct consequence of the
hyperbolic geometry that the clock which traveled the straight line (Paul’s) recorded the
greatest elapsed time. (See the discussion on page 135.) Another way of “proving” that
Peter was the twin that left and came back is the fact that he must have accelerated.
As we have already discussed, it is trivial to decide if your reference frame is accelerating
or not. The fact that Peter accelerated means that his inertial reference frame on the
outbound trip was different from his inertial reference frame on the inbound trip. Finally,
besides the observations of cosmic ray muons, there is concrete experimental verification
of this resolution of the paradox: clocks have been flown around the Earth, traveling fast
by terrestrial standards, but slow compared with the speed of light, and their elapsed time
has been compared with stationary clocks. Result: the moving clocks run slow.

Let’s analyze the twins’ aging mathematically using our knowledge of time dilation
and length contraction effects. (A similar case is in Problem 92.) Peter’s age is quite
simple, since the problem states that he travels for a total of 14 years of his time. This
means he must have aged 14 years and so is 35 years upon his return. Paul’s age is slightly
trickier. The 14 years that Peter’s clock measured we can take to be the “proper time”
of the journey. Peter thus acts like the cosmic ray muon, traveling at 96% of the speed of
light. It is necessary first to calculate the relativistic factor γ for Peter. Since β = 24/25,
you can show that γ = 25/7 ≈ 3.57.17 Equation (5.7) then tells us how the coordinate
time t compares with the proper time t0

∆t = γ ∆t0 =
25

7
14 years = 50 years. (5.42)

Therefore Paul is 71 years old.
What is the distance that Peter traveled? From Paul’s point of view — Paul is in the

“stationary” reference frame, so he measures the proper length — his brother traveled

∆x

c
=

L0

c
=

u∆t

c
=

24

25
× 25 years = 24 years (5.43)

each way for a total of 48 years. Or, converting to meters gives 2.27 × 1017 m each way.
How far did Paul think he traveled? Since Paul was moving past the ‘object,’ he saw
it length-contracted by a factor γ, which means that he thought his trip distance was
L/c = L0/cγ = 24 years(7/25) = 6.72 years, or 6.35 × 1016 m each way. This is just like
the muon that observed the 20-km distance between the top of the atmosphere and the
ground to contract to 660 m.

Can this twin paradox analysis be applied to astronauts on the Space Shuttle or the
ISS? Do those astronauts (since they are accelerating, they take the place of Peter in our
story) age more slowly that their friends they left behind on Earth? Yes, but by how
much? Assuming they are in LEO (low Earth orbit, altitude ≈ 300 km), their speed
(relative to the Earth) is 7.7×103 m/s. This gives them β = 2.58×10−5 and a relativistic

17I have used the fact that a 7-24-25 triangle is a right triangle.
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Figure 5.7: The geometry of Einstein’s simultaneity Gedanken experiment.

factor of γ = 1 + 3.32× 10−10. The time dilation effect means that their clocks run more
slowly than clocks on Earth by this factor, or, for a mission of 1 year, the astronaut ‘twin’
is younger by 10 ms!18 (See Problem 98.)

5.4.2 Einstein’s Gedanken experiment on simultaneity

One of the perplexing new truths of special relativity is the fact that events that are
simultaneous is one frame of reference are not simultaneous in another frame. This, of
course, cuts at the heart of Newton’s concept of absolute time. If there truly is a cosmic
timekeeper, making sure that time everywhere in the universe flows “uniformly on,” then
any event should be observed simultaneously by all observers. However, the fact that the
speed of light is not infinite, but finite (albeit large), implies directly that information
takes a finite amount of time to propagate from the event to the observer. Since each
observer is a different distance from the event, and perhaps moving relative to the event
as well, they each will observe that the event occurred at a different time. If there are two
events, they may be simultaneous for some observers and distinct for others.

In 1917, Einstein developed a Gedanken experiment that explored and elucidated this
strange notion of non-simultaneity. He envisioned a train moving to the right with speed
u, with three men riding on the train, one at the front (point B), one at the rear (point A),
and one in the middle. There is also a man on the train platform (i.e., in a “stationary”
frame of reference). He then asked the following question

Are two events which are simultaneous with reference to the railway embank-
ment [platform] also simultaneous relatively to the train? We shall show di-
rectly that the answer must be in the negative.19

The specific event geometry is as follows (see Fig. 5.7): The two men at A and B flash
lights toward the center of the train. At the instant that the man at the center of the
train (the origin of the O′ coordinate system) passes the man on the platform (the origin
of the O coordinate system), the two flashes of light reach both men. Since by definition
that is the origin of both time coordinates also, it means that at t = t′ = 0 the two flashes
of light arrive at O and O′ from A and B.

Who emitted their signal first, A or B?
The answer depends on who you ask. From the point of view of the man on the train,

in the O′ frame, everyone is at rest, A and B are equidistant and therefore they emitted

18I used the approximation γ ≈ 1 + β2/2 and γ−1 ≈ 1− β2/2, where β2/2 = 3.32× 10−10. Multiplying
this by 1 year ≈ π × 107 s gives 10 ms.

19Einstein, Relativity, page 25. The italics are Einstein’s.
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Figure 5.8: The two spacetime diagrams depicting the train and light rays from both
reference frames. (a) The moving frame O′ In this frame, the emission of the light rays
is simultaneous. (b) The stationary frame O. Here, A and B label the world lines of the
ends of the train, and O′ labels the world line of the center of the train. In this frame, the
man at the rear of the train (A) emits his flash of light before the man at the front of the
train (B).

the light simultaneously. From the point of view of the man on the platform, in the O
frame, the flashes must have been emitted before O′ reached O, and since at that time B
was closer to O than A was, A must have sent the signal first.20

Who really emitted their signal first?
The Newtonian worldview states that there is a reality that is independent of any

observation, so regardless of the fact that different observers make different measurements,
there must be a way to definitively state what the reality of the situation is. Unfortunately,
there is not. As Comstock states

We are, therefore, forced to the conclusion that, unless we discard one of
the two relativity postulates, the simultaneity of two distant events means a
different thing to two different observers if they are moving with respect to
each other.21

We can solve this problem quantitatively with the tools we now have at our disposal.
Figure 5.8(a) shows the spacetime diagram as viewed in the O′ frame. The light signals
meet at (0, 0), and since they must have traveled along the past light cone from points
that were equidistant, they were emitted at the same time

t′A = −L0

2c
t′B = −L0

2c
, (5.44)

where L0 is the proper length of the train, and A and B denote the times that the
flashed were emitted by the two sources. What about the observer on the ground? Figure
5.8(b) depicts the situation from his point of view. As can be seen graphically, A indeed

20An observer in a third frame of reference, O′′, moving to the right faster than the train would conclude
that B sent his signal first.

21D. H. Comstock, “The principle of relativity,” Nature 31, 767-772 (1910).
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emitted his signal first. By how much? Since we know the coordinates of each of the
events (emission of light signals) in the O′ frame, we can use the Lorentz transformation
equations to calculate the coordinates of those same two events in the O frame.

Emission of light by A: The coordinates of this event in the primed frame are t′ =
−L0/2c, x′/c = −L0/2c. Of course they are identical because they are on a line that
passes through the origin O′ and has a slope of 1. The Lorentz transformation gives

x

c
= γr

(
−L0

2c

)
+ βr γr

(
−L0

2c

)
=

(
−L0

2c

)
γr(1 + βr) (5.45)

t = βr γr

(
−L0

2c

)
+ γr

(
−L0

2c

)
=

(
−L0

2c

)
γr(1 + βr). (5.46)

Of course they have the same values for the same reason as the other reference frame.
Most important, however, is the fact that the quantity γr(1 + βr) is greater than unity
(when u > 0), and it is equal to unity when u = 0. The proof is straightforward since
γr ≥ 1 and βr ≥ 0. This means that it always takes longer for the flash from A to arrive
for the man on the platform than it does for the man on the train.

Emission of light by B: Using the coordinates of this event in the primed frame,
t′ = −L0/2c, x′/c = L0/2c, gives the time of this event in the unprimed frame as

t =
(
−L0

2c

)
γr(1− βr). (5.47)

You can show (Problem 104) that the factor γr(1 − βr) ≤ 1, the equality holding when
u = 0, as before. Our final result, therefore, is that the time difference between the
emission of the flashed from A and B as viewed by the man on the platform is

∆tAB =
(

L0

c

)
γrβr > 0, (5.48)

which is positive definite. The man on the platform always thinks A emitted the flash
first.

This result can be obtained in another, slightly more elegant manner. The Lorentz
transformation equations are not just valid for coordinates of an event, they are also valid
for intervals between events. In particular, for this interval between the flashes of light we
have from the time equation, Eq. (5.38),

∆t = γr∆t′ + γrβr
∆x′

c
. (5.49)

Since the observer on the train sees the flashes to be simultaneous, ∆t′ = 0, and the
spatial separation to be just the proper length of the train, ∆x′ = L0, the transformation
equation gives the same result as Eq. (5.48), ∆tAB = L0γrβr/c.
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5.5 Addition of velocities

One of the most profound consequence of special relativity is that no object with a nonzero
mass can travel faster than (or even at) the speed of light c. Most important, this result
is independent of the frame of reference! Specifically, it means that velocities can not
add the way Galileo thought they should — Eq. (5.23). That equation states that if you
are in a “stationary” frame of reference, standing on the side of the highway, for example,
watching your friend drive by (in a moving frame of reference) at speed u = 60 mph, and if
your friend throws a ball forward at speed v′x = 10 mph (relative to the car), then you will
observe the ball traveling at a speed vx = 70 mph (relative to the ground). That statement
(that velocities just add) is so patently obvious it is no wonder that Galileo believed it to
be true. It turns out, though, that if you measure carefully, you will observe the speed
of the ball to be slightly less than 70 mph. If we take our example to the extreme and
consider the situation where your friend’s relative speed is 0.9c, and he throws the ball at
0.9c forward, it can’t be true that you observe the ball traveling at 1.8c.

To determine the correct relative velocity formula we must differentiate the Lorentz
transformation Eqs. (5.37) and (5.38) in the same manner that we did with the Galilean
transformation in order to obtain Eq. (5.23). The differentiation process is a little bit
trickier this time, since time is not absolute. The velocities in the two frames are defined
as

vx ≡ dx

dt
and v′x ≡

dx′

dt′
, (5.50)

where v′x must be a derivative of x′ with respect to t′. That is, to determine the velocity
of an object as measured in a particular frame, the time in that frame must be used, and
Eq. (5.38) shows that t 6= t′ The simplest method is to differentiate Eq. (5.37) with respect
to t′

1

c

dx

dt′
=

γr

c

dx′

dt′
+ βrγr =

γr

c
v′x + βrγr. (5.51)

The left-hand-side is not vx because the derivative is with respect to t′, not t. However,
we can use the chain rule to obtain

vx =
dx

dt
=

dx

dt′
dt′

dt
, or

dt

dt′
vx =

dx

dt′
, (5.52)

which means that we need to evaluate dt/dt′, which is the derivative of Eq. (5.38)

dt

dt′
=

βrγr

c

dx′

dt′
+ γr =

βrγr

c
v′x + γr. (5.53)

Now, inserting Eqs. (5.51) into the second form of the right-hand-side of Eq. (5.52), and
(5.53) into the left-hand-side, gives

βx

(
βrγr

c
v′x + γr

)
=

γr

c
v′x + βrγr, (5.54)

where βx = vx/c. Dividing by γr, solving for βx and simplifying results in

βx =
βr + β′x
1 + βrβ′x

, (5.55)
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where β′x = v′x/c. Multiplying through by a factor of c gives a more familiar result

vx =
u + v′x
1 + uv′x

c2

. (5.56)

Now the logic is clear: if both speeds, u and v′x, are small compared with c, then the
denominator is approximately unity, and the velocities add in a Galilean manner. However,
as the speeds increase and become a sizable fraction of c, the extra term in the denominator
keeps the “sum” from exceeding c. For example, if βr = 0.5 and β′x = 0.5 (your friend
is driving at half the speed of light and throws a ball at half the speed of light) then the
speed of the ball as observed by you is only 0.8c. Another important example is that if
your friend “throws a photon,” which means v′x = c, then no matter what the value of u
is, Eq. (5.56) gives vx = c (you should show this). Photons travel at the speed of light as
measured by any observer, confirming Einstein’s second postulate.

5.6 Relativistic dynamics

In the preceding sections, we have focused on constant velocity kinematics. In that re-
stricted case, when you are measuring phenomena in your own reference frame, e.g., veloc-
ities of particles, you don’t see any relativistic effects. However, we have seen that when
comparing your measurements of length and time with those of an observer in another
reference frame you will detect that something is amiss. Each of you will conclude that the
same laws of physics apply, but not agree on the detailed distances and times. However,
we have not yet determined the form of those laws. They can’t be the ones we are familiar
with (i.e., ~F = m~a) because we have just shown that particles can’t travel faster than c,

and ~F = m~a implies that by applying a constant force to a particle we should be able to
accelerate it to any velocity whatsoever (if we apply the force for a long enough time).
But we know that is incorrect. So we must use the relativistically correct laws.

It turns out that the familiar form of Newton’s 2nd Law, ~F = m~a does not hold
relativistically. The relativistically correct form is the one in which Newton first stated it

~F =
d~p

dt
(5.57)

where

~p = γm~v. (5.58)

Why is this definition of momentum the correct definition? Because we still require that
momentum must be conserved. If you analyze high velocity collisions between particles,
the requirement of momentum conservation will lead you to Eq. (5.58). Some authors
define a “relativistic mass” to equal to γm, where m is the “rest mass.” This implies
that the mass of an object increases as its speed increases. Currently, however, the more
rigorous viewpoint is that the mass m is an invariant property of a particle, and that it is
simply the momentum that increases as the speed increases so that it takes a larger and
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larger force to change a particle’s momentum (as its speed becomes close to the speed of
light).22

What about energy? You would think (and you’d be correct) that we should require
that energy still be conserved, too. For this to be true, the energy of a particle must take
the form

E = γmc2. (5.59)

This is the total energy, kinetic plus rest, E = E0 + K, where E0 = mc2 is the rest energy
of the particle, as we’ve seen many times before. (See Problem 101 for a proof.)

Actually, there is another requirement that both the energy and momentum must
satisfy (besides conservation), and that is they must reduce to the nonrelativistic forms
when v ¿ c. Since γ → 1 in that limit, it is clear that ~p → m~v in the low-velocity limit.
If we let γ = 1 in Eq. (5.59), we would obtain simply E = E0. This is, of course, true
when v = 0, but what if v is small, but not zero? As we saw in Chapter 1, we can expand
γ for small values of β,

γ =
(
1− β2

)−1/2 ≈ 1 +
β2

2
. (5.60)

Therefore, the total energy is approximately

E ≈
(

1 +
β2

2

)
mc2 = mc2 +

1

2
mv2 (5.61)

which is just the rest energy plus the (nonrelativistic) kinetic energy.
In contrast with elementary mechanics, where the mass and velocity of a particle are

considered to be the fundamental quantities (from which the energy and momentum can
be calculated), the fundamental quantities describing a particle in relativistic dynamics
are its total energy E and its momentum ~p. As we derived in Chapter 1, the relationship
between the energy and the momentum obtained from their definitions is

E2 = (pc)2 + (mc2)2. (5.62)

In the nonrelativistic limit, pc ¿ mc2, the energy can be approximated as

E =
√

(pc)2 + (mc2)2 = mc2

√
1 +

(
p

mc

)2

≈ mc2 +
p2

2m
. (5.63)

We now have three nonrelativistic approximations that are all essentially equivalent. The
first is that of low speed, v ¿ c; the second is low kinetic energy, K ¿ E0, and the last is
low momentum, p ¿ mc.

In the ultrarelativistic regime, on the other hand (large kinetic energy and large mo-
mentum), the energy of a particle can be approximated as

E ≈ pc. (5.64)

For photons, of course, this is an exact equality, E = pc, not just an approximation, since
photons have zero rest mass. Even though they have zero rest mass, they do have energy
and momentum.23

22See L. B. Okun, “The concept of mass,” Phys. Today, 42, 31-36 (June 1989), for a more complete
discussion.

23Recall the discussion in Chapter 4 regarding the wavelength and frequency of light, and their relation
to a photon’s energy and momentum.
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Kaon decay

The classic situation in which the conservation of relativistic energy and momentum must
be applied is that of Compton scattering, described in App. H. There, a photon interacts
with a free electron, and one way of explaining the experimental results is to assume that
the photon is a massless particle with energy E = hν, and since it is ultrarelativistic,
it has momentum p = E/c. The experiment is not consistent with the picture of an
electromagnetic wave interacting with a classical electron. (However, see the discussion
at the end of App. E concerning what minimum assumptions are needed to predict the
experimental results.)

Another process which illustrates the necessity of the relativistic conservation equations
is that of kaon decay. A neutral kaon K0 is a heavy meson (E0 = 498 MeV) that decays
into two pions24 with a mean lifetime of 9× 10−11 s

K0 → π+ + π−. (5.65)

The rest energies of the pions are 140 MeV each, so that in the frame of reference in which
the kaon is at rest, the reaction energy of the decay is Q = 218 MeV.
In this frame, the momentum of the kaon is zero, so that the total
momentum of the pions must also be zero: they travel away from the
location of the decay with equal kinetic energies (K = 109 MeV each)
and oppositely directed momenta.

The laboratory is not usually in this reference frame, however, since
the kaon is typically the result of another interaction and therefore
is moving when it decays. (The figure to the right shows a bubble
chamber with tracks of various particles. Since the K0 is neutral it
does not ionize particles in the chamber and hence leaves no track, but
its existence is inferred from the presence of the two pions.) To illustrate
how either frame can be used to analyze such a decay, let’s consider
the situation where a kaon has 325 MeV of kinetic energy. This value
is chosen because it is neither nonrelativistic nor ultrarelativistic, and
no approximations can be made. The full relativistic expressions must
be used. (See Problem 60 in Chapter 3 for a nonrelativistic version of
this problem.)

Laboratory frame: Without any loss of generality, let’s take the kaon’s velocity to be in
the positive x direction. To make the analysis simple, we’ll assume that the resulting pions
also move in the x direction (allowing them to have a nonzero y component of velocity is
only slightly more difficult algebraically). Referring to Fig. 5.9, the K0 has an energy E
and momentum p, while the resulting pions π± have energy and momenta E± and p±.

The first step is to analyze the motion of the kaon. Its relativistic factor is

γ =
E

E0

=
823 MeV

498 MeV
= 1.65 (5.66)

24The neutral kaon is a linear combination of the quark–anti-quark pairs ds̄ and sd̄. The combination
I’m discussing here is called “K-short,” because its lifetime is short. Another combination, “K-long,”
typically decays into three pions with a mean lifetime of 5× 10−8 s.
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Figure 5.9: Schematic of the kaon decay in the laboratory frame. On the left is the
situation before the decay, where the K0 is traveling to the right with an energy E and
momentum p. On the right are the particles after the decay, with the pions also moving
in the x direction with energies E± and momenta p±.

and hence its speed is β = 0.796. We know its total energy E = E0 + K = 823 MeV, but
its momentum must be obtained from Eq. (5.62)

pc =
√

E2 − (Mc2)2 = 655 MeV, (5.67)

where Mc2 = 498 MeV.
The next step, just like in elementary mechanics, is to apply the conservation laws and

obtain the pion energies and momenta. Since the reaction is one dimensional, there is
only one component of momentum to worry about, and hence there are two conservation
equations

E = E+ + E− (5.68a)

pc = p+c + p−c. (5.68b)

It appears that there are four unknowns, E± and p±, but the energy and momentum of
each the pions are related by Eq. (5.62), which gives us two more equations. Expressing
the energies in terms of their respective momenta allows us to replace Eq. (5.68a) with

E =
√

p2
+c2 + (mc2)2 +

√
p2−c2 + (mc2)2 (5.69)

where mc2 = 140 MeV. The simplest way to solve these two equations for the two un-
knowns, p±, is to solve Eq. (5.68b) for p+ and substitute that into Eq. (5.69). Solving
then for p− results in the quadratic equation for p−c (see Problem 105)

(p−c)2 − (pc)(p−c) +

(
E2(mc2)2

(Mc2)2
− (Mc2)2

4

)
= 0, (5.70)

where (Mc2)2 = E2 − p2c2 is the square of the rest energy of the kaon.
Evaluating this equation for the current initial conditions of the kaon gives

p−c = 667.9 MeV, −12.7 MeV (5.71)

Which solution is the one we want? Both of them! Since Eq. (5.69) is symmetric in p+

and p−, we would have obtained the same result had we solved for p+. This means that
one of the pions is emitted traveling forward with momentum 667.9 MeV/c, and one is
emitted backward with momentum 12.7 MeV/c, for a net momentum of 655 MeV/c, the
initial momentum of the kaon. It is always a good idea to confirm energy conservation as
well. The energies of two pions can be found from Eq. (5.62), 682.4 MeV and 140.6 MeV.
These add, of course, to 823 MeV, which was the initial energy of the kaon.
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Kaon rest frame: A simpler way to analyze this decay is in the rest frame of the
kaon. Let’s make a Lorentz transformation to the ‘primed’ frame that is moving with
the kaon. The speed of the primed frame relative to the unprimed (laboratory) frame
is just the speed of the kaon, βr = 0.796. In this primed frame, the analysis is simple,
as mentioned above: the kaon has no kinetic energy, the pions each have a total energy
E ′ = E0 + K ′ = 249 MeV, and since they move in opposite directions, their momenta in
the x′ direction is

p′±c = ±
√

E ′2 − (mc2)2 = ±205.9 MeV. (5.72)

In order to be able to transform back to the laboratory frame, and calculate the energy
and momentum of the pions as measured by an observer in that frame, we need to calculate
the relativistic factor γ′ and the velocity β′x of each pion as measured in the primed frame,

γ′ =
E ′

E0

=
249 MeV

140 MeV
= 1.78 (5.73)

and

β′x = ±
√

1− 1

γ′2
= ±0.827. (5.74)

Now that we have the velocities in the primed frame, we can use Eq. (5.55) to solve for
the velocities of the pions in the unprimed frame

v±
c

=
βr + β′x
1 + βrβ′x

=
0.796± 0.827

1 + (0.796)(±0.827)
=

{
+0.979
−0.090

(5.75)

As expected, one pion has a large positive velocity, and the other has a small negative
velocity.

We have shown that although the energies and momenta are measured to be different
by observers in different frames of reference, Newton’s laws (e.g., conservation of energy
and momentum) still hold. Key to showing this is the Lorentz transformation, which was
obtained from Einstein’s two postulates: relativity and the constancy of the speed of light.

Collateral Reading

• “Zur Elektrodynamik bewegter Körper,” by Albert Einstein, Ann. Phys. 17 891
(1905). An English translation, “On the electrodynamics of moving bodies,” can be
found in two places: First, Einstein’s Miraculous Year, edited by John Stachel, and
second, The Principle of Relativity, online at
http://www.fourmilab.ch/etexts/einstein/specrel/www/

• Spacetime Physics, 2nd ed. by Edwin Taylor and John Wheeler, Freeman 1992.
(ERAU: QC 173.65 T37 1991)

• J.C. Hafele and R. E. Keating, “Around the world atomic clocks,” Science 177,
166-168, 168-170 (1972).
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Problems

85. Calculate, in seconds (to 3 significant digits) (a) your height, (b) the distance
between the student village and Lehman building, (c) the circumference of the Earth, (d)
1 A.U.

86. Show that if β = 1− ε, and ε ¿ 1, then

γ ≈ 1√
2ε

.

87. At their fastest, the protons in the beam of the Large Hadron Collider (LHC) at
CERN travel with velocities β = 0.999 999 991. Calculate their γ and the total energy of
one proton (in both MeV and J). How many protons must be in the beam for it to have
1 J of energy?

88. A clock moves from (0,0) to (6 s, 10 s) as measured by a stationary clock (i.e.,
coordinate time). What is the clock’s speed? What is the elapsed time on the clock?

89. When Einstein was a boy, he mulled over the following puzzler: A runner looks
at himself in a mirror that he holds at arm’s length in front of him. If he runs at nearly
the speed of light, will he be able to see himself in the mirror? Analyze this question
in terms of relativity. Draw spacetime diagrams in both the lab frame and the runner’s
frame depicting the world lines of the runner, the mirror, and light.

90. As measured by an observer on the Earth, a spacecraft runway on Earth has
a length of 3600 m. (a) What is the length of the runway as measured by a pilot of a
spacecraft flying past at a speed of 4.0× 107 m/s relative to the Earth? (b) An observer
on Earth measures the time interval from when the spacecraft is directly over one end of
the runway until it is directly over the other end. What result does she get? (c) The pilot
of the spacecraft measures the time it takes him to travel from one end of the runway to
the other end. What value does he get?

91. How fast must an object move before its length appears to be contracted to
one-half its proper length?

92. For this exercise, assume that velocity of light is 5 miles per hour. Dave starts
from home at 6 am and walks down a long straight road at 1 mile per hour. His friend
Erin starts (from the same home) 9 hours later (at 3 pm) and follows Dave, walking at
2 miles per hour. Draw their world lines (to scale) on a suitable spacetime diagram, and
determine graphically the coordinates of the event E: Dave and Erin meet. Their dog Fido
leaves home just when Erin does, pursuing Dave at 4 miles per hour, meets Dave, reverses
direction and returns to Erin (also at 4 miles per hour), reverses to Dave, etc., until the
event E. How far does Fido walk? Now Dave, Erin and Fido each carry ordinary clocks,
all of which have been synchronized at 6 am, the moment when Dave leaves. What are
the readings of each of the 3 clocks at the event E, when they are all back together again?
(Partial answer: Erin’s clock reads 11:15 pm.)

93. You wish to travel to a distant star that is 200 light years from Earth. What must
your speed be if you want to age only 10 years during the round trip?

94. Invert the Galilean transformation given in Eqs. (5.17)–(5.20). That is, determine
four equations that give the value of (x′, y′, z′, t′) in terms of (x, y, z, t).

95. Derive Eqs. (5.37) and (5.38) using the method suggested in the text. That is,
calculate the values of A and C.
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96. Start with the Lorentz transformation as given in Eqs. (5.37) and (5.38), and of
course (5.18) and (5.19). Invert that transformation to obtain x′, y′, z′, and t′ in terms of
x, y, z, and t.

97. Derive the velocity addition formulas for the directions perpendicular to the
relative motion of the two reference frames. That is, we have calculated the velocity
addition formula by taking time derivatives of the Lorentz transformation equations, but
we have only compared vx and v′x. In this problem, you are to obtain expressions for vy

and vz in terms of the velocity components as measured in the primed frame, ~v′.

98. Calculate the time difference measured by a clock carried by an astronaut on the
International Space Station for one year compared with a clock on the Earth’s surface at
the equator. Assume that the ISS is in an equatorial orbit at 300 km altitude. You’ll need
to include the fact that the clock on the Earth’s surface is also moving. HINT: Because
the speeds are so small, the binomial expansion of γ will be useful.

99. The pole-and-barn paradox. A 20-m long pole (proper length) is traveling at 0.9
c in the direction along its axis. It encounters a barn whose front door and back door are
open, with a proper distance of 10 m between the doors. From the point of view of the
farmer in the barn, the pole is length contracted to 8.73 m. He plans to close the back
door, wait until the pole enters the front door and is entirely within the barn, and then
shut the front door. He will then have “captured” the pole. However, from the point of
view of the pole, the barn is moving at 0.9 c in the other direction, and the barn is length
contracted to 4.37 m; therefore the pole will never fit.

Resolve this paradox in the following way. Assume that the pole is in the primed frame
with the origin at the front of the pole, and that the barn is in the unprimed frame with
the front door of the barn at the origin. At the instant that the two origins coincide (the
front of the pole is at the front door of the barn) is when t = t′ = 0. Draw two spacetime
diagrams (very carefully, on graph paper), one from the point of view of each frame, and
draw the world lines of the following four objects: the front and back of the pole and the
barn. Obtain the spacetime coordinates (x, t) in both frames of the following four events:
A) the front of the pole passes through the front door (x = x′ = 0, t = t′ = 0), B) the
front of the pole passes through the back door, C) the back of the pole passes through the
front door, and D) the back of the pole passes through the back door. Show that events
that are simultaneous in one frame are not in another; however, the spacetime interval
between events is invariant.

100. (a) Starting with the nonrelativistic expression for a particle’s kinetic energy
K in terms of its mass m and velocity v (K = mv2/2), along with the nonrelativistic
expression for a particle’s momentum p (p = mv), obtain a relation between K and p.
(b) Starting with the relativistic expression for a particle’s total energy E in terms of its
mass m and velocity v (E = γmc2), along with the relativistic expression for a particle’s
momentum p (p = γmv), obtain a relation between E and p. (answer: E2 = p2c2+(mc2)2)
NOTE: this problem is one-dimensional.

101. Derive the work-energy theorem (in one dimension) in the relativistic case. That
is, W =

∫
Fdx should be equal to the change in kinetic energy ∆K. HINT: use Newton’s

second law, of course, F = dp/dt, and the fact that p = γmv, then integrate by parts.
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Finally, if you use the fact that

∫ x dx√
1− x2

= −
√

1− x2 + C,

and evaluate the integral from 0 → v so that ∆K = K, you should obtain what we already
know, K = E − E0 = (γ − 1)mc2.

102. The correct expression for the kinetic energy of a particle is K = γmc2 − E0,
where E0 is its rest energy. What is the maximum speed for which the classical kinetic
energy of a particle, 1

2
mv2, is correct to within 1%?

103. Calculate the same speed as you did in Problem 102, but this time in the
ultrarelativistic limit. That is, the energy of a particle that is moving close to the speed
of light is E ≈ pc (for a photon that’s the exact relation between energy and momentum).
What is the minimum speed for which the ultrarelativistic energy approximation is correct
to within 1%?

104. Show that the quantity γr(1 − βr) is less than unity when u > 0 and equal to
unity when u = 0.

105. Derive Eq. (5.70) from Eqs. (5.68b) and (5.69).
106. Show that the velocities in Eq. (5.75) agree with the momenta in Eq. (5.71).

Solutions

85. Dividing the length by c (a conversion factor) gives distance in units of time.
(a) My height is 6′ 0.5′′ = 183 cm, which is 6.10 × 10−9 s. (b) This is about 750 m
= 2.50×10−6 s. (c) The equatorial radius of the Earth is 6378 km, so that the circumference
is C = 2πR⊕ = 4.01× 107 m, which is 0.134 s ≈ 1

7.5
s. (d) 1 A.U. is about 150 million km,

or 500 s ≈ 8.3 minutes.
86. Using the binomial expansion, β2 = (1− ε)2 ≈ 1− 2ε, and therefore

γ =
1√

1− β2
≈ 1√

2ε
.

87. In the ultra-relativistic regime, which this is, it is simplest to express the speed
as β = 1 − ε. In this case ε = 9 × 10−9. From the previous problem, I can solve for
γ ≈ 7.45 × 103. The total energy of a proton, therefore, is E = γmc2 = 6.99 × 106 MeV
= 6.99 TeV = 1.13 µJ. Therefore, there must be about 9 × 105 protons in the beam for
it to have 1 J. Each bunch (of which there are many) in the LHC consists of about 1011

protons, which means that each bunch has about 0.1 MJ of energy.
88. The speed relative to the stationary coordinate system is β = v/c = ∆x/c∆t = 0.6.

But the moving clock measures ∆t0 =
√

(10 s)2 − (6 s)2 = 8 s. Since this is less than 10

s, we are led to the conclusion that moving clocks run slow. (If you want to express the
distance in SI units, note that 6 light-seconds is 1.8 million km.)

89. Yes, he will be able to see himself. Why? From his perspective, he’s not moving.
Therefore, all the usual laws of physics apply, including the law of reflection as well as
Einstein’s postulate of the constancy of the speed of light. Below on the left is the space-
time diagram in the moving frame, in which the boy and the mirror are stationary, and
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on the right is the spacetime diagram in the “lab” frame where the world lines of the boy
and the mirror are diagonal straight lines.

90. First, since u = 4 × 107 m/s, let’s calculate βr = 0.13343 and γr = 1.0090. (a)
Since the runway is at rest in the Earth’s frame of reference, 3600 m is its proper length,
L0 = 3600 m. The pilot sees it contracted to L = L0/γ = 3567.8 m. (b) From the point
of view of one observer, there is no confusion, elapsed time is just the distance traveled
divided by the velocity, an elementary physics result: ∆t = L0/u = 90 µs. (c) Method
1: From the pilot’s point of view, the runway is length contracted, but it is moving with
speed u, so the elapsed time is again the elementary result of distance divided by velocity
∆t′ = L/u =(3567.8 m)/(4 × 107 m/s)= 89.2 µs. Method 2: The pilot is measuring
proper time, so his clock runs slow (compared with the clock on the ground), and therefore
∆t′ = ∆t/γ = 89.2 µs.

Final check: The spacetime interval between the two events (spacecraft at start of
runway, and spacecraft at end of runway) must be invariant

(∆t′)2 − (∆x′)2

c2
= (∆t)2 − (∆x)2

c2

(89.2 µs)2 − (0 m)2

c2
= (90.0 µs)2 − (3600 m)2

c2

= (89.2 µs)2.

91. Since length contraction is given by L = L0/γ, we want γ = 2, and since

β2 = 1− 1

γ2
=

3

4
,

or β =
√

0.75 = 0.866, which means v = 2.596× 108 m/s.

92. First, let’s describe the situation in the “lab” frame, where physics is normal.
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Dave’s world line has a slope of c∆t/∆x =

c/v = 5, and he has γ =
√

25/24. Erin’s

world line (when she is moving) has a
slope of 2.5, and her relativistic factor is

γ =
√

25/21. They meet at Event E, at
12 midnight in coordinate time. This is all
elementary physics - no relativity. Where
do they meet? Well, the spatial position
is 3.6 hours, because Dave walked for 18
hours at 1 mile per hour, so he covered 18
miles, but dividing by c = 5 mi/hr gives
3.6 hr. The coordinates of E are thus

E = (3.6 hr, 18 hr).

Fido travels at 4 mi/hr, the slope of his world line is ± 1.25, depending on which direction
he is traveling. He has γ = 5/3. He travels for 9 hours (coordinate time), so he covered a
distance of 36 miles. In time units that is 7.2 hours.

To obtain the proper time displayed by the moving clocks, we can use either the
spacetime interval, or equivalently, the time dilation relation. Dave is moving the entire
time, so his elapsed time is ∆t0 = (18 h)/γ = 17.64 h, and at event E his clock reads 11:38
PM. Erin remains stationary for 9 h, and the her clock starts “dilating” for an additional
time ∆t0 = (9 h)/γ = 8.25 h. So her total elapsed time is 17.25 h, and her clock reads
11:15 PM. Fido also is stationary for 9 h, and then ∆t0 = (9 h)/γ = 5.4 h, so his clock
reads 8:24 PM. When they all meet at E, their clocks are all different!

Note that Erin and Dave are just like the twins Peter and Paul. In Dave’s frame, he
is at rest and it’s Erin who travels away and then returns. Therefore she’s the younger
“twin,” and she ages 23 minutes less than Dave.

93. Approximate answer: The best you can do is to travel at the speed of light, in
which case it will take you 400 years (coordinate time) to travel 400 ly, because c = 1
ly/y. But if you wish to age only 10 years, then you need γ = 40 to result in the proper

time dilation, which gives β =
√

1599/1600 = 0.999 687 451.
Exact answer: Your speed is β, which means that your total travel time is ∆t = 400

ly/βc, and the time dilation is given by ∆t = γ∆t0, where ∆t0 = 10 y. This gives γβ = 40.
Since β is very close to 1, the approximation above is good. An exact answer can be found
by squaring γβ = 40 to give

γ2β2 =
β2

1− β2
= 402,

and solving for β gives β =
√

1600
1601

= 0.999 687 646.
94. The y′, z′, and t′ equations can be simply flipped, so that the primed variables

are on the left-hand-side. Equation (5.20) can be solved for x′, and then invoking absolute
time gives

x′ = x− ut′ = x− ut.

96. The most straightforward method is to treat the Lorentz transformation as two
equations and two unknowns, with the unknowns being x′ and t′. This, however, involves
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some algebra, so the simplest way is to write the Lorentz transformation as a matrix
equation (

x
t

)
= γr

(
1 βr

βr 1

) (
x′

t′

)
,

where I’ve set c = 1 for notational clarity. Inverting a 2× 2 matrix is straightforward, and
acting on the above equation — from the left — with the inverse gives

1

γr

1

(1− β2
r )

(
1 −βr

−βr 1

) (
x
t

)
=

(
x′

t′

)
,

where (1 − β2
r ) is the determinant of the first matrix. This, of course, is the identical

transformation, but with the sign of βr switched. This is because the primed frame and
the unprimed frame are identical, except for the relative direction of motion of the other
frame. Of course, the coordinates in the directions perpendicular to the relative velocity
are still identical

y′ = y z′ = z.

97. For the y velocity, we have

vy =
dy

dt
=

dy′

dt
=

dy′

dt′
dt′

dt
= v′y γr

(
1− βr

vx

c

)
.

But we want a transformation equation, which means that we need only primed quantities
on the right hand side, so we need to use our previously obtained transformation for vx

βx =
βr + β′x
1 + βrβ′x

which results, after some algebraic rearrangement

βy =
1

γr

β′y
1 + βrβ′x

.

98. The time dilation formula gives ∆t′ = ∆t/γ ≈ ∆t
(
1− 1

2
β2

)
, and the time differ-

ence is

∆t′ −∆t = −∆t
(

1

2
β2

)
,

where for LEO at h = 300 km, v =
√

GM⊕/(R⊕ + h) = 7.732 km/s. Since ∆t =

3.156× 107 s, the difference is −10.5 ms .
However, as Hafele and Keating state in their 1971 report on a clock comparison

between commercial airliners and the ground

Special relativity predicts that a moving standard clock will record less time
compared with (real or hypothetical) coordinate clocks distributed at rest in
an inertial reference space.... Because the earth rotates, standard clocks dis-
tributed at rest on the surface are not suitable in this case as candidates for
coordinate clocks of an inertial space. Nevertheless, the relative [my empha-
sis] timekeeping behavior of terrestrial clocks can be evaluated by reference to
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hypothetical coordinate clocks of an underlying nonrotating (inertial) space....
General relativity predicts another effect that (for weak gravitational fields) is
proportional to the difference in the gravitational potential for the flying and
ground reference clocks.25

We therefore need to compare two different “proper” time intervals

∆tISS −∆tEq = ∆t
(
−1

2
β2

ISS +
1

2
β2

Eq

)
,

where ∆t
(

1
2
β2

Eq

)
is a correction term. Given that the equatorial speed of the Earth’s

rotation is v = 463.3 m/s, this correction is only +0.038 ms. In addition, the general
relativistic correction is ∆t(gh/c2), where g = 9.81 m/s2 and h = 300 km, which gives
+1.03 ms. Including general relativity, the astronaut’s clock will have lost 9.5 ms . It is
probably impossible to tell (without a clock) that a person has aged not one year, but one
year minus 9.5 ms.

100. (a) Since K = mv2/2 and ~p = m~v, if we square the momentum p2 = ~p ·~p = m2v2,
and eliminate v2 from both equations, we obtain

K =
p2

2m
,

where what we mean by p2 is ~p · ~p. (b) The relativistic case is just as straightforward
conceptually, but with a little more algebra. In this case, it makes sense to calculate p2c2

so that all terms are in “energy units.” Using the same definition for p2, I get

p2c2 = (γ2m2v2)c2 = (mc2)2γ2β2 = (mc2)2
(
γ2 − 1

)
,

where, in the last step, I’ve used the fact that β2 = 1−(1/γ2). Now, noting that E = γmc2

so that E2 = γ2(mc2)2, the momentum can be written p2c2 = E2 − (mc2)2, or

E2 = p2c2 + (mc2)2.

101. The fundamental definition of work (in one dimension) is

W ≡
∫

F dx =
∫ dp

dt
dx =

∫
dp

dx

dt
=

∫
v dp,

where I’ve used Newton’s second law in the form F = dp/dt, as well as a fundamental
property of differentials that allows me to let the dt in the denominator be associated with
dx rather than dp. Integrating this by parts gives

∫
v dp = vp−

∫
p dv.

The reason we do this is because we know p as a function of v, but not the other way
around. The integral becomes

∫
p dv =

∫
γmv dv = m

∫ v dv√
1− v2/c2

= mc2
∫ β dβ√

1− β2
,

25Hafele and Keating, “Around-the-world atomic clocks: Predicted relativistic time gains,” Science 177
(4044), 166-168, (1971).
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where I’ve changed variables to obtain the integral given. From the work-kinetic energy
theorem, W = ∆K, so that we have

∆K =
(
vp + mc2

√
1− β2

)f

i
= γmc2|fi = (γfinal − γinitial) mc2.

If we take the initial value of the kinetic energy to be zero, then K = (γ − 1)mc2.
Note that only the change in kinetic energy is determined. The actual value of K is

undetermined up to an additive constant, just as in nonrelativistic Newtonian theory.
102. Approximate solution: Since γ can be expanded for small velocities to give

γ ≈ 1 +
1

2
β2 +

3

8
β4,

the approximate kinetic energy is K = γmc2 − mc2 ≈
(

1
2
β2 + 3

8
β4

)
mc2 ≈ 1

2
mv2. If we

assume that these two terms give the exact kinetic energy, then when the second term
becomes 0.01 of the first term we have 3

8
β4 = (0.01)1

2
β2, or β2 = 4

3
×10−2, or β = 0.11547.

Exact solution: We can do this problem very generally, by letting the fractional error
be f = 0.01. The fractional error is defined as

Kr −Kc

Kr

= f,

where Kr = (γ − 1)mc2 and Kc = 1
2
mv2. From here we wish to solve for β(f), which is

essentially algebraic. Simplifying and grouping, I get γ(1− f) = (1− f) + 1
2
β2. Squaring

and writing γ in terms of β, I get a “bi-cubic” equation in β

−1

4
β6 +

[
1

4
− (1− f)

]
β4 +

[
(1− f)− (1− f)2

]
β2 = 0.

Since there is no constant term, we can divide by β2 to get a “bi-quadratic”,

β4 + (3− 4f)β2 − 4f(1− f) = 0,

and solving for the two roots (when f = 0.01) gives

β2 = 1.33× 10−2, −2.97

Only the positive root makes sense (β must be real), I get β < 0.11541, or, when v is 11%
of c, then the true kinetic energy is 1% larger than 1

2
mv2. The solution to the biquadratic,

for arbitrary f , is

β2 =
1

2

[
±

√
9− 8f − (3− 4f)

]
,

where we are interested in the positive root. If f is small, then we can make the approxi-

mation
√

9− 8f = 3
√

1− 8f/9 ≈ 3(1− 4f/9), and we get β2 ≈ 4f/3, so if f = 0.01 then
β = 0.115, as in the approximate solution.

Approximate solution revisited: Starting from the first equation (γ − 1)(1− f) = 1
2
β2,

we can expand γ − 1 for small velocities,

γ − 1 = (1− β2)−1/2 − 1 ≈ (1− 1

2
β2 +

3

8
β4 + · · ·)− 1,
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where we only need to retain the β4 term. Plugging in, and retaining only the lowest order
terms, gives β2 = 4f/3, as above. Hence, both methods gives the same result when terms
of order β4 are retained.

103. In the ultra-relativistic limit, Eu ≈ pc. Since E > Eu is always true, we are
looking for the velocity such that

E − Eu

E
= f,

where f = 0.01. That is, what speed results in a 1% error for Eu? The condition is
√

p2c2 + (mc2)2− pc = f
√

p2c2 + (mc2)2,

and rearranging and squaring gives

p2c2 = (mc2)2 (1− f)2

f(2− f)
.

On the other hand, p = γmv, so that p2c2 = γ2β2(mc2)2, so that we really have to solve
an equation for γβ, just like in Problem 93. That equation is

γ2β2 =
(1− f)2

f(2− f)
= 49.25,

where the numerical value is for f = 0.01. As before, if γ2β2 = x, then β2 = x/(x + 1), or

β = 1− f = 0.99.

So you can’t be moving slower than 99% of the speed of light.
105. Setting c = 1 changes Eq. (5.68b) to

p2
+ = (p− p−)2,

and plugging this into Eq. (5.69) results in

E =
√

(p− p−)2 + m2 +
√

p2− + m2.

In this equation, all quantities are measured in energy units. The easiest way to solve this
is to bring the second term on the right side of the equation over to the left side, and then
square both sides (

E −
√

p2− + m2

)2

= (p− p−)2 + m2.

Expanding the squared terms on both sides gives

E2 − 2E
√

p2− + m2 + p2
− + m2 = p2 − 2pp− + p2

− + m2,

and the last two terms on each side cancel. Again, isolating the square root on one side,
and then squaring gives

(
E2 − p2 + 2pp−

)2
=

(
2E

√
p2− + m2

)2

= 4E2(p2
− + m2).
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Here, we can make a simplification by noting that E2− p2 = M2, where M is the mass of
the kaon. Grouping terms results in the quadratic equation

0 = 4M2p2
− − 4M2pp− + (4E2m2 −M4),

or
0 = p2

− − pp− + (E2m2/M2 −M2/4).

Restoring the factors of c results in Eq. (5.70)

(p−c)2 − (pc)(p−c) +

(
E2(mc2)2

(Mc2)2
− (Mc2)2

4

)
= 0.

106. The momentum pc is a function of the velocity β in the following way

pc = (γmv)c = γβ mc2 =
βmc2

√
1− β2

. (5.76)

Using our knowledge of β± these momenta are just 667.9 MeV/c and −12.7 MeV/c, exactly
as calculated previously. You can also confirm that the energies are identical.



Chapter 6

Introduction to Quantum Physics

We have not assumed that the quantum theory, as opposed to the classical
theory, is essentially a statistical theory, in the sense that only statistical con-
clusions can be drawn from the exact data . . . In the formulation of the causal
law, namely, ‘If we know the present exactly, we can predict the future,’ it is
not the conclusion, but rather the premise that is false. We cannot know, as a
matter of principle, the present in all its details.
— Werner Heisenberg

6.1 Wave-particle duality

The fundamental property of quantum physics, as opposed to classical physics (i.e., New-
ton’s laws regarding the motion of point particles), is the wave-particle duality of all
objects: photons, electrons, etc. This duality can be expressed by the two fundamental
equation of quantum physics1

E = hν, (6.1)

p =
h

λ
. (6.2)

These equations relate properties that are usually associated with infinite plane waves,
frequency ν and wavelength λ, with properties that are usually associated with discrete
particles, energy E and momentum p. Of course, Maxwell’s equations of electrodynamics
also predict that electromagnetic waves carry energy and momentum, but Eqs. (6.1) and
(6.2) imply that these properties are discrete, not continuous.

Recall that Eq. (6.1) was an ad hoc hypothesis, put forward by Planck to understand
the blackbody spectrum, and confirmed by Einstein and Bohr in their theoretical models of

1If you prefer h̄ rather than h, these can be written

E = h̄ω,

~p = h̄~k.

165
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Figure 6.1: Snapshot of a one-dimensional wave function Ψ(x, t) at t = 0, meant to
describe an electron. From Eisberg and Resnick, Quantum Physics, Figure 3-7.

the photoelectric effect and the hydrogen atom. On the other hand, Eq. (6.2) was proposed
by de Broglie so that the symmetry between light and matter would be complete.

In any case, let’s investigate some of the consequences of these two expressions of
wave-particle duality. Consider the electron from de Broglie’s point of view. He claimed
that, in addition to its particle properties, it had wave properties as well. An interesting
question to ask is, “What is the velocity of an electron?” Assuming that it is a wave, the
velocity of an electron is presumably the velocity of the wave that describes that electron,
vw = λν, where I’ve used vw to denote the “wave velocity.” On the other hand, assuming
that it is a particle,2 we can obtain vp, the “particle velocity,” from a knowledge of either
the momentum, p = mvp, or the kinetic energy, E = mv2

p/2. How are these two velocity
definitions related? Well, we can use our wave-particle duality equations to obtain the
relation

vw = λν =
h

p

E

h
=

h

mvp

mv2
p/2

h
=

vp

2
. (6.3)

This seems to be saying that the wave velocity is one half the of the particle velocity! If
these two pictures of the electron are to be consistent, then they should predict the same
velocity.

From our extensive experience with baseballs and blocks on inclined planes we know
what vp means, but what exactly does vw describe? The “wave velocity” in the equation
vw = λν is actually the phase velocity of an infinite plane wave. That is, it is the velocity of
the peaks and troughs of a sinusoidal oscillation that extends indefinitely in both directions.
Even if you concede that an electron has a de Broglie wavelength, this can’t be what is
meant, because we know that electrons are localized objects. Detectors, Geiger counters
for example, emit a discrete “click” when they observe an electron. They don’t emit a
continuous hum. Therefore, in order to describe an electron as a wave, what we need is
a localized oscillation, a “wave packet,” shown in Fig. 6.1. This figures depicts a wave
function Ψ (we’ll see what this means in Chapter 7) that is meant to describe an electron.
It oscillates with a reasonably well-defined wavelength, but an amplitude that is only large
in a small region of space. That is, it is localized: it is only nonzero where we might expect

2In this book I will consider only nonrelativistic quantum mechanics. For this reason, we can describe
kinematics with nonrelativistic theory.
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Figure 6.2: This is a plot of Ψ in Eq. (6.6) for t = 0, which is a “snapshot” of the beat
phenomenon. The width of one “packet,” denoted by the horizontal line, is ∆x as in
Eq. (6.7), which can be expressed as 2π/∆k.

to find the electron.
How can we create a wave packet mathematically? The answer is similar to the math-

ematics involved in the phenomenon of “beats.” There, two plane waves traveling in the
same direction but with slightly different frequencies and wavelengths were added together
(recall the linear superposition property of waves that allowed us to do that). Due to the
interference between the two plane waves, the result was a function that could be expressed
as a single wave with an amplitude that was modulated. In order to obtain the wave packet
depicted in Fig. 6.1, however, we would need to add an infinite number of plane waves,
each with a different wavelength and frequency (and possible a different amplitude), so
that constructive interference will occur near the location of the electron, and destructive
interference will occur elsewhere. The addition of an infinite number of quantities means,
of course, integration, and we’ll do that integration in Chapter 7, but for now we can get
a feeling for the physical concept by reproducing beats, i.e., by adding just two waves. If
the wave function of the electron Ψ is the sum of two plane waves with equal amplitudes
Ψ0, then we can write3

Ψ(x, t) = Ψ0 sin(k1x− ω1t) + Ψ0 sin(k2x− ω2t). (6.4)

If we define the average wavenumber and average frequency as

k̄ ≡ k1 + k2

2
, ω̄ ≡ ω1 + ω2

2
, (6.5)

then using a standard trigonometric identity4 (as in the beat problem), I can express
Eq. (6.4) as

Ψ(x, t) =

[
2Ψ0 cos

(
∆k

2
x− ∆ω

2
t

)]
sin

(
k̄x− ω̄t

)
, (6.6)

where ∆k ≡ (k1 − k2) and ∆ω ≡ (ω1 − ω2). Figure 6.2 depicts Ψ at an instant of
time. Just as in the physics of beat phenomena, the quantity in the square brackets is
slowly varying in both space and time, and therefore can be interpreted as an amplitude,
sometimes called an “envelope,” so that the result of adding two waves is a single wave

3We’ll see in Chapter 7 that what we mean by Ψ is the following: if Ψ is a function that represents
the particle we are interested in, then |Ψ(~r, t)|2 d3r is the probability of finding that particle in a small
volume d3r = dxdydz surrounding the position ~r. In this interpretation, |Ψ(~r, t)|2 is called the probability
density.

4sin a + sin b = 2 cos
(

a−b
2

)
sin

(
a+b
2

)
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(with a wavenumber and frequency equal to the average of the two original waves) whose
amplitude is modulated at the difference frequency, or beat frequency, ωbeat = |ω1 − ω2|.
Or, if you were to take a snapshot of the wave function at a particular time, its amplitude
would be modulated at the difference wavenumber, kbeat = |k2 − k1|. In this case, the
modulation continues undiminished infinitely far away, which is why this mathematical
model is not a good description of a localized electron. However, we can take just one
period of the amplitude modulation, and consider that to be an approximation to the
wave packet we are looking for.

This approximation to a localized wave packet — one modulation of Eq. (6.6) — is
a good way to introduce two key physical concepts: group velocity and the Heisenberg
uncertainty principle.

6.2 Dispersion, phase velocity, and group velocity

To determine how our wave packet moves, we first need to calculate the distance be-
tween neighboring minima of the envelope function, i.e., the quantity in square brackets
in Eq. (6.6). Since the cosine function is zero when its argument is ±π/2, and if we take
the time of the snapshot to be t = 0, then x = ±π/∆k must denote the positions of two
neighboring minima of the envelope function. The distance between these minima is

∆x =
2π

∆k
=

4π

k1 − k2

. (6.7)

This distance, then, is the spatial size of our wave packet. That is, the localization of the
electron is determined by the spread in the wavelengths of the waves that we have used to
construct our packet. If the wavelengths are widely separated (that is, [k1 − k2] is large)
then ∆x is small, and if the wavelengths are close ([k1 − k2] is small) then ∆x is large.

What about the speed of the wave packet? The phase velocity of the wave is defined
as

vph =
ω̄

k̄
, (6.8)

because this is the speed of the peaks and troughs of the oscillation. But how fast does
the envelope move? This is the speed that any information carried by the wave can travel,
and it is called the group velocity, vg. The speed of the envelope function is just the ratio
of the coefficients of x and t, which is

vg ≈ ∆ω

∆k
. (6.9)

Recall, though, that this is just an approximation. The correct method is to add many
different waves (an infinite number) whose wavelengths and frequencies are very close
together. In this limit, the ∆ becomes an infinitesimal d, so that the correct expression
for the group velocity is a derivative

vg ≡ dω

dk

∣∣∣∣∣
k0

, (6.10)
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where the derivative is evaluated at the center of all the wavenumbers, k0.
What does this derivative mean? In an operational sense, in order to evaluate the

derivative, we first need to know ω as a function of k. This function, ω(k), is called the
“dispersion relation.” For light traveling in a vacuum, the relationship between ω and k
is just c = ω/k, which can be rewritten as

ω = ck, (6.11)

which is a simple dispersion relation. Taking the required derivative we find that

vg =
dω

dk
= c. (6.12)

This just states that all wave packets travel at the same group velocity, regardless of the
frequency or wavelength. Since dispersion describes the case where the phase velocity does
depend on wavelength, this situation is said to have no dispersion, or to be “dispersionless.”

The term dispersion comes from Newton’s investigations into the color of sunlight. He
showed that sunlight is composed of all colors by passing sunlight through a glass prism
which spread out, or dispersed, the different colors of the rainbow. Why are different
wavelengths of light refracted differently? Because they have different speeds in the glass.
Or, as you have learned in your studies of optics, the index of refraction of glass is a
function of wavelength. One question that we can ask, but Newton couldn’t (because
he viewed light as made up of “corpuscles,” or particles, not waves), is “How are the
phase velocity and group velocity related to the index of refraction?” The definition of
the refractive index n is

n ≡ c

vp

, (6.13)

where c is the speed of light in vacuum, and vp is the speed of light in the material in
question. As you might have guessed, it is the phase velocity, ω/k, of electromagnetic
waves in that medium. Solving for ω to obtain the dispersion relation gives

ω =
ck

n(k)
, (6.14)

where, for example, the function n for borosilicate crown glass is shown in Fig. 6.3. If
the function n(k) is known, then the group velocity of a wave packet can be calculated,
assuming that the wavenumber content of the packet is known.

What about an electron matter wave? What is the correct dispersion relation? To
determine this, an analysis similar to what was used in Eq. (6.3) will give us the function
ω(k). That is, the dispersion relation is nothing but the relationship between energy and
momentum, but written in the language of waves using Eqs. (6.1) and (6.2). That is

E =
p2

2m
becomes h̄ω =

(h̄k)2

2m
or ω =

h̄

2m
k2. (6.15)

How can we interpret this electron dispersion relation? First, we see that the phase
velocity of the electron wave is not constant (as with light in a vacuum) but depends on
its wavelength (or its momentum, as de Broglie would say)

vph ≡ ω

k
=

h̄k

2m
. (6.16)
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Figure 6.3: The index of refraction n as a function of wavelength λ for BK7, borosilicate
crown glass, a mixture of boron, oxygen, sodium, aluminum, silicon, and potassium. In-
dices of refraction are determined empirically for transparent solids using the Sellmeier
equation

n2(λ) = 1 +
∑

i

Ai
λ2

λ2 − λ2
i

where λi are the wavelengths where n becomes infinite and the phase velocity goes to zero.
These points are called absorption “resonances.” They occur where the driving frequency
of the light matches the natural frequency of oscillation of the atoms in the solid, and the
Sellmeier equation is valid only when λ is not near any of these resonances. They typically
are in the UV when they match a frequency that is resonant with the light electrons, and
are in the IR when they resonate with the heavier ions. For BK7 the resonances are at
λ1 = 77.5 nm, λ2 = 141.5 nm, and λ3 = 10.2 µm. The first two are in the ultraviolet, and
the last is in the infrared.

Second, the group velocity can be determined via differentiation

vg ≡ dω

dk
=

h̄k

m
=

p

m
=

mv

m
= vp, (6.17)

where the last equalities were obtained using the de Broglie wavelength definition and the
formula for the nonrelativistic momentum. Note that the group velocity is equal to the
particle velocity! That is, the wave packet travels at the speed we would expect if the
electron were a particle. So this is what we mean when we say that the electron is a wave:

An electron is a wave packet governed by a dispersion relation that results in
a group velocity equal to the particle velocity.

Dispersion relations

Equation (6.15), ω(k) = h̄k2/2m, is the dispersion relation for nonrelativistic electron
matter waves. From a knowledge of ω(k), both the phase velocity and group velocity can
be obtained. In this case, the group velocity is larger than the phase velocity; specifically,



6.2. DISPERSION, PHASE VELOCITY, AND GROUP VELOCITY 171

vg = 2vph. This means that the envelope travels faster than the peaks and troughs of
the oscillation. Although Fig. 6.1 is only a snapshot, if we were to watch the packet as
a function of time, the peaks and troughs would appear to drift backward (with respect
to the envelope) as the entire packet traveled forward. This is not always the case. For
example, you can show (Problem 113) for surface waves in water that the phase velocity
is larger than the group velocity. This means that peaks and troughs are “born” near the
back of the envelope, grow in size and move faster than the envelope, and then disappear
in the front of the envelope.

Another interesting case of dispersion is that of electromagnetic waves in a plasma.
This dispersion must be taken into account in order to understand, for example, radio
waves moving through (or reflecting off) the Earth’s ionosphere. The dispersion relation
of these waves is

ω2 = ω2
p + k2c2, (6.18)

where ωp is the “plasma frequency,” the natural frequency of electric oscillations of the
plasma medium. It is defined as

ω2
p =

ne2

ε0me

,

where n is the electron number density and me is the electron mass. Notice that if ω À ωp,
then the wave propagates as if it were in a vacuum, ω ≈ kc. The structure of Eq. (6.18)
means that the phase velocity is greater than c

ω2

k2
= c2 +

ω2
p

k2
> c2. (6.19)

This means that, in contrast to “normal” media, the index of refraction — see Eq. (6.14)
— is less than unity

n =
kc

ω
=

kc√
k2c2 + ω2

p

< 1. (6.20)

Of course, information does not travel at a speed greater than c, because, as you will show
in Problem 111, the group velocity is less than c.

The interpretation of a dispersion equation such as Eq. (6.18) can be done in two
different ways. First, we can treat it as an initial value problem, where we assume that
there is some small disturbance with a particular wavelength (and hence wavenumber)
superimposed on an otherwise uniform plasma. Then the dispersion relation tells us the
frequency that the medium will oscillate at. For Eq. (6.18), if k = 0, which means that
disturb the entire plasma uniformly, then it “rings” at the plasma frequency. Smaller
wavelengths ring at higher frequencies. The second method is to treat it as a boundary
value problem. Suppose we have an antenna at the edge of our plasma that is emitting
waves at a frequency ω. Then, solving Eq. (6.18) for k tells us the wavelength of the
plasma response. For example, if our antenna oscillates with a frequency ω > ωp, then
a wave with wavenumber k, given by Eq. (6.18), will propagate away from the antenna
into the plasma. However, if ω < ωp, then the wave cannot propagate at all because k is
imaginary

k =

√
ω − ωp

c
. (6.21)



172 CHAPTER 6. INTRODUCTION TO QUANTUM PHYSICS

Such a wave is called “evanescent,” and the amplitudes of the electric and magnetic fields
oscillate at ω but decay exponentially away from the antenna rather than propagating.

6.3 The Heisenberg uncertainty principle

We discussed several versions of the Heisenberg uncertainty principle in Chapter 2, but
we have not yet been able to understand the reasons why it holds, until now. The reason
for such an “indeterminacy” principle to hold in quantum physics is that objects are
described with a language appropriate to waves, not particles. Remember that we do
observe particle-like behavior, which means that any wave packet must be localized (i.e.,
it is only spread over a distance ∆x). But in order to mathematically describe a localized
oscillation, a pure plane wave of only one wavelength will not suffice. We must add more
than one plane wave, which means that we don’t know exactly what wavelength we have
— there is a spread in wavelengths and wavenumbers (∆k). But de Broglie says that
if there is a spread in wavelengths, there must be a spread in momenta (∆p). We can
show with our simple model of two plane waves — Eq. (6.6) — that there is an inverse
relationship between ∆x and ∆p. In fact, one way of looking at Heinsenberg’s inequality
is that it is simply a consequence of the wave description.

Looking at Fig. 6.2 and focusing on one modulation of the sinusoidal wave, Eq. (6.7)
gives the length of that one modulation. Since we don’t know where the electron is within
that modulation (all we know is that it is within it), that must be the uncertainty in
position

∆x =
2π

∆k
. (6.22)

On the other hand, since we don’t know the exact wavenumber (there is an uncertainty
∆k in wavenumber), there must be an uncertainty in momentum, given by de Broglie

∆p = h̄∆k. (6.23)

Eliminating ∆k from these two equations results in

∆p∆x = h. (6.24)

For this particular wave packet, the more localized it is, the less spread out the momentum
content of the packet will be, such that the product of ∆p and ∆x is always Planck’s
constant. For wave packets with other shapes, the product of ∆p and ∆x will have a
different value, although it will always be proportional to h. Of course, in this example,
the uncertainties in x and k are just approximate.

Heisenberg developed a general rule that says for any wave packet the product must
always be greater than h̄/2

∆p∆x ≥ h̄

2
. (6.25)

Rigorous mathematics

What exactly is meant by ∆p and ∆x? The rigorous answer is found in analyzing the
statistics of many measurements, formally similar to looking at the radioactive decay of
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many nuclei, as considered in the calculation of average lifetime on page 68. The way to
calculate probabilities is to envision a large number of identical copies of a system. On
each of these copies a measurement of some quantity is made, and in general, a different
outcome is obtained from each measurement.5 Here, we are measuring the momentum p
and the position x. If we wish to measure the quantity A, then the ith measurement is Ai,
and the average, or mean, will be the sum of the measured values divided by the number
of measurements: Aave =

∑N
i=1 Ai/N . For example, if you were to throw a standard, six-

sided die 10 times and obtain the following values: 2, 4, 5, 3, 4, 1, 2, 3, 3, and 6, then the
mean value would be 3.3. What would your theoretical prediction of this mean value be?
Since the probabilities of obtaining each of the six different outcomes are identical, 1

6
, the

predicted mean, 〈A〉, would be

〈A〉 =
N∑

i=1

PiAi, (6.26)

where Pi is the probability of obtaining the ith outcome.6 In the case of the die, this sum
would be 3.5.

What is the deviation of the ith measurement from the mean? This deviation is defined
as

∆Ai = Ai − 〈A〉. (6.27)

However, since each deviation is different, it is useful and interesting to calculate the mean
deviation. Some measurements will be larger than the mean (a positive deviation) and
some will be smaller (a negative deviation) so that the average deviation should be zero,
if we have defined the mean properly. In fact, this is true, and it can be shown

〈∆A〉 =
N∑

i=1

Pi

(
Ai − 〈A〉

)

=
〈
A− 〈A〉

〉
(6.28)

= 〈A〉 − 〈A〉 (6.29)

= 0,

where the third line is obtained by noting that that

〈
〈A〉

〉
=

N∑

i=1

Pi〈A〉 = 〈A〉
N∑

i=1

Pi = 〈A〉. (6.30)

If the mean deviation is zero, how are we to determine the spread in the values of
the measurement? The best way is to square the deviations (∆Ai)

2, which is positive
definite, and then take its average.7 This quantity leads to the “standard deviation,” or

5see Taylor, An Introduction to Error Analysis, Chapter 4, for more complete information.
6Technically, I should divide by

∑
i Pi to “normalize” the mean, but if this sum is unity, there is no

need.
7Another method is to consider the absolute value of the deviation |∆Ai|, which is also positive

definite, but the average of the square is easier to work with. In some texts, the quantity 〈|∆A|〉 is called
the “average deviation.”
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the “root-mean-square deviation,” because of the order of operations. The square of the
ith deviation is

(∆Ai)
2 = A2

i − 2A〈Ai〉+ 〈A〉2, (6.31)

which, when averaged becomes

〈(∆A)2〉 = 〈A2〉 − 〈A〉2, (6.32)

where again I’ve used the fact that
〈
〈A〉

〉
= 〈A〉. Taking the square root gives the standard

deviation

∆Arms =
√
〈A2〉 − 〈A〉2. (6.33)

This quantity, the standard (or rms) deviation, is the correct quantity for use in the Heisen-
berg uncertainty relation. For example, the well-known position-momentum uncertainty
relation should read

∆xrms∆px,rms ≥ h̄

2
. (6.34)

How can we translate these statistical concepts to the prediction of quantum mechanical
measurements? In quantum mechanics, the average is just the expectation value given in
Eq. (7.59). The expectation value of the square of an observable quantity is defined as

〈A2〉 =
∫

Ψ∗(ÂÂΨ)d3r, (6.35)

where the operator Â acts twice in succession on the wave function Ψ in the integrand.
This is an extension of the definition of probability defined in the footnote on page 167.

6.4 Bohr’s Principle of Complementarity

In the early days of quantum mechanics, and still today, it is not completely clear what it
all means. That is, how to calculate the predicted probability of an experimental outcome
is straightforward, and these predictions agree with the experiments quite well. But what
exactly does the wave function Ψ represent? Why is there a wave-particle duality? These
questions have plagued scientists, and philosophers of science for over 100 years.

Niels Bohr struggled with these ideas, and in an attempt to reconcile the mathematics
of quantum mechanics with our fundamental philosophical notions learned from a study
of classical mechanics (causality, etc.), he developed his “principle of complementarity.”
Essentially it states that the wave picture and the particle picture are complementary
ways to view an electron, say, and they are both necessary for a complete picture, but can
only be used one at a time. For example, when light is traveling in space it can be viewed
as a wave, but when it interacts with matter, it must be viewed as a particle, a photon.
The photoelectric effect provides a good example. You can measure the wavelength of the
incoming ultraviolet light with a diffraction grating — hence, it must be a wave — but
when it hits the metal plate you must interpret it as a particle, a quantum of energy.

Bohr’s 1947 version of his principle is
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“The very nature of the quantum theory...forces us to regard the space-time
coordination and the claim of causality, the union of which characterizes the
classical theories, as complementary but exclusive features of the description,
symbolizing the idealization of observation and definition, respectively.”8

If you are interested in this philosophical issue, probably Bohr’s most complete version is
contained in his article in the book Albert Einstein: Philosopher-Scientist.

Collateral Reading

• “The Duality in Matter and Light,” by Berthold-Georg Englert, Marlan O. Scully,
and Herbert Walther, Scientfic American, December 1994, pages 56-61.

• Albert Einstein: Philosopher-Scientist, Paul Schilpp, editor, MFJ Books, 1949. (ERAU:
QC 16.E5 A43 2000)

Problems

107. Calculate the de Broglie wavelength of (a) Usain Bolt when he is breaking the
world record running the 100-m sprint in 9.69 s? (b) a typical nitrogen molecule in the
air at room temperature? (c) a proton in the LHC, as in Problem 87.

108. The latter part of Eq. (6.3) is a relation between the de Broglie wavelength of
an electron and its particle velocity vp. (a) Obtain a formula that expresses the de Broglie
wavelength λ as a function of the kinetic energy K (and the mass m) of the electron. (b)
Repeat part (a), but treat the electron as fully relativistic.

109. Make a plot of de Broglie wavelength versus kinetic energy for (a) electrons and
(b) protons. Restrict your range of energy values to the nonrelativistic regime, i.e., restrict
the kinetic energy to 5% of the rest energy, K ≤ 0.05E0. Be sure to properly label your
axes.

110. Show that the dispersion relation for a fully relativistic particle can be written

ω2 = ω2
0 + k2c2,

where ω0 = mc2/h̄.
111. The dispersion relation for a relativistic electron is formally identical to the

dispersion relation that describes electromagnetic waves propagating in a plasma

ω2 = ω2
p + k2c2,

where ωp is the plasma frequency, and is constant, just like ω0. Obtain the phase velocity
and group velocity of these waves, as well as the relationship between the two velocities.

112. Use the relativistic expressions for energy and momentum of an electron to prove
that the group velocity vg of a wave packet equals the particle velocity v of the electron.
You can use the results of Problem 111.

8Bohr, Nature, 121 580 (1928); quoted in Pais, Inward Bound, page 262.
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113. For deep water waves (i.e., where the wavelength of the waves is much smaller
than the depth of the water, typical of waves you generate by splashing in a pool), the
dispersion relation is

ω2 = gk,

where g is, of course, the acceleration due to gravity. Show that the phase velocity is twice
the group velocity, or vph = 2vg. This means that crests and troughs move faster than the
envelope of the wave packet.9

114. The dispersion relations in Problem 113 were both approximations. For surface
water waves of any wavelength, the dispersion relation is

vph =
ω

k
=

√
g tanh(kh)

k
.

Obtain the group velocity and the effective index of refraction for this dispersion relation.
115. Show that the smallest possible uncertainty in the position of a particle of mass

m whose speed is β is

∆xmin =
h

4πmc

√
1− β2.

Analyze this result in the limits β → 0 and β → 1.
116. An electron moves between two walls (in one dimension) that are a distance L

apart, and bounces elastically from the walls. Except for the walls, there are no forces on
the electron. (a) If the electron can be represented by a matter wave Ψ with a de Broglie
wavelength, and the matter wave has a node at each wall, show that the permitted de
Broglie wavelengths are

λ =
2L

n
n = 1, 2, 3, . . .

(b) If L = 1 Å(the size of an atom), calculate the allowed values of the kinetic energy of
the electron.

117. If an electron is confined to a region of space the size of an atom, 1 Å, (a) what
is the uncertainty in the momentum of the electron, ∆p? (b) What is the kinetic energy
of an electron with momentum ∆p? (c) Does this give a reasonable value for the kinetic
energy of an electron in an atom? Why or why not?

118. Make the same calculations as in Problem 117 but for a proton confined in a
uranium nucleus.

119. Measurements of an observable A will take on a range of values. The average
value, or expectation value, is denoted 〈A〉, and each measurement can be expressed as the
expectation value plus some deviation ∆A,

A = 〈A〉+ ∆A.

9For waves typical of tsunamis, the wavelength λ is much larger than the water depth h, and these
waves are dispersionless

ω

k
=

√
gh.
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This can be considered to be the definition of ∆A. Show that

〈(∆A)2〉 = 〈A2〉 − 〈A〉2.

Note that 〈∆A〉 = 0. Note also that
√
〈(∆A)2〉 is just the “root-mean-square” of ∆A.

Solutions

107. (a) Usain Bolt is 86 kg, and is moving at 10.32 m/s, which means λ = h/mv =
7.5× 10−37 m. (b) The “root-mean-square” speed of a thermal particle is

vrms =

√
3kT

m
= c

√
3kT

mc2
,

where kT ≈ 1
40

eV, and, since the molar mass of N2 is 28 g, mc2 = 28 × 931 MeV, I get
β = 1.7× 10−6. The nonrelativistic de Broglie wavelength can be written

λ =
hc

β E0

,

where E0 = mc2. I get λ = 0.28 fm. (c) The previous particles were both nonrelativistic,
but this one is relativistic, so that the relativistic expression for momentum must be used,
p = γmv, and therefore

λ =
hc

γβ E0

.

Here, since β = 1− 9× 109, it means that γ = 7.45× 103. I get λ = 1.77× 10−19 m.
108. (a) The nonrelativistic relation between K and p is K = p2

2m
, so that p =

√
2mK

and the de Broglie wavelength is

λ(m,K) =
h√

2mK
.

(b) Relativistically, we must use E2 = p2c2 + E2
0 , where E = E0 + K. Eliminating

E between these two equations gives the relationship between K and p, which is pc =√
K2 + 2E0K, so that the de Broglie wavelength can be written

λ(m,K) =
hc√

K2 + 2E0K
=

h√
2mK + K2

c2

.

The second form is useful in a comparison with the nonrelativistic case. You can easily
see that if K ¿ 2E0 then the relativistic expression reduces to the nonrelativistic version.

109. Nonrelativistically, λ = h/p = h/
√

2mK = hc/
√

2E0K. If we restrict K <
E0/20, then the de Broglie wavelength will be restricted to λ >

√
10hc/E0 (see sketch).

This, of course, holds true for both electrons and protons, with the only difference being
the value of E0. The maximum value for the kinetic energy is 25.5 keV in the case of
electrons, and 46.9 MeV for protons.
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What is the full relativistic relation? From Problem 108, we have that

λ =
h√

2mK

1√
1 + K

2E0

≈ λNR

(
1− K

2E0

)
,

where I used the binomial approximation in the last step. If the largest value of K is
E0/20, then the correction term is K/2E0 = 1/40, which means that our nonrelativistic
approximation is 2.5% larger than the true value. A fairly good approximation.

110. The simplest method is to start with the relativistic energy formula

E2 = p2c2 + (mc2)2,

and replace E and p with their wave equivalents: E = h̄ω and p = h̄k. I obtain

(h̄ω)2 = (h̄k)2c2 + (mc2)2 or ω2 = k2c2 +

(
mc2

h̄

)2

.

111. The phase velocity is given in Eq. (6.19)

vph =
ω

k
=

√
c2 +

ω2
p

k2
.

Taking the derivative leads in a straightforward manner to

vg =
dω

dk
=

1

2

(
k2c2 + ω2

p

)−1/2
2kc2 =

kc2

ω
=

c2

vph

,

This relation between the group and phase velocities, vg = c2/vph, says that if vg < c,
which it must be, then vph > c. The fact that the phase velocity is greater than c does
not violate Einstein’s axiom of relativity, because no information travels at that speed.
Information is carried by the wave packet, which travels at the group velocity.

112. The first step is to obtain the dispersion relation for a relativistic electron matter
wave, i.e., we need ω as a function of k. The only step in Eq. (6.15) that must be changed is
the fact that the energy-momentum relationship is not E = p2/2m, but E2 = p2c2 +m2c4.
Following the same chain of reasoning gives

ω =
E

h̄
=

√
p2c2 + E2

0

h̄
=

√
k2c2 + ω2

0,

where ω0 ≡ E0/h̄. This can be written in an analogous form to the plasma dispersion
relation

ω2 = ω2
0 + k2c2.
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Using the fact that the phase velocity can be written

vph =
ω

k
=

E

p

along with the solution to Problem 111, we have

vg =
c2

vph

=
c2p

E
= c2γmvp

γmc2
= v,

where I used the relativistic expressions for energy and momentum.
113. The phase velocity can be written in a number of ways

vph =
ω

k
=

√
gk

k
=

√
g

k
.

The group velocity can most easily be found with implicit differentiation, which gives
2ω dω = g dk, which leads to

vg =
dω

dk
=

g

2ω
=

g

2
√

gk
=

1

2
vph.

115. Again using the uncertainty principle

∆x ∼ h̄

∆p
,

but we need to arrive at a reasonable approximation for the maximum value of ∆p. One
possibility is that we know the particle’s momentum, but we don’t know what direction it
is traveling, so that ∆pmax ≈ 2p = 2γmv. Also, if we are looking for the maximum value
of ∆p, the fastest the particle can travel is at v = c, so the conclusion is

∆xmin ∼ h̄

2γmc
=

h

4πmc

√
1− β2,

as desired. Why are we allowed to set v = c in one spot but not inside β? Certainly as
β → 1, v → c, and ∆xmin → 0, as expected because the momentum tends toward infinity
and hence ∆p does also. What about in the other limit? When β → 0 we have

∆xmin → h

4πmc
=

λC

4π
,

where λC is the Compton wavelength. The Compton effect experiment shows that this is
a fundamental limit on the measurement of the position of a particle (an electron in the
case of Compton scattering), so this makes sense. If we had not let v → c before taking
the β → 0 limit, the result would have been an infinitely large value of ∆xmin, which
doesn’t make sense.

116. (a) This is formally identical to the analysis of standing waves on a string that
is fixed at both ends—here, the wave function Ψ replaces the string displacement y. As a
function of position, Ψ = Ψ0 sin(kx), where, if I choose one of the walls to be at x = 0, then
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I’ve already satisfied one boundary condition. For the other, Ψ(x = L) = Ψ0 sin(kL) = 0,
which means that kL = nπ, n = 1, 2, 3, . . . Rearranging this condition, we have our
allowed wavelengths

λ =
2L

n
.

(b) Nonrelativistically, the kinetic energy is a function of the momentum, K = E =
p2/2m = h̄2k2/2m, and since the allowed wavenumbers are nπ/L, the allowed values of
the kinetic energy are

En =
h2

8mL
n2 n = 1, 2, 3, . . .

Another way to write this expression is to include factors of c. This allows an easy
numerical calculation

En =
(hc)2

8L(mc2)
n2 =

(1240 MeV fm)2

8(0.1 nm)2(0.511 MeV)
n2 = E1 n2,

where E1 = 37.6 eV. The allowed energies are therefore E1, 4E1, 9E1, etc. These energies
are of the same “order of magnitude” of the electronic energies in the hydrogen atom,
which are ∼ 13.6 eV.

117. (a) Using the Heisenberg relation, I get ∆p ∼ h̄/2∆x = 5.28 × 10−28 kg m/s.
(b) If this is the actual momentum p, then K = p2/2me = 1.53 × 10−19 J = 0.953 eV.
(c) This is reasonable, because the Bohr energies for hydrogen are on the order of 10 eV.
To be more precise, I note that the total energy is a sum of the kinetic and potential
energies, E = K + U , but for the stable circular orbits I find that U = −2K, so that
E = −K, or K = −E = 13.6 eV for the ground state. This is within a factor of 10, so
it is reasonable. Also, I assumed a minimum uncertainty relation, when in reality there
should be an inequality, or K ≥ 0.953 eV, which shows that the electron in the ground
state of a hydrogen atom is not in a minimum uncertainty state.

118. The calculation is the same, except for mp and the diameter of the “box,”

D ∼ 2R = 2R0A
1/3 = 2(1.2 fm)(235)1/3 = 14.8 fm,

so the inequality is K ≥ 7.58 × 10−15 J = 47.3 keV. Of course, α particles are ejected
from nuclei with several MeV of energy, so the inequality certainly holds, but that would
imply that we are essentially completely uncertain about where the protons are inside the
nucleus!

119. See Section 6.3.



Chapter 7

Introduction to Quantum Mechanics

... one should particularly remember that the human language permits the
construction of sentences which do not involve any consequences and which
therefore have no content at all—in spite of the fact that these sentences pro-
duce some kind of picture in our imagination; e.g., the statement that besides
our world there exists another world, with which any connection is impossible
in principle, does not lead to any experimental consequence, but does produce a
kind of picture in the mind. Obviously such a statement can neither be proved
nor disproved. One should be especially careful in using the words “reality,”
“actually,” etc., since these words very often lead to statements of the type just
mentioned. — Werner Heisenberg1

This chapter signals a shift in our focus. Previously, the coverage has been less math-
ematical and more conceptual. The reason for this was that I had to quote results from
mathematics that we had not covered yet. The nuts and bolts of quantum mechanics
are highly mathematical, and our main focus will be to solve the Schrodinger equation
(a partial differential equation) for several simple situations. Rather than it being just a
mathematical exercise, however, I want to use it as a tool to explain some of the principles
and rules that we have taken for granted. The first four sections cover the Schrodinger
equation and how to solve it, the fundamental axioms of quantum mechanics, and a
simple introduction to wave packets. These constitute the basics necessary to begin to
understand the weirdness of quantum mechanics and enable you to continue on to more
advanced studies. The final two sections — on symmetry and the Schrodinger equation
in three dimensions — give just a taste of what you will encounter in the future.

1Heisenberg, The Physical Principles of the Quantum Theory, page 15.
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7.1 The Schrodinger Equation

In a broad sense, the development of the Schrodinger equation in 1926 by Erwin Schrodinger
[Nobel Prize, Physics, 1933] was similar to the development of the clas-
sical laws of dynamics by Isaac Newton. That is, each was searching
for a mathematical law that would describe observations of the physical
world. In addition, each did not create something out of nothing —
they both built on the work of previous physicists.

Newton had the incredibly good fortune to have at his disposal the
experiments of Galileo and the observations of Kepler. Galileo had
developed an understanding of constant acceleration (i.e., kinematics),
and had proven his “length-time” theorem, which stated that under
constant acceleration the total distance traveled was proportional to
the time squared (d ∝ t2).2 Kepler had formulated his three Laws which described the
orbital motion of the planets. From these, Newton was able to complete his dynamical
laws and construct his law of gravitation. This unified the dynamical theories of motion
on the Earth’s surface with motion in the heavens.

Two centuries later, Schrodinger had at his disposal the so-called “old quantum the-
ory” (Chapter 6), which was comprised of seemingly inconsistent theories—most notably
the notion of wave-particle duality. Were elementary particles (such as electrons and pho-
tons) particles or waves? It was hard to say, as different experiments revealed different
properties. Schrodinger was able to develop a wave equation that gave a prescription for
prediction the probability of detecting a particle, thereby combining the two viewpoints.
(It would be helpful to reread Pauling’s viewpoint on page 10.)

How to “derive” the Schrodinger equation

How did Schrodinger develop his eponymous equation? Just like Niels Bohr developed his
atomic model, Schrodinger started with the classical wave equation and modified it with
a set of ad hoc (and sometimes inconsistent) assumptions. How he obtained it, however,
is less important that he obtained it. For the Schrodinger equation occupies the same
logical place in the structure of physics that Newton’s second law occupies. That is, no
one can state why it is correct, they can only state that it correctly predicts the outcomes
of experiments. For this reason, I cannot derive it, but I will argue instead that it is
plausible. Of course, the ultimate test is experiment, which it has passed perfectly since
its discovery.

We would like to obtain an equation of motion for a particle, an electron say, that
describes its wave character and its particle character at the same time. We still believe
that energy is conserved, so that for this particle

E = K + U, (7.1)

2Galileo even made some crude measurements of the value of g ≈ 4.7 m/s2. Others at around the
same time had made better estimates, ∼ 9.1 m/s2, but the primary difficulty was the lack of an accurate
timekeeper.
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where E, K, and U are the total energy, kinetic energy and potential energy, respectively.
This, of course, is a particle description. To merge this with the wave description, we must
use the fundamental equations of quantum mechanics as listed on page 165

E = h̄ω, ~p = h̄~k. (7.2)

We know that ω is the wave property analogous to the particle property E, and similarly
for ~k and ~p, so that using the nonrelativistic kinetic energy p2/2m means that our energy
conservation equation becomes

h̄ω =
h̄2k2

2m
+ U. (7.3)

Note that for U = 0 this is just the dispersion relation for a nonrelativistic electron that
we derived in Eq. (6.15). But what does it mean? How do we interpret this equation?

Schrodinger realized that since he wanted to describe a wave, he needed a wave func-
tion. Classically, the description of a plane wave always included some physical property
(surface height for water waves, pressure for sound waves, electric and magnetic fields
for electromagnetic waves) that was a traveling oscillation, which takes the mathematical
form

exp
(
i[~k · ~r − ωt]

)
. (7.4)

This describes a plane wave with angular frequency ω and wavenumber k traveling in the
direction of the vector ~k. Using Euler’s formula3 it can be written in terms of a cosine
and a sine, and in one dimension the dot product becomes ~k · ~r = kxx. Recall that in
elementary wave analysis, this function is usually written as a pure sinusiod

sin
(

2π

λ
x− 2πνt

)
= sin

(
2π

λ
[x− vt]

)
, (7.5)

where the wave speed v (this is the phase velocity) is given by v = ω/k = νλ. While ade-
quate in elementary wave mechanics, the sinusoidal notation is not sufficient in quantum
mechanics for two reasons. First, it is much simpler to manipulate exponential functions
than trigonometric functions, and it is useful to retain the ability to discuss sine and cosine
functions simultaneously. Second, the Schrodinger equation requires the use of complex
variables, and this is not possible using only trigonometric functions. Schrodinger called
the wave function Ψ and assumed it had the form of a plane traveling wave

Ψ = Ψ0e
i(~k·~r−ωt), (7.6)

where Ψ0 is a complex constant, so that Ψ is a complex function of x, y, z, and t.
The next step that Schrodinger took had no justification, but it is usually these kinds

of insights that lead to a radically new way of thinking, and this one certainly did. As
Born put it, it ushered in “... a new mode of thought in regard to natural phenomena.”4

Schrodinger multiplied Eq. (7.3) by Ψ

h̄ωΨ =
h̄2k2

2m
Ψ + UΨ, (7.7)

3eiθ = cos θ + i sin θ.
4Born, “The statistical interpretation of quantum mechanics,” Nobel Prize lecture, 1954.
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and realized that partial derivatives of Ψ would give the proper multiplicative factors
that are in Eq. (7.7), as long as Ψ took the form in Eq. (7.6). That is, the classical
wave equation was a partial differential equation, so to obtain a quantum wave equation
Schrodinger utilized the fact that the derivatives of the three dimensional plane wave in
Eq. (7.6) have the form

∂

∂t
Ψ = −iωΨ

∂

∂x
Ψ = ikxΨ (7.8)

∂

∂y
Ψ = ikyΨ

∂

∂z
Ψ = ikzΨ.

In fact, the spatial derivatives can all be written in a more compact manner

∇Ψ = i~kΨ, (7.9)

where ∇ is the gradient operator. With these partial derivatives, the energy conservation
equation that was modified to include wave properties, Eq. (7.7), can be written as a
partial differential equation

ih̄
∂

∂t
Ψ(~r, t) = − h̄2

2m
∇2Ψ(~r, t) + U(~r)Ψ(~r, t). (7.10)

This is the Schrodinger equation, where I’ve written explicitly the dependence of the
function Ψ on position and time, and I’ve used Ψ(~r, t) as a shorthand for Ψ(x, y, z, t).
Equation (7.10) is sometimes called the “time-dependent Schrodinger equation.”

The Born probability interpretation

If this function Ψ somehow describes an electron, how is it related to the electron that we
measure in the laboratory? Almost immediately after Schrodinger proposed his equation,
Max Born showed that Ψ(~r, t) gave information regarding the probability of finding the
electron at position ~r at time t. That is, Ψ is called the probability amplitude, and |Ψ|2
is the probability density. Formally, |Ψ(~r, t)|2 dV is proportional to the probability of
finding the electron in a volume dV near position ~r at time t, where |Ψ|2 ≡ Ψ∗Ψ, and Ψ∗

is the complex conjugate of Ψ. Integrating over all space
∫
|Ψ(~r, t)|2 dV (7.11)

gives the probability of finding the electron anywhere in the universe at time t, and this
should be equal to unity ∫

|Ψ(~r, t)|2 dV = 1. (7.12)

This last requirement is known as normalization. That is, the wave function Ψ may need
to be multiplied by a constant so that it satisfies Eq. (7.12), i.e., so that it is normalized.
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A word of caution: since it is a solution to the Schrodinger equation (7.10), the prob-
ability amplitude Ψ is, in general, complex, but the probability density — and hence the
probability — is real. This makes sense because probability is a physically measurable
quantity, and therefore it must be real.

7.2 Solving the Schrodinger Equation

Since the Schrodinger equation is a linear partial differential equation, the general solution
can be found by means of a technique called “separation of variables.” This technique
is different from that of the same name in ordinary differential equation theory. Here,
we make the assumption that the function of several variables Ψ(x, y, z, t) is a product of
functions of only one variable

Ψ(x, y, z, t) = X(x)Y (y)Z(z)T (t). (7.13)

It is simplest to first separate out only the time dependence, and make the following
assumption for the form of the solution

Ψ(~r, t) = ψ(~r)T (t), (7.14)

where again, ~r stands for all three spatial variables, (x, y, z). Note that the full wave
function is denoted by the upper case Greek letter Ψ, while the time-independent wave
function is denoted by the lower case Greek letter ψ. When Eq. (7.14) is substituted into
Eq. (7.10) the Schrodinger equation takes the form

ih̄
1

T (t)

∂

∂t
T (t) = − 1

ψ(~r)

h̄2

2m
∇2ψ(~r) + U(~r), (7.15)

where I have divided the entire equation by Ψ.
The next step is the key conceptual step involved in this technique. Note that the

left-hand-side of Eq. (7.15) is a function of only one variable, t, and the right-hand-side is
a function of only ~r. If this equation is to hold for all values of t and ~r, then each side of
the equation must be equal to a constant; in fact they must be equal to the same constant.
In this case, following the logic from Eqs (7.1) and (7.7), the constant must be the total
energy E. Setting each side equal to E, we have obtained an ordinary differential equation
for T (t), and a reduced partial differential equation (only three independent variables) for
ψ(~r). The equation for T (t) is

ih̄
dT

dt
= ET, (7.16)

whose solution is — up to a multiplicative constant —

T (t) = exp(−iEt/h̄), (7.17)

The full solution can therefore be written

Ψ(~r, t) = exp(−iEt/h̄)ψ(~r). (7.18)
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I have not included the integration constant in T (t) since I will eventually absorb it into
my final solution for ψ. Note that since E/h̄ = ω the argument of the exponential is just
−iωt, which means that the time dependence of Ψ is just that of a plane wave, exactly
our initial guess for its form.

The equation for ψ(~r) is

− h̄2

2m
∇2ψ(~r) + U(~r)ψ(~r) = Eψ(~r). (7.19)

This is called the time-independent Schrodinger equation, and is sometimes written

Hψ = Eψ, (7.20)

where H is the Hamiltonian operator (in this case it’s a differential operator that acts on
the function ψ) and is given by

H = − h̄2

2m
∇2 + U(~r). (7.21)

Note that Eq. (7.20) has the form of an eigenvalue equation, in which an operator acting
on a function results in a constant times that same function. In certain situations, this
means that there is a solution only when E is one of a set of discrete values. In other
words, the energy is quantized, hence the origin of the term quantum mechanics.

7.2.1 One-dimension

We’ll now solve Eq. (7.20) in one dimension. Even though ψ and Eq. (7.20) are three
dimensional, all of the essential physics can be understood by restricting our focus to only
one spatial dimension. That is, we’ll assume that both U and ψ are functions only of x,
not of y nor z. In this restricted regime the Hamiltonian operator is

H = − h̄2

2m

d2

dx2
+ U(x), (7.22)

and the time-independent Schrodinger equation simplifies to

d2ψ

dx2
=

[
2m(U − E)

h̄2

]
ψ. (7.23)

Even though U is in general an arbitrary function of x, the form of the solution to
Eq. (7.23) is clear. If U > E, then ψ must be an exponential function of x, ψ ∼ e±κx, but
if U < E, then ψ must be a complex exponential function of x, ψ ∼ e±ikx, where

κ2 =
2m(U − E)

h̄2 and k2 =
2m(E − U)

h̄2 . (7.24)

What do these solutions mean physically? They mean that in the regions of space where
the particle has a positive kinetic energy K, i.e., U < E — recall the energy conservation
Equation (7.1) — then the wave function is oscillatory in space and time, and our particle
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Figure 7.1: (a) Plot of potential energy U(x) and total energy E. Note that the kinetic
energy is positive for x > 0, but negative otherwise. (b) Possible wave function ψ consistent
with U in (a). Note both the exponential decay for x < 0 and the abrupt change of
wavelength at x = d.

is described by a traveling wave. This is the usual wave-particle duality. On the other
hand, in the regions of space where energy conservation requires that the kinetic energy
is negative, i.e., U > E, then the spatial behavior of ψ is “evanescent.” This region of
space, where the total energy of the particle is less than its potential energy, is called the
“classically forbidden region.” Elementary classical mechanics would not allow, say, a ball
to roll to the top of a hill unless the ball possessed a minimum amount of kinetic energy
at the bottom of the hill. Elementary quantum mechanics, on the other hand, requires
a nonzero wave function in these “forbidden” regions. Since the wave function is related
to the probability of the particle being observed in this region, it means that quantum
mechanics allows particles to be where they energetically cannot be. As we shall see, this
is the fundamental notion behind “quantum tunneling.”

Figure 7.1(a) depicts a potential energy function U that is a function of position x,
and, given a particular total energy E (that is constant) for the particle under description,
Fig. 7.1(b) shows a possible solution for ψ(x). Note that for x < 0, where U > E, the
wave function is evanescent, i.e., it exponentially decays. For positive x, there are two
regions, each with a different value of U , hence each with a different value of k, and hence
each with a different value of wavelength.

General requirements for ψ

Regardless of the shape of U(x), there are several general requirements that ψ(x) must
satisfy. They are determined by the properties of the governing differential equation (7.23),
as well as physical properties that ψ must have in order to be useful as a probability
amplitude.

First, the total energy E must be greater than the global minimum of U , Umin, for ψ
to be normalizable. If the entire domain, −∞ < x < +∞, is classically forbidden, then
ψ everywhere takes the form e+κx or e−κx, and these diverge as x → −∞ or x → +∞,
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Figure 7.2: Generic potential energy function U(x) which tends to constant values U+∞
and U−∞ as x → ±∞. Here, the total energy is E = 0, and the classical turning points,
as well as the forbidden and allowed regions are labeled.

respectively. Thus, there is no way to satisfy Eq. (7.12).
Second, in order for a particle represented by Ψ to be “bound,” i.e., restricted to a

localized region of space, the total energy E must be less than the potential energy at
±∞, i.e.,

E < U+∞ and E < U−∞ (7.25)

where U±∞ = U(x → ±∞). Classically, this would mean that the particle is trapped
between two classical “turning points,” xturn, defined to be where E = U(xturn). See
Fig. (7.2). Because ψ must evanescently decay when x > xR and when x < xL, the wave
function — and hence the probability of finding the particle — is confined mostly to the
classically allowed region. If, on the other hand, either E > U+∞ or E > U−∞, as is true
in Fig. (7.1)(a), then the particle is bounded on one side but can escape on the other.
This is called a “free particle,” to distinguish it from a bound particle.5

In addition to the requirement that the wave function must be normalizable, Eq. (7.12),
it must also be continuous and its slope must be continuous.6 When U changes continu-

5Sometimes the word “free” is meant to imply that there are no forces acting on the particle, i.e., the
potential energy is constant over all space. You will have to infer which is meant by the context.

6The function ψ must be continuous because there are no sources or sinks of probability — that is, in
this formalism, particles are not created nor are they destroyed. The fact that the derivative of ψ must
be continuous comes from the Schrodinger equation itself. Integrating Eq. (7.23) over an infinitesimal
domain, ∫ x0+ε

x0−ε

d

dx
(ψ′) dx =

∫ x0+ε

x0−ε

k2ψdx.

In the limit that ε → 0, the right-hand-side goes to zero, because neither k (and therefore U) nor ψ
diverge. This integral becomes a condition on ψ′

ψ′|x0+ε
x0−ε = 0,

which means that ψ′ is continuous.
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Figure 7.3: Potential energy U(x) for a one-dimensional infinite square well, also known
as a “particle-in-a-box.” The potential energy is zero within the well, but is infinitely
large outside the well, restricting the particle unambiguously to be located in the region
0 < x < L.

ously with x, then these requirements are automatically taken care of in the solution of the
second-order differential equation Eq. (7.23). However, when U changes discontinuously,
as in Fig. 7.1(a), it is simplest to solve Eq. (7.23) separately in each region where U is
constant, and then patch the solutions together at the boundaries. As you can see, these
requirements have been satisfied in Fig. 7.1(b). Such a potential energy function is called
“piecewise constant,” and is the form of U that we now tackle explicitly.

Particle in a box

Our first potential energy function is one of the simplest situations possible, known as
the 1D infinite square well, or the 1D “particle-in-a-box,” and is depicted in Fig. 7.3 and
specified by

U(x) =

{
0 0 < x < L
∞ otherwise

(7.26)

How do we go about solving Eq. (7.23) for such a function U? There are four steps. First,
for any finite energy E the value of κ is infinitely large outside the potential well, when
x < 0 and x > L. This means that our boundary conditions for ψ require that ψ = 0 in
those regions. I want to stress that although this potential energy function is not physical
(in realistic situations there would be an upper bound on U), it is mathematically the
simplest. Second, it is straightforward to solve Eq. (7.23) in the region 0 < x < L. In
this region, U = 0, so that k =

√
2mE/h̄, and the two linearly independent solutions to

d2ψ

dx2
= −k2ψ (7.27)

are either e+ikx and e−ikx, or sin(kx) and cos(kx).
If we were looking for traveling wave solutions — if our particle was moving freely

through space — the exponential form would be preferable. However, we are now in the
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position that Niels Bohr was in 1913 when he was trying to understand the hydrogen
atom. That is, we are looking for stationary state solutions to this problem. Any particle
in this potential well must be bound (and not traveling), and therefore cannot escape. For
this reason, the trigonometric form is simpler. In addition, the trigonometric functions
simplify the application of the boundary conditions. Our most general solution is therefore

ψ(x) = A sin(kx) + B cos(kx), (7.28)

where A and B are the two arbitrary complex constants. Third, we now apply the
boundary conditions at x = 0 and x = L. The only way for ψ(x = 0) to be zero is for the
constant B to be zero. The boundary condition at x = L is slightly trickier. For the other
term in Eq. (7.28) to vanish at the right side of the well requires that

sin(kL) = 0, (7.29)

or
kL = nπ, n = 1, 2, 3, . . . (7.30)

This requires k to take on discrete values, and given the definition of k, it requires the
energy E also to take on discrete values

En =
π2h̄2

2mL2
n2, n = 1, 2, 3, . . . (7.31)

Here, n is the quantum number that denotes the energy level of the particle in the box.
This mathematics should appear familiar to you. In your introductory study of res-

onance phenomena in waves on strings you solved the classical wave equation subject to
the boundary conditions. Formally the two problems are identical, and if you calculate
the allowed wavelengths of ψ, you’ll find λ = 2L/n, exactly the result for standing waves
on a string. Fourth, and last, we take our solution that satisfies the time-independent
Schrodinger equation along with the proper boundary conditions, and normalize it. That
is, we don’t yet know the correct value of A, but integrating over all space (the probability
of finding our particle somewhere is unity) gives

∫ ∞

∞
|ψ(x)|2dx = |A|2

∫ L

0
sin2(kx)dx =

L

2
|A|2. (7.32)

Since this integral must be unity, A must satisfy

|A|2 =
2

L
. (7.33)

Since A is complex, this equation only sets a condition on its amplitude, and the most

common choice is A =
√

2/L. Of course, any arbitrary phase is possible, which means

that A =
√

2/L eiφ is also correct, for any value of φ. For most cases, the simple choice of
φ = 0 is usually made.

Finally, we have the complete solution to the time-independent Schrodinger equation:
an infinite set of energies and their associated wave functions

ψn(x) =

√
2

L
sin

(
nπx

L

)
En =

π2h̄2

2mL2
n2 n = 1, 2, 3, . . . (7.34)
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These are what Bohr would call “stationary states.” If a particle is placed into the ground
state, n = 1, it would remain there forever (i.e., it would be stationary) if there were no
external influence. However, just like the hydrogen atom, if it is placed into an excited
state, n > 1, then after a finite amount of time it would emit a photon and make a
transition to a state with a lower energy, a lower “energy level.”

7.2.2 Two dimensions

A slightly more complicated potential energy function can now be considered, and with
very little extra effort. It is called a “particle in a 2D box.” The potential energy U , and
by extension ψ, is now a function of both x and y and takes a form similar to Eq. (7.26)

U(x, y) =

{
0 0 < x < L, 0 < y < L
∞ otherwise

(7.35)

This is a symmetric box, whose width in the x direction is the same as its width in the
y direction. Of course, we could choose an asymmetric box, with different widths, say Lx

and Ly, but that extra level of complexity does not add any more physical understanding.
In fact, in the next section I will extend this analysis to encompass identical particles, and
for the analogy to hold, symmetry is required.

The time-independent Schrodinger equation, Eq. (7.20), is still a separable partial
differential equation because the Hamiltonian operator is

H = − h̄2

2m

(
∂2

∂x2
+

∂2

∂y2

)
+ U(x, y). (7.36)

In order to be separable, i.e., solvable by the technique of separation of variables, the
potential energy function U must be able to be expressed as a sum of two terms

U(x, y) = Ux(x) + Uy(y), (7.37)

each of which is a function of only one of the variables. Since U = 0 in the present problem
(in the region of interest), we can use this technique.

Our guess, then, for the wave function ψ is a product of two functions

ψ(x, y) = X(x)Y (y). (7.38)

Inserting this into Eq. (7.20) with H given by Eq. (7.36) and U given by Eq. (7.37) results
in

− h̄2

2m

(
Y

∂2X

∂x2
+ X

∂2Y

∂y2

)
+ (Ux + Uy)XY = EXY. (7.39)

Dividing by ψ and rearranging
(
− h̄2

2m

1

X

∂2X

∂x2
+ Ux

)
+

(
− h̄2

2m

1

Y

∂2Y

∂y2
+ Uy

)
= E. (7.40)

Just like Eq. (7.15), I have grouped all the functional dependence on x into the first
term in parentheses, and all the functional dependence on y into the second term. Recall
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that the energy E is a constant and not a function of either variable. By the same logic
that followed Eq. (7.15), each term in parentheses must be a constant. Since we can use
whatever symbol we wish, it makes sense to use Ex and Ey for the two constants, which
means that the ordinary differential equation for X(x) is

d2X

dx2
=

[
2m(Ux − Ex)

h̄2

]
X, (7.41)

which is identical (in form) to Eq. (7.23). Because of this identical form, all conclusions
that we made about the solution ψ to Eq. (7.23) will also hold for the solution X to
Eq. (7.41). In particular, the classification of the solution’s character into either oscillatory
or evanescent depending on the sign of U − E is still valid, and therefore a division of
the domain into “classically allowed” and “classically forbidden” is still useful. For the
present case of a particle in a 2D box, ψ must be oscillatory in the region where U = 0,
and ψ = 0 elsewhere.

The form of the differential equation for Y (y) has the same form as Eq. (7.41), and
the constants must satisfy

Ex + Ey = E. (7.42)

This means that the total energy depends on two quantum numbers, one for the x de-
pendence and one for the y dependence. As we saw in Chapter 4, each dimension allows
one “degree of freedom,” and therefore requires one quantum number to describe the par-
ticle’s state. For this two-dimensional problem, the particle is governed by two quantum
numbers.

Since the solutions for both X(x) and Y (y) are given by Eq. (7.34), we can immediately
write down the full, normalized solution to Eq. (7.40) as

ψnm(x) =
2

L
sin

(
nπx

L

)
sin

(
mπy

L

)
(7.43)

with an associated energy

Enm = Ex + Ey =
π2h̄2

2mL2
(n2 + m2) where n,m = 1, 2, 3, . . . (7.44)

Each quantum state is characterized by two quantum numbers, n and m, and both the
wave function ψ and the energy are symmetric functions of these two quantum numbers,
which means that nothing changes under the interchange n ↔ m.

Degeneracy

Degeneracy, in the quantum sense, refers to two (or more) linearly independent states
that have the same energy. In the case of a particle in a symmetric 2D box, the states
(n,m) = (1, 2) and (2,1) are degenerate. That is, they have the linearly independent
eigenfunctions

ψ12(x) =
2

L
sin

(
πx

L

)
sin

(
2πy

L

)
(7.45)
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and

ψ21(x) =
2

L
sin

(
2πx

L

)
sin

(
πy

L

)
, (7.46)

but they both have an energy of

E12 = E21 = 5
π2h̄2

2mL2
= 5EG, (7.47)

where EG ≡ π2h̄2/2mL2 is the energy of the ground state in the 1D case. This property,
degeneracy, has the same meaning as that in linear algebra, where linearly dependent
eigenvectors of a given matrix have identical eigenvalues. In fact, in the Heisenberg rep-
resentation of quantum mechanics, the operators are matrices and the states are vectors.
The time-independent Schrodinger equation is thus a matrix equation, whose solutions
are eigenvectors and eigenvalues.

A more familiar example of degeneracy is the ground state of an electron in a hydrogen
atom, where two different quantum states have the same energy. These two states are both
written as 1s1, which means they have the quantum numbers n = 1, ` = 0, and m` = 0.
However, they have different values for the z-component of the electron’s spin, ms = +1

2

and ms = −1
2
. In reality, these two states do not have exactly the same energy because

of the magnetic interaction between the electron’s spin and orbital motion, and between
the spin of the electron and the spin of the proton. However, these energy differences are
small and result in fine structure in the hydrogen spectrum. Therefore, the degeneracy of
these states is only approximate.

Accidental degeneracy

A useful thing to do is to list the energies of the stationary states in numerical order. In
this way, it is straightforward to predict the spectrum (i.e., the frequencies of any emitted
photons) by calculating the energy differences between various states.7 For the particle in
a 2D box, some of the energy levels are

n m E/EG

1 1 2
1 2 5
2 1 5
2 2 8
...

...
...

5 5 50
1 7 50
7 1 50
...

...
...

7Recall that, by Bohr’s postulate, the frequency of an emitted photon when the particle makes a jump
from state n1 to state n2 is given by

hν = En1 − En2 .
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As we saw above, the (1,2) and (2,1) states are degenerate, but their degeneracy is a
consequence of the symmetry of the problem — it’s an expected degeneracy. Another
expected degeneracy is the states (1,3) and (3,1), and you can list many others. However,
there is another degeneracy in the list above that is not due to the symmetry of the
problem. The (5,5) and (1,7) states have the same energy, and this is called an accidental
degeneracy. The reason for this name is that there is no obvious underlying symmetry
that is responsible for this degeneracy.

Superposition states

Even though Eq. (7.34) lists all possible solutions to the time-independent Schrodinger
equation for this potential energy function, the most general solution to the full, time-
dependent, Schrodinger equation must include the time dependence, Eq. (7.17). Each
of the solutions in Eq. (7.34), however, has a different energy, so the theory of partial
differential equations states that the general solution to Eq. (7.10) is a linear combination
of all the possible solutions

Ψ(x, t) =
∞∑

n=1

cn ψn(x)e−iEnt/h̄ =
∑
n

cn

√
2

L
sin

(
nπx

L

)
exp

(
−i

π2n2h̄

2mL2
t

)
, (7.48)

where cn are the (complex) amplitudes of each state. This form for Ψ is not a product,
like Eq. (7.14). However, the product solution is not the most general solution. It does
result in one of Bohr’s stationary states, but solutions are not required to be stationary
(see below for the simplest nontrivial example), and the linear combination in Eq. (7.48)
is required to obtain all possible solutions.

The general solution, Eq. (7.48), tells us two new facts. First, particles do not have to
be in a single energy level, i.e., a single state. If more than one cn is nonzero, then the
particle is in what is called a “superposition” state. Of course, if you were to measure the
energy of the particle, you would only obtain one result, with the probability of obtaining
En proportional to |cn|2 (see postulate 5 in Sec. 7.3). This is one of the strange things
about quantum mechanics — the wave function gives information about the probability of
measuring a certain quantity rather than a specific value for that quantity. Second, when
the particle is in a superposition state, it is not stationary. That is, when only one cn is
nonzero, then the probability density is just

|Ψ|2 =
∣∣∣cnψne

−iEnt/h̄
∣∣∣
2

= |cnψn|2, (7.49)

which is not a function of time because the complex exponentials have a modulus of 1.
That is, the particle is in a stationary state, which means that whenever you measure the
energy you will obtain the same value. However, when the particle is in a superposition
state, for example, if it’s a mixture of two quantum states, n and m,

Ψ = cnψne
−iEnt/h̄ + cmψme−iEmt/h̄, (7.50)

where n 6= m, then the probability density is time dependent, because of the cross terms
in the absolute value,

|Ψ|2 =
∣∣∣cnψne−iEnt/h̄ + cmψme−iEmt/h̄

∣∣∣
2

(7.51a)
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= |cnψn|2 + |cmψm|2 (7.51b)

+c∗ncmψnψme−i(Em−En)t/h̄ + c∗mcnψmψne
−i(En−Em)t/h̄.

If the amplitudes are real, then we can write

|Ψ|2 = |cnψn|2 + |cmψm|2 + 2cncmψnψm cos ([Em − En]t/h̄) . (7.52)

This time dependence means that the probability of finding the particle at a particu-
lar position x changes with time, which complicates the interpretation of measurements
further.

7.3 The Postulates of Quantum Mechanics

Just like learning how to use Newton’s laws of dynamics, there are several rules for solving
quantum mechanical problems. They are called “postulates” or “axioms” because they
can’t be proven, but are justified post facto. These “rules” of quantum mechanics can be
boiled down to just a few. As Rolf Winter says in his quantum mechanics textbook, “If
you are formally inclined and mathematically skillful, you might consider clipping [this]
paragraph and throwing the rest of the book away.”8

1. The wave function (or state function) Ψ contains all the information that can be
known about the system.

2. The time development of Ψ is determined by the Schrodinger equation

ih̄
∂Ψ

∂t
= HΨ. (7.53)

3. Observable quantities are represented by Hermitian operators A. These operators
have a complete set of eigenfunctions and eigenvalues

AΨn = anΨn. (7.54)

4. The wave function can be represented by the expansion

Ψ =
∑
n

cnΨn, where cn =
∫

Ψ∗
nΨ d3r. (7.55)

5. The possible results of a measurement of A are the eigenvalues an, and the probability
of obtaining an in any given measurement is |cn|2.

Axiom 1 means that, just like the quantity ~r(t) describing the trajectory of a particle
in classical mechanics, the wave function Ψ(~r, t) has within it complete information about
the system, although it cannot be directly measured.

8Winter, Quantum Physics, page 131.
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Axiom 2 says that the Schrodinger equation is the quantum counterpart to Newton’s
second law

d2

dt2
(m~r) = ~F (~r, t), (7.56)

which describes how ~r(t) evolves in time. Neither of these equations can be “derived” but
must be chosen so that they agree with experiment.

Axioms 3-5 are at the heart of the quantum weirdness. Classically, given ~r(t), a
solution to Newton’s second law, it is straightforward to predict where the particle will
be, as well as its velocity and kinetic energy, at a particular time t. They are just ~r(t),
~v = d~r(t)/dt, and mv2/2. The corresponding predictions in quantum theory require more
involved calculations. For example, if we wish to measure the energy E, which is an
observable quantity, we first form the corresponding operator H, and express Ψ as a linear
combination of the eigenfunctions of H, as shown in Eq. (7.55) in general, or Eq. (7.48)
for the specific case of the 1D square well. The only possible results of any measurement
are the eigenvalues En of H. For example, if the particle is in the 1D infinite square well,
only π2h̄2n2/2ma2 are possible energy measurements.

Other Hermitian operators that we have seen include the position x, which is just a
multiplicative operator (i.e., the operation needed is simple multiplication), and momen-
tum px, which is a differential operator. “Hermitian” simply means that the eigenvalues
are real, and not complex. Of course, since the result of a measurement is one of the
eigenvalues, and in the laboratory we only measure real quantities, the eigenvalues of any
allowed operator (that represents a quantity that can be measured — i.e., an observable)
must be real.

Of course, since Ψ must be normalized, you can show (Problem 120) that this normal-
ization requirement demands that

∑
n

|cn|2 = 1. (7.57)

This simple result arises from the fact that the sine functions are “orthonormal” over the
interval 0 < x < L, which means that

∫ L

0
ψnψm dx = δnm, (7.58)

where δnm is the Kronecker delta symbol, and is equal to 1 if n = m, but is equal to zero
if n 6= m. Of course, the mathematics in this section is just the mathematics involved in
the Fourier expansion of a function over the interval 0 < x < L.

Measurement

There has been quite a bit written about the measurement process in quantum mechanics
and what it means. At this point, we can add a two axioms to our list that define what
it means to make a measurement.

6. The measurement of an observable A that yields the value an will leave the system
in state Ψn. This is what is meant by the “collapse” of the wave function.
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7. If the system is in state Ψ, then the average of many measurements of A is called
the “expectation value” and is

〈A〉 =
∫

Ψ∗AΨdV. (7.59)

Axiom 6, along with axiom 2, points out another aspect of quantum weirdness, which
has to do with how the wave function Ψ evolves in time. There are two ways in which it
can change: the first is in a continuous, causal, manner as described by the Schrodinger
equation (Axiom 2), and the second is discontinuous and probabilistic which occurs when
an observation is made (Axiom 6). In the first case the system is isolated and is not
disturbed by any measurement apparatus. This structure is called the “Copenhagen”
interpretation of quantum mechanics, because it was hammered out by Bohr and his
colleagues.

The integral in axiom 7 is interpreted in the following way. Just as with Eq. (3.25)
describing the average value of the roll of a loaded die, or with Eq. (3.27) describing the
average lifetime of a radioactive nucleus, you might expect that the expectation value of
A would be an integral of A times the probability, which is Ψ∗Ψ. This is almost correct.
However, it turns out that to agree with experiment (always our goal) the operator A
must act to the right on the wavefunction Ψ, and only then is the result multiplied by Ψ∗.
Sometimes the integrand is written as Ψ∗(AΨ) to show this explicitly. It turns out that
the order doesn’t really matter for multiplicative operators like the position x, but for
differential operators, like momentum px = −ih̄∂/∂x, it must be clear that the derivative
is acting only on Ψ and not on Ψ∗.

7.4 Free particles and wave packets

While you might think that a free particle, with no forces acting on it, would be the
simplest case to solve, it turns out that there are subtle issues with normalization that
makes the 1D particle-in-a-box the simpler case mathematically, which is why we solved
that case first. In general,while the time-independent Schrodinger equation (Hψ = Eψ)
looks like an eigenvalue equation which is solvable only for certain, discrete, values of E
(and indeed that is the way it behaves in many cases), for a free particle any value of E
is allowed (see page 188 for the distinction between bound and free).

Here, we consider a particle moving in one dimension, just like in Sec. 7.2.1, but now
U = 0 for all x. Since the particle feels no force, this requires that dU/dx = 0, which means
that U can take on any constant value, and we can choose U = 0 without loss of generality.
With these caveats, the time-independent Schrodinger equation can be rewritten as

∇2ψ + k2ψ = 0, (7.60)

where k2 = 2mE/h̄2. This equation is called the Helmholtz equation.9 For our purposes,
a simple solution is

ψ(x, y, z) = ψ0e
i~k·~r, (7.61)

9For those of you with a mathematical bent, it is an elliptic partial differential equation, and shows up
in electrostatic phenomena, diffusion and heat flow, waves in solids, and even nuclear reactors.
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where ~k = kxx̂ + kyŷ + kzẑ. Remember that the full solution to the time-dependent
Schrodinger equation requires us to multiply ψ by the exponential factor exp(−iωt) so
that

Ψ(x, y, z, t) = ψ0e
i(~k·~r−ωt). (7.62)

This, of course, is just a traveling plane wave, traveling in the direction of ~k with a phase
speed of ω/k. We have just described a particle with a matter wave of energy E (remember
that ω = E/h̄).

While this is a perfectly good description of a wave, it is a horrible description of a
particle, because this wave has a nonzero amplitude everywhere! The prescription that
|Ψ|2 is the probability density means that the particle could be anywhere in the universe
with equal probability, |Ψ|2 = |ψ0|2, which is a constant. This unphysical behavior is
“explained” by Heisenberg: if we know the kinetic energy exactly, then we know the
momentum exactly, and then we have no knowledge of the location. To describe a particle,
then, we need to do what we did at the end of Chapter 6, and that is to construct a wave
packet, which is a traveling wave with a fairly well-defined frequency and wave number,
but a nonzero amplitude only in a localized region of space. In three dimensions, the math
can get quite tricky, so I’ll restrict my analysis to one dimension.

One-dimensional wave packet

In one dimension Eq. (7.62) becomes

Ψ(x, t) = ψ0e
i(kxx−ωt). (7.63)

To construct a wave packet we will extend our development in Chapter 6 where we added
two waves with slightly different wavenumbers. In that case, the superposition resulted in
what looked like beats, with each beat resembling a localized wave packet. However, the
entire wave function still extended to infinity, and therefore was not localized. To construct
a truly localized wave packet, we must add together, in superposition, an infinite number
of different waves, all with different wavelengths and possibly different amplitudes. The
mathematical representation is not a sum, but an integral10

Ψ(x, t) =
∫ ∞

−∞
ψ0(kx)e

i(kxx−ωt)dkx, (7.64)

where ω is a function of kx

ω(kx) =
E

h̄
=

h̄k2
x

2m
. (7.65)

This is just the dispersion relation that we obtained in Chapter 6, and it is needed here
because each wave with a particular wavelength kx is associated with particular energy E,
and hence a particular angular frequency ω.

Depending on the exact functional form of ψ0(kx) the integral in Eq. (7.64) ranges
from merely difficult to impossible to evaluate analytically. However, there are methods of
approximating the integral that are simple and at the same time can result in fairly deep

10This integral is called a Fourier transform. It is a logical extension of a Fourier series, in the limit
where the allowed values of the wavelength are continuous, not discrete.
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Figure 7.4: A simple amplitude function that allows the evaluation of Ψ(x, t). This am-
plitude is given by ψ0 = A when k0 − k1 < kx < k0 + k1, and ψ0 = 0 for all other values
of kx.

physical insight. One shape of ψ0(kx) for which an approximation is fairly easy is shown
in Fig. 7.4 and is defined by

ψ0(kx) =

{
A for k0 − k1 < kx < k0 + k1

0 otherwise
(7.66)

This is called a “box” function where 2k1 is the width of the box. It means that the waves
we are adding all have wavelengths near 2π/k0. If k1 is small enough, then we can expand
all the functions of kx inside the integrand in a Taylor series around k0. In particular, the
dispersion relation can be approximated by

ω(kx) ≈ ω0 + ω′0(kx − k0), (7.67)

where I have ignored the higher order terms in the Taylor series, and I have defined
ω0 ≡ ω(k0) and

ω′0 ≡
dω

dkx

∣∣∣∣∣
k0

. (7.68)

If this approximation is made, then the integral in Eq. (7.64) becomes straightforward,
and you can show (see Problem 135) that evaluation gives

Ψ(x, t) = (2Ak1)

[
sin [k1(x− ω′0t)]

k1(x− ω′0t)

]
ei(k0x−ω0t). (7.69)

I’ve written this in a suggestive manner. The first factor, (2Ak1), is just a constant that
must be determined through normalization (see Problem 136). The second factor in the
square brackets is the envelope (amplitude) of the wave packet. Remember that any
function that can be written as f(x− vt) retains its shape but “travels” to the right. The
factor inside the square brackets is just such a function, and therefore moves at speed ω′0,
as given by Eq. (7.68). This is what we really mean when we say “group velocity,” and as
long as the distribution of wavenumbers is narrow, it is equal to the derivative of ω with
respect to kx, evaluated at the center of the amplitude distribution. The last factor, the
exponential, is a traveling plane wave with a frequency and wavelength corresponding to
the center of the amplitude function ψ(kx). In total, then, Ψ is an amplitude-modulated
traveling plane wave, whose phase velocity is ω0/k0 and whose group (or envelope) velocity
is ω′0.
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7.5 Symmetry in the 1D Schrodinger Equation

[Q]uantum symmetries ... simply have no place in the classical context,
a first example being the ... permutation symmetry of states of n identical
particles. These symmetries hold the key to the exclusion principle and to
quantum statistics.

— Abraham Pais

Symmetry plays a large role in the modern understanding of physics. For example,
the fact that space is translationally invariant (here exhibits the same physical laws as
there) automatically implies that momentum is a conserved quantity. And the fact that
space is isotropic (physics is the same in all directions) implies that angular momentum
is a conserved quantity. These are just two examples of Noether’s Theorem, proved in
1915 by Emmy Noether. At its most simplistic level, this theorem states that “to every
symmetry there corresponds a conserved quantity.”

In this section I want to explore some of the ramifications that follow from the sym-
metry properties of a simple system: the one-dimensional, time-independent Schrodinger
equation.

Theorem

Consider the one-dimensional, time-independent Schrodinger equation

− h̄2

2m

d2

dx2
ψ + U(x)ψ = Eψ. (7.70)

If U(x) is symmetric (even) in x, i.e., U(−x) = U(x), then the solutions ψ(x) can always
be taken to be purely even or purely odd in x, i.e., ψ(−x) = ±ψ(x).

Proof

First, assume that ψ(x) is a solution to Eq. (7.70). Second, let’s investigate whether or
not ψ(−x) is also a solution. That is, we wish to determine if

− h̄2

2m

d2

dx2
ψ(−x) + U(x)ψ(−x) = Eψ(−x). (7.71)

is satisfied or not. To do this, let’s make the transformation x → −x, which is called
reflection, or the parity operation.11 We need to know how each of the terms in Eq. (7.71)
transform. It is straightforward to see that

d2

dx2
→ d2

d(−x)2
=

d2

dx2
,

11Rigorously, the parity operator, commonly written as P̂ , is defined by its effect on a function

P̂ f(x) = f(−x).

If the function f is even, then P̂ f(x) = (+1)f(x), and if the function f is odd, then P̂ f(x) = (−1)f(x).
This means that the eigenvalues of P̂ are ±1. Liboff, in his book Introductory Quantum Mechanics, has
a good discussion of parity on pages 182-186.



7.5. SYMMETRY IN THE 1D SCHRODINGER EQUATION 201

U(x) → U(−x) = U(x),

and, of course,
ψ(−x) → ψ(−(−x)) = ψ(x).

Therefore, Eq. (7.71) transforms to Eq. (7.70), which means that ψ(−x) is also a solution
to Eq. (7.71).

Since both ψ(x) and ψ(−x) are solutions of Eq. (7.70), then it is also true that the
even linear combination

ψ+ ≡ ψ(x) + ψ(−x) (7.72)

is a solution. In addition, the odd combination ψ− ≡ ψ(x)−ψ(−x) is a solution. Finally,
since ψ(x) = 1

2
(ψ+ + ψ−), this means that we can always express ψ as a linear combination

of even and odd functions. Q.E.D.

Implications

There are several important ramifications of this theorem that are far reaching. I will
discuss two of them here, the second of which is an explanation of the Pauli exclusion
principle.

1. Operators. Equation (7.70) can be rewritten in the form
[
− h̄2

2m

d2

dx2
+ U(x)− E

]
ψ(x) = 0, (7.73)

or
L(x)ψ(x) = 0, (7.74)

where L is a differential operator that happens to be symmetric. That is, it has “even
parity,” or L(−x) = (+1)L(x). Clearly, if ψ(x) is a solution to Eq. (7.74), then ψ(−x) is
also a solution. There are several ordinary differential equations of mathematical physics
that have this property. For example, the simple harmonic oscillator equation

(
d2

dt2
+ ω2

)
x = 0 (7.75)

has even parity. Similarly, Legendre’s equation
(

(1− z2)
d2

dz2
− 2z

d

dz
+ `(` + 1)

)
y = 0, (7.76)

which we will encounter in Sec. 7.6 when solving the angular part of the three-dimensional,
time-independent Schrodinger equation in spherical coordinates, exhibits even parity. On
the other hand, Laguerre’s equation,

xy′′ + (1− x)y′ + ay = 0, (7.77)

obtained from the radial part of the 3D Schrodinger equation, does not exhibit any parity
(neither even nor odd). Therefore, solutions to Laguerre’s equation cannot be written as
a sum of even and odd terms.
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2. The Pauli exclusion principle. Symmetry arguments similar to the theorem I have
just proven can be used to explain the Pauli exclusion principle. I’ll use as my example
the solutions to the Schrodinger equation for one particle in a one-dimensional infinite
square well

ψn =

√
2

L
sin

(
nπx

L

)
En =

π2h̄2

2mL2
n2 n = 1, 2, 3, . . . (7.78)

Back in Sec. 7.2 we interpreted this to mean that the particle can occupy any of the states,
or energy levels.

What happens if we try to put two particles in the same box? We need to develop and
solve the Schrodinger equation for two particles, which means that we need to be careful
about distinguishing the position of particle 1, x1, from the position of particle 2, x2. Of
course, the wave function ψ must depend on the positions of both particles, and since the
Schrodinger equation is just a statement of energy conservation, it can be written as

(
− h̄2

2m

d2

dx2
1

− h̄2

2m

d2

dx2
2

)
ψ(x1, x2) + U(x1, x2)ψ(x1, x2) = Eψ(x1, x2). (7.79)

The first term is the sum of the kinetic energies and the second term is the sum of the
potential energies of the two particles. I wrote the potential energy as U(x1, x2) because
it is in general determined by any external forces as well as any interaction forces between
the two particles. If they are electrons, say, then there will be a repulsive potential energy
that depends on |x1 − x2| in addition to the external force the holds them bound in the
1D box.

The simplest case is to assume that the two particles are not interacting. Then U = 0
in the box, there is no potential energy due to any interaction between the two particles,
and we can use our technique of separation of variables to solve the Schrodinger equation.
Let

ψ(x1, x2) = φ(x1) ξ(x2), (7.80)

where φ is the wave function describing particle 1 and ξ is the wave function describing
particle 2. That is, we are guessing that the two-particle wave function can be expressed
as a product of one-particle wave functions. It is pretty clear that with this guess the
Schrodinger equation will separate into two equations, one for x1 and the other for x2

(just like the result for a two-dimensional box in Sec. 7.2.2), and the boundary conditions
on each separate wave function will be the same as before. Hence, the full normalized
solutions are

φn1(x1) =

√
2

L
sin

(
n1πx1

L

)
n1 = 1, 2, 3, . . . (7.81)

ξn2(x2) =

√
2

L
sin

(
n2πx2

L

)
n2 = 1, 2, 3, . . . (7.82)

where the total energy is

E =
π2h̄2

2mL2

(
n2

1 + n2
2

)
. (7.83)

Notice that this is mathematically identical to the case of one particle in a two-dimensional
square well.
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Let’s say we place particle 1 in state 5 and particle 2 in state 6. The wave function
would be

ψ(x1, x2) = φ5(x1) ξ6(x2). (7.84)

If the two particles are different, an electron and a proton, say, then we have no problem
distinguishing them, and Eq. (7.84) is the correct wave function. But, what if they are
both electrons and are therefore indistinguishable?12 That is, we cannot tell them apart?
In this case, how do we know that we haven’t put particle 1 in level 6 and particle 2 in
level 5? Our wave function must indicate the fact that the particles are indistinguishable.
That is, it must encompass both possibilities at the same time. One way is to construct
the following symmetric wave function

ψe(x1, x2) =
1√
2

[
φ5(x1) ξ6(x2) + φ6(x1) ξ5(x2)

]
, (7.85)

which turns out to be “even” under the interchange of the two particles

ψe(x1, x2) = ψe(x2, x1). (7.86)

This wave function explicitly indicates that we don’t know which particle is in which state.
In fact, there’s an equal probability of each of the two possibilities. A second way is to
construct the anti-symmetric wave function

ψo(x1, x2) =
1√
2

[
φ5(x1) ξ6(x2)− φ6(x1) ξ5(x2)

]
, (7.87)

which is odd under the interchange of the two particles

ψo(x1, x2) = −ψo(x2, x1). (7.88)

How do we decide which wave function to choose? The even or the odd? It turns out
that bosons, particles with integer spin, must have symmetric wave functions, like ψe. On
the other hand, fermions, particles with half-integer spin, must have anti-symmetric wave
functions, like ψo. If you try to put two identical fermions in the same quantum state, say
the ground state of the 1D box, the (antisymmetric) wave function is zero

ψ(x1, x2) =
1√
2

[
φ1(x1) ξ1(x2)− φ1(x1) ξ1(x2)

]
= 0, (7.89)

and the wave function vanishes. Therefore, two fermions cannot be in the same quantum
state. This is the precise formulation of the Pauli exclusion principle.

12Recall that one of the features of quantum mechanics is that all electrons are identical. As David
Griffiths (page 204 of Introduction to Quantum Mechanics) puts it

The fact is, all electrons are utterly identical, in a way that no two classical objects can ever
be. It’s not just that we don’t happen to know which electron is which; God doesn’t know
which is which, because there is no such thing as “this” electron, or “that” electron; all we
can legitimately speak about is “an” electron.
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7.6 Three dimensions - central potential

An entire book can be written (and has) on solving the Schrodinger equation in three
dimensions, especially for physically relevant cases, such as the hydrogen atom. In this
section, I just want to give you a taste of the extra complexity, and so we’ll look at just
one special case — the 3D infinite spherical well.

The separation of variables in three dimensions is formally identical to that in two
dimensions, which we have already carried out in the case of the particle in a 2D box. The
time independent Schrodinger equation, Hψ = Eψ, becomes

− h̄2

2m
∇2ψ + Uψ = Eψ, (7.90)

which is actually the form in which Schrodinger first obtained. If the potential energy can
be written in the form

U(x, y, z) = f(x) + g(y) + h(z), (7.91)

a sum of three functions, each of only one variable, then it is possible to choose Cartesian
coordinates for separation, and write the wave function ψ as a product of three functions,
ψ(x, y, z) = F (x)G(y)H(z), each of only one variable.

However, a central potential is one in which the potential energy function depends only
on r, the radial distance from the origin, and cannot be written in the form of Eq. (7.91).
It can, however, be separated in spherical polar coordinates, r, θ, and φ. Recall that in
spherical polar coordinates the gradient operator can be written

∇ = r̂
∂

∂r
+ θ̂

1

r

∂

∂θ
+ φ̂

1

r sin θ

∂

∂φ
, (7.92)

and the Laplacian operator can be written

∇2 = ∇ · ∇ =
1

r2

∂

∂r

(
r2 ∂

∂r

)
+

1

r2 sin θ

∂

∂θ

(
sin θ

∂

∂θ

)
+

1

r2 sin2 θ

(
∂2

∂φ2

)
, (7.93)

so that our technique is to separate variables by making the guess

ψ(r, θ, φ) = R(r) Θ(θ) Φ(φ) (7.94)

= R(r) Y (θ, φ),

where the second line lumps the angular coordinates together into Y (θ, φ), which is called a
“spherical harmonic.” I first want to separate out the radial equation, so this combination
makes sense. As usual, plugging this guess into the Schrodinger equation, dividing by ψ,
and rearranging, results in

1

R

∂

∂r

(
r2∂R

∂r

)
− 2mr2

h̄2

(
U(r)− E

)
= − 1

Y

{
1

sin θ

∂

∂θ

(
sin θ

∂Y

∂θ

)
+

1

sin2 θ

∂2Y

∂φ2

}

= L. (7.95)

In the last line I’ve set both sides to a constant that I’ll call L.
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It is customary to normalize the radial part of the wave function separately from the
angular part. That is, even though all that is required is

∫
|ψ(~r)|2 d3r = 1, (7.96)

where d3r = r2dr sin θdθ dφ, the integral can be split up into two factors, each of which
we require to be unity

∫
|R(r)|2r2 dr = 1

∫
|Y (θ, φ)|2 sin θ dθdφ = 1. (7.97)

Solving the angular equation for Y (θ, φ) is beyond the scope of this book, but it is fairly
straightforward to solve the radial equation for R(r).

The radial equation

The differential equation for R(r) turns out to be easily solvable if we make a change of
variable from R to u

u(r) ≡ rR(r), (7.98)

which leads to the ordinary differential equation13

− h̄2

2m

d2u(r)

dr2
+

{
U(r) +

h̄2

2m

L
r2

}
u(r) = Eu(r). (7.99)

Notice that this is exactly the same form as the one dimensional Schrodinger equation,
but with an “effective” potential energy

Ueff (r) = U(r) +
h̄2L
2mr2

, (7.100)

which is just the true potential energy U plus a term that describes the centrifugal potential
energy. You are familiar with the fictitious centrifugal force, but what is the centrifugal
potential energy? Recall that any conservative force can be written in terms of a potential
energy, so the centrifugal force, i.e., that which feels like you are being pushed outwards,
has only a radial component

Fr = mω2r, (7.101)

and any potential energy is related to the force by Fr = −dU/dr, which gives U =
mω2r2/2. The angular momentum of a particle of mass m traveling in a circle of radius
r with velocity v is L = mvr = mωr2, so that the centrifugal potential energy can be
written

U =
mω2r2

2
=

L2

2mr2
. (7.102)

13To obtain this form, I have rewritten the first term in Eq. (7.95) in the following way

1
r2

∂

∂r

(
r2 ∂R

∂r

)
=

1
r

∂2

∂r2
(rR) .
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It is clear, then, that h̄2L is the square of the angular momentum. From Chapter 1, recall

that the angular momentum is quantized, and takes on the possible values L =
√

`(` + 1)h̄,

which implies that when we solve the differential equation for Y (θ, φ) we should find out
that the allowed values of the separation constant are L = `(` + 1). Indeed, this is the
case. You can show that when solving the angular part of the Schrodinger equation for
Θ(θ), normalizable solutions can only be found for integer values of `.

The infinite spherical well

One of the simplest cases, just as in one dimension, is that of an infinite well. In this case,
however, the well is spherical in shape, and has a potential energy function that takes the
form

U(r) =

{
0 r < a
∞ r > a

(7.103)

For simplicity, let’s look at the case where L = 0. Of course, this means that ` = 0,
which is a spherically symmetric solution with zero total angular momentum. Just like
in one dimension (because the Schrodinger equation is formally identical to that case)
the potential energy is piecewise constant. Hence, we can break the solution up into two
regions. Inside the well (for r < a) the equation for u is

d2u

dr2
= −k2u, (7.104)

where k2 = 2mE/h̄2, and outside the well (for r > a) the wave function must be zero, i.e.,
u = 0. Since we are looking for stationary states, it’s natural to look for solutions of the
standing wave type—rather than the traveling wave type—so we can express the general
solution as

u(r) = A sin(kr) + B cos(kr), (7.105)

which means that R is

R(r) =
u

r
= A

sin(kr)

r
+ B

cos(kr)

r
. (7.106)

The wave function must be finite at the origin (i.e., as r → 0), which means that R must
be finite also. This requires, therefore, that B = 0, because otherwise R ∼ 1/r, and
|Ψ|2 ∼ 1/r2, which is not normalizable. The other boundary, at r = a, again requires that
R = 0, just as in the one dimensional case. As in the one dimensional infinite square well,
this second boundary limits the allowed values of the wavelength

ka = nπ n = 1, 2, 3, . . . (7.107)

which limits the total energy to the allowed values

En =
h̄2k2

2m
=

π2h̄2

2ma
n2. (7.108)

Interestingly, this has exactly the same form as the one dimensional infinite square well,
although the meaning of a here and L in the one dimensional case are different. The
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normalized wave functions are slightly different from the 1D case

Rn0(r) =
1

r

√
2

a
sin

(
nπr

a

)
, (7.109)

where the radial wave function carries two quantum numbers, both n and `. It turns out
that Rn0 is related to a spherical Bessel function of order 0, j0(x) = sin x/x. The case
where ` = 1 is covered in Problem 139.

Problems

120. Show that in order to normalize Ψ in the one-dimensional particle-in-a-box,
Eq. (7.57) must be satisfied. That is, evaluate the integral in Eq (7.12) using the wave-
function in Eq. (7.48).

121. (a) Estimate the ground state energy of an electron in an atom by treating it as
if it were in an infinite square well (1D) of width equal to an atomic diameter of 10−10 m.
(b) Estimate the ground state energy of an α particle in a nucleus by treating it as if it
were in an infinite square well (1D) of width equal to a nuclear diameter of 10−14 m. (c)
Estimate the ground state energy of an electron in a nucleus by treating it as if it were in
an infinite square well (1D) of width equal to a nuclear diameter of 10−14 m.

122. The fact that the ground state energy (or “zero-point” energy) is not zero
is a consequence of Heisenberg’s indeterminacy principle. To show this, note that if a
particle is bound in a one-dimensional box of size L, then ∆x ≈ L. Now carry out the
following steps: (a) Using Heisenberg’s inequality, what is the required indeterminacy of
the momentum, ∆p? (Use the correct principle ∆x∆p ≥ h̄/2.) (b) What is the magnitude
of the momentum p of a particle in the ground state of an infinite square well? Since the
particle can be moving either to the left or to the right, the uncertainty of the momentum
of a particle in the ground state is ∆p ≈ 2p. (c) Compare the two values obtained for ∆p.
Do they agree?

123. Obtain a Balmer-like formula for the spectrum of a particle of mass m in a 1D
box. That is, obtain the counterpart to Eq. (4.18).

124. For a 1-kg ball in a 1-m2 square two-dimensional box (i.e., L = 1 m), what is
the lowest quantum energy allowed? If the ball had this kinetic energy, how long would
it take to travel from one side of the box to the other? Is this time something that you
think you could measure?

125. For a 2D infinite square well, what is the next highest energy level (above 50EG)
that exhibits an “accidental degeneracy”? List all the possible sets of quantum numbers
for this state.

126. Enumerate the lowest 15 energy levels in a three-dimensional symmetric box
(along with their quantum numbers). There should be one level that is accidentally
degenerate. Which one is it?

127. What are the quantum numbers for the 3D symmetric box with energy E =
363 EG = 363

(
π2h̄2/2ma2

)
. Hint: the degeneracy (some of which is accidental) is 13.
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128. Sketch the wavefunctions ψ(x) for the lowest four energy levels of the potential
well on the right. Make sure to utilize
your knowledge of symmetry, continu-
ity, and normalizeability. Indicate the
energies on a plot of U(x), and draw
four separate plots of the four wavefunc-
tions. Label the locations of the classi-
cal turning points.

129. In three dimensions, the parity operator is defined as

P̂ f(x, y, z) = f(−x,−y,−z).

(a) What is the parity of the following function?

g = A(x + y + z)e(x2+y2+z2).

(b) Can you express the effect of the parity operator if f is written as a function of spherical
coordinates f = f(r, θ, φ)?

130. (a) Given a wavefunction

ψ(x) =

{
A sin(kx) 0 < x < π/k

0 otherwise

find A. That is, normalize the wavefunction. (b) Find 〈x〉, the average position of the
particle.

131. Show that the expectation value of x2 for a particle in state n of a 1D infinite
square well is

〈x2〉 = L2
(

1

3
− 1

2π2n2

)
.

132. Show that the root-mean-square deviation for the position of a particle in state
n of a 1D infinite square well is

(∆x)rms ≡
√
〈(∆x)2〉 = L

√
1

12
− 1

2π2n2
.

133. Continue the line of investigation that you started with Problem 132 by calcu-
lating 〈px〉, 〈(px)

2〉, and (∆px)rms for the nth state in the 1D infinite square well. Recall
the definition of expectation value in Eq. (7.59) and the fact that the momentum operator
is

px ≡ h̄

i

∂

∂x
.

To obtain the expectation value of p2
x you will need to differentiate ψ twice

p2
xψ = −h̄2∂2ψ

∂x2
.

134. Using the results of Problems 132 and 133, show that all states in the 1D infinite
square well satisfy Heisenberg’s uncertainty relation.
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135. Evaluate the integral in Eq. (7.64) for the amplitude function in Eq. (7.66) using
the Taylor series approximation for ω(kx) in Eq. (7.67). You should obtain as your answer
Eq. (7.69).

136. Normalize the wave function in Eq. (7.69). That is, determine A.

137. A more realistic wave packet can be obtained by using a more realistic amplitude
function than in Eq. (7.66). In this problem we’ll just worry about the spatial dependence,
so that at some time t0 the wave function is

y(x) =
∫

A(k) cos(kx) dk.

If you use a Gaussian for the amplitude distribution of wavenumbers

A(k) = exp

[
−(k − k0)

2

2k̄2

]
,

where k0 is the “central” wavenumber (i.e., the wave with the largest amplitude) and k̄
gives a measure of the width of the amplitude distribution, then you can show that the
wave packet can be written

y(x) =
√

2πk̄ e−k̄2x2/2 cos(k0x),

which is a sinusoidal oscillation with a Gaussian envelope function. (a) Sketch (by hand,
not on a computer) A(k), making sure to label the axes and the locations of k = k0 and
k = k0± k̄. (b) Show that the integral over k results in the wave packet y(x) above. HINT:
The technique for integrals of this type is to rewrite the cosine function as a sum of complex
exponentials: 2 cos φ = eiφ + e−iφ. Then you are left with an integral of exponentials, and
“completing the square” in the exponent allows you to write the integral in the form of
the error function erf(x)

erf(x) =
2√
π

∫ x

0
e−z2

dz,

where erf(0) = 0 and erf(∞) = 1.

138. Consider a particle of mass m in a 1D infinite well of width L that is not in a
stationary state. That is, assume that you place the particle (at t = 0) in a superposition
state (NOT a stationary state) that is half ground state and half first excited state:

f(x) = sin
(

πx

L

)
+ sin

(
2πx

L

)
.

This is not, of course, normalized. Express this initial wave function in the form

Ψ(x, t = 0) = c1ψ1(x) + c2ψ2(x),

where

ψn(x) =

√
2

L
sin

(
nπx

L

)
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are the normalized stationary eigenfunctions. (a) Normalize Ψ(x, t = 0). That is, evaluate
c1 and c2. (b) Write the full time dependent wave function Ψ(x, t). That is, recall that
the general solution to the partial differential equation is

Ψ(x, t) =
∑
n

cnψn(x) exp
(
−i

En

h̄
t
)

,

where in this case all cn are zero except for c1 and c2. (c) Calculate the expectation value
of the position

〈x〉 =
∫ L

0
Ψ∗xΨdx.

Careful. Not all of the complex exponentials will cancel because there are cross terms that
survive. This is not a stationary state so this expectation value will be a function of time!
(d) Calculate the expectation value of the kinetic energy. Predict your answer before you
calculate!

139. Show that

u(r) =
sin(kr)

kr
− cos(kr)

is a solution to the radial part of the Schrodinger equation for the infinite spherical well
when ` = 1. That is, let ` = 1, or L = 2, so that in the region r < a Eq. (7.99) simplifies
to

d2u(r)

dr2
+

(
k2 − 2

r2

)
u(r) = 0,

where, as before, k2 = 2mE/h̄2. This function u is the spherical Bessel function of order
1, j1(kr).

140. Form explicitly the differential operators for (a) the simple harmonic oscillator,
(b) Legendre’s equation, (c) Bessel’s equation, (d) Hermite’s equation, and (e) Laguerre’s
equation. Determine explicitly the parity of each operator.

Solutions

120. Inserting the most general wave function into the normalization condition and
exchanging the order of the sums and integral gives

1 =
∫ L

0

( ∞∑

n=1

c∗n ψ∗n(x)e+iEnt/h̄

) ( ∞∑

m=1

cm ψm(x)e−iEmt/h̄

)
dx

=
∞∑

n=1

∞∑

m=1

c∗ncme+i(En−Em)t/h̄
∫ L

0
ψ∗n(x)ψm(x)dx.

Note that for the 1D square well ψ is real, so the complex conjugate symbol is not needed.
However, I retain it to keep our result general. Since the wave functions ψn(x) are or-
thonormal, the integral becomes

∫ L

0
ψ∗n(x)ψm(x)dx =

2

L

∫ L

0
sin

(
nπx

L

)
sin

(
mπx

L

)
dx = δnm,
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where δnm is the Kronecker delta, which is unity if n = m and zero otherwise, this
integral “collapses” one of the infinite sums, and also reduces the time exponential to
unity. Thus we are left with

1 =
∞∑

m=1

c∗mcm.

Q.E.D.
121. (a) From the results of Problem 116, we have

E1 =
(hc)2

8L(mc2)
=

(1240 MeV fm)2

8(0.1 nm)2(0.511 MeV)
= 37.5 eV.

(b) Inserting mc2 = 3727 MeV and L = 10−5 nm into the above formula, E1 = 0.514 MeV.
(c) Inserting mc2 = 0.511 MeV and L = 10−5 nm into the above formula, E1 = 3.75 GeV.

The first two energies are reasonably close to the experimental values. The last, how-
ever, implies that electrons cannot be confined in the nucleus, so this is another argument
against the pe model.

122. (a) Heisenberg gives

∆p ≥ h̄

2∆x
≈ h̄

2L
.

(b) The momentum of the particle in the ground state, assuming that it is nonrelativistic,
is

p =
√

2mE1 =

√√√√2m

(
π2h̄2

2mL2

)
=

πh̄

L
,

and, of course, ∆p ≈ 2p = 2πh̄/L. (c) The inequality becomes

2πh̄

L
≥ h̄

2L
,

which is obviously satisfied. If the ground state energy were zero, then the ground state
momentum would be zero, and Heisenberg’s inequality would read 0 ≥ h̄/2L, which is not
satisfied.

124. For a 2D infinite square well, the quantum numbers of the ground state are
n = m = 1, so that the energy is

E11 = 2EG =
π2h̄2

mL2
=

π2 (1.05× 10−34 J s)
2

(1 kg)(1 m)2
= 1.09× 10−67 J.

If K = E11 then, noting that it’s nonrelativistic, the speed would be v =
√

2K/m and the

time it would take to travel across the box is ∆t = L/v, or

∆t = L

√
m

2E11

= (1 m)

√√√√ (1 kg)

2(1.09× 10−67 J)
= 2.14× 1033 s ≈ 7× 1025 years.

Since this is much longer than the age of the universe, no, it is not technically feasible to
measure it.
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125. For a 2D symmetric well, it is useful to determine the energy for each set of
quantum numbers as shown in the following table. The expected (symmetric) degeneracies
are not listed, but the accidentally degenerate states are boxed. The energies are given as
multiples of EG = π2h̄2/2mL2, the one-particle ground state energy.

ny\nx 1 2 3 4 5 6 7 8 9

1 2 5 10 17 26 37 50 65 82

2 8 13 20 29 40 53 68 85
3 18 25 34 45 58 73 90

4 32 41 52 65 80 97

5 50 61 74 89 106

6 72 85 100 117
7 98 113 130

In order to determine the energy levels and possible transitions between them, it is helpful
to list the states in increasing order of energy, as below. All states where nx = ny are
not degenerate, but if nx 6= ny then the state is doubly degenerate (but an expected
degeneracy).

level E/EG nx,ny level E/EG nx,ny

1 2 1,1 13 34 3,5
2 5 1,2 14 37 1,6
3 8 2,2 15 40 2,6
4 10 1,3 16 41 4,5
5 13 2,3 17 45 3,6

6 17 1,4 18 50 1,7 - 5,5
7 18 3,3 19 52 4,6
8 20 2,4 20 53 2,7
9 25 3,4 21 58 3,7
10 26 1,5 22 61 5,6

11 29 2,5 23 65 1,8 - 4,7
12 32 4,4

For those who are interested, the next accidentally degenerate state is the 30th energy
level, with E = 85EG, and nx,ny = 2, 9 and 6,7. In addition, it’s easy to show that
22 + 112 = 52 + 102 = 125 as well as 102 + 102 = 22 + 142 = 200. In fact, there are an
infinite number of accidental degeneracies in this system.

126. As in the solution to Problem 125, the same technique of listing all the states
can be utilized. The states in increasing order of energy are listed. all are expected to be
degenerate due to their symmetry, but E14 = 27EG is quadruply degenerate by accident.
Extra: show that the 17th and 21st energy levels are also accidentally degenerate.
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level E/EG nx,ny,nz

1 3 1,1,1
2 6 1,1,2
3 9 1,2,2
4 11 1,1,3
5 12 2,2,2
6 14 1,2,3
7 17 2,2,3
8 18 1,1,4
9 19 1,3,3
10 21 1,2,4
11 22 2,3,3
12 24 2,2,4
13 26 1,3,4

14 27 1,1,5 - 3,3,3
15 29 2,3,4

129. (a) Since P̂ g = −g, the parity of g is odd. (b) The radial distance r remains the
same, but the polar angle θ is flipped around π/2 and the azimuthal angle φ is rotated
one half a revolution. These all combine to give

P̂ f(r, θ, φ) = f(r, π − θ, π + φ).

130. (a) Normalization requires
∫ |ψ|2dx = 1 or, in this case

A2
∫ π/k

0
sin2(kx) dx =

A2

k

∫ π

0
sin2 z dz = 1.

Since the last integral is equal to π/2, I get

A =

√
2k

π
.

(b) Again, changing variables to let z = kx, we have

〈x〉 = A2
∫ π/k

0
x sin2(kx) dx =

A2

k2

∫ π

0
z sin2 z dz.

Substituting in the value for A found before, and noting that the last integral is equal to
π2/4, we get

〈x〉 =
π

2k
,

or 〈kx〉 = π/2, as expected.
131. In this problem, a knowledge of integration techniques is very useful.

〈x2〉 =
2

L

∫ L

0
x2 sin2

(
nπx

L

)
dx − let y =

nπx

L
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=
2

L

(
L

nπ

)3 ∫ nπ

0
y2 sin2 y dy − let sin2 y =

1

2
(1− cos 2y)

=
2L2

n3π3

(
1

2

) [
(nπ)3

3
−

∫ nπ

0
y2 cos 2y dy

]

= L2
(

1

3
− 1

2π2n2

)
Q.E.D.

The last integral was evaluated by integrating by parts twice to obtain nπ/2.
132. Since 〈x〉 = L/2 and we’ve just calculated 〈x2〉 then we have

(∆x)rms = 〈x2〉 − 〈x〉2 = L2
(

1

12
− 1

2π2n2

)
.

133. First, the particle is bound, so therefore 〈px〉 = 0. You can calculate 〈p2
x〉 using

the brute force method, i.e., by evaluating the expectation value integral, or you can be
clever. First, note that H = p2

x/2m = E (recall that U = 0). Therefore

〈p2
x〉 = 〈2mE〉 = 2m

(
n2π2h̄2

2mL2

)

because the expectation value of E in state n is just the energy of that state (i.e., it’s a
stationary state). Thus we have 〈p2

x〉 = n2π2h̄2/L2. Finally, the rot-mean-square value of
the momentum is

(∆px)rms =
√
〈p2

x〉 − 〈px〉2 =
nπh̄

L
.

134. Heisenberg’s inequality is

(∆x)rms(∆px)rms = L

√
1

12
− 1

2π2n2
× nπh̄

L
= h̄

√
n2π2

12
− 1

2
≥ h̄

2
.

If n = 1 then the value of the square root is 0.568 which is greater than 1
2
. As n increases,

the value of the square root increases, so that all states satisfy the inequality. In fact, the
ground state is close to being a “minimum uncertainty” state.

135. With the Taylor series approximation of Eq. (7.67), the integral in Eq. (7.64)
becomes straightforward

Ψ(x, t) ≈ A
∫ k0+k1

k0−k1

eikxxe−i[ω0+ω′0(kx−k0)]tdkx.

Pulling out those terms that are constant (i.e., that don’t depend on kx) and rearranging
the integrand gives

Ψ(x, t) = Ae−it(ω0−ω′0k0)
∫ k0+k1

k0−k1

eikx(x−ω′0t)dkx.

The integral is now elementary and can be evaluated, and the arguments of the exponen-
tials can be manipulated to obtain

∫ k0+k1

k0−k1

eikx(x−ω′0t)dkx =
ei(k0+k1)(x−ω′0t) − ei(k0−k1)(x−ω′0t)

i(x− ω′0t)
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= 2
eik0(x−ω′0t)

(x− ω′0t)

[
eik1(x−ω′0t) − e−ik1)(x−ω′0t)

2i

]

= 2
eik0(x−ω′0t)

(x− ω′0t)
sin [k1(x− ω′0t)] .

Plugging this back into the expression for Ψ and manipulating the exponentials again
results in Eq. (7.69)

Ψ(x, t) = (2Ak1)

[
sin [k1(x− ω′0t)]

k1(x− ω′0t)

]
ei(k0x−ω0t).

136. From a table of integrals I get

∫ ∞

0

sin2(px)

x2
dx =

πp

2
.

The normalization integral thus becomes

1 =
∫ ∞

−∞
|Ψ|2dx = 4|A|2k2

1

1

k2
1

∫ ∞

−∞
sin2(k1z)

z2
dz

where z = x− ω′0t is a change of variables. Since this integral must be unity

1 = 4|A|2
(

2
πk1

2

)

or

A =
1

2π
√

k1

.

138. (a) c1 = c2 = 1/
√

2. Check: c2
1 + c2

2 = 1. (b) This can be written down “by
inspection,” because we know the energies of each of the states:

Ψ(x, t) =
1√
2

(
ψ1e

−iE1t/h̄ + ψ2e
−iE2t/h̄

)
,

where ψn are the normalized eigenfunctions and En = (π2h̄2/2mL2)n2 are the energies of
the stationary states. (c) This is specific example of the superposition principle discussed
on page 194. First we need

Ψ∗Ψ =
1

2

(
ψ2

1 + ψ2
2 + 2 cos ωtψ1ψ2

)
,

where

ω =
(E2 − E1)

h̄
=

3π2h̄

2mL2
.

The expectation value of x is

〈x〉 =
∫ L

0
Ψ∗xΨdx =

1

2

[
〈x〉1 + 〈x〉2

]
+ cos ωt

∫ L

0
xψ1ψ2dx,
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where 〈x〉1 = 〈x〉2 = L/2 are the expectation values of x in states 1 and 2, respectively.
the integral is ∫ L

0
xψ1ψ2dx =

(
L

π

)2 2

L

∫ π

0
y sin y sin 2ydy = −8

9
,

where I made the variable substitution y = πx/L. The final answer is

〈x〉 =
L

2
−

(
4

3π

)2

L cos ωt.

The average (expected) position oscillates about the center with a frequency equal to the
beat frequency, and an amplitude equal to (4/3π)2 ≈ 0.18L.

139. This problem can be solved with a simple substitution. However, it is interesting
to note that the spherical Bessel functions are defined as

j0 = sin z/z y0 = − cos z/z

j1 = sin z/z2 − cos z/z y1 = − cos z/z2 − sin z/z

The differential equation for R is (leaving ` arbitrary)

r2R′′ + 2rR′ +
[
(kr)2 − `(` + 1)

]
R = 0,

which can be written in dimensionless form, with z = kr, and w(z) = R(kr) as

z2w′′ + 2zw′ +
[
z2 − `(` + 1)

]
w = 0,

which is nothing but the spherical Bessel function equation. The function R that satisfies
the radial part of the Schrodinger equation for ` = 1 is

R(r) = A

[
sin(kr)

(kr)2
− cos(kr)

kr

]
= Aj1(kr) ∼ u(r)

r
.

The allowed energies in this case are slightly more complicated than when ` = 0 because
there is no simple formula for the zeros of this function. The zeros of j1(z) occur when
z = 4.493409, 7.725252, 10.904122, etc. So that the energies are given by ka = jn,s where
jn,s is the sth zero of jn.
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Appendix A

Suggested Background Knowledge

At the beginning of our story (∼ 1900) the laws of mechanics were quite well developed,
and their dynamical consequences were understood. In the 200 years after Newton, his
laws had been applied to systems as diverse as projectiles on the Earth’s surface and
binary stars in galaxies far, far away. The mathematical structure, though, had become
much more rich and complex since Newton’s day. In particular, Lagrange’s and Hamilton’s
equations of motion had replaced Newton’s second law as the most elegant and powerful
formulations of classical mechanics. These formulations, however, required that energy
(especially potential energy) play a more important role than force in the understanding
of dynamical systems and in the intuition of physicists.

In the quest to understand the microscopic world, it was natural to use these powerful
techniques — assuming, of course, that atoms behaved in a “mechanistic” way, analogous
to macroscopic objects. This mechanistic requirement was already starting to fail in
Maxwell’s electromagnetic theory, since the concept of an “ether”1 that fills all space was
under increasing attack. Light, however, was the sole method by which experimental
information about atoms was obtained. And for light to deliver reliable knowledge about
matter, a deep understanding of the interaction between light and matter was required.

Since a coherent and accurate mixing of all these ideas would have to wait until the
development of QED in the middle of the twentieth century, and since this book is about
the first steps along that road, it is useful to review, at an elementary level, what was
known about light, matter and their interaction at the turn of the century.

Light

Prior to 1900, light was an electromagnetic wave. It had the usual wave properties: speed
c, wavelength λ, frequency ν, which are all related by

c = λν. (A.1)

All wave have properties that satisfy the wave equation, which had been studied since
1746 when Jean d’Alembert developed the governing (one-dimensional) partial differential

1The ether, sometimes known as the “luminiferous aether” was thought to be the medium that allowed
electromagnetic waves to propagate.
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equation,
∂2y

∂t2
= c2 ∂2y

∂x2
, (A.2)

although it had been anticipated by John Bernoulli in 1727. This equation described the
properties of taut strings, the surfaces of liquids, and eventually electric and magnetic
fields. When Maxwell discovered that a combination of Faraday’s law and Ampere’s law
resulted in a three-dimensional vector wave equation,

∂2 ~E

∂t2
+

1

ε0µ0

∇×∇× ~E = 0, (A.3)

where ε0 and µ0 are the permittivity and permeability of free space, respectively, and also
that the speed of the predicted waves matched that of light,

c =
1√
ε0µ0

, (A.4)

it put the nail in the coffin of Newton’s claim that light was “corpuscular.” Of course,
when Planck, Einstein, and Compton explained their respective experiments in terms
of photons, physicists had to wrestle with the conundrum of “wave-particle duality.” An
understanding of light, though, required an understanding of how it interacted with matter.

Matter

Even though the atomic hypothesis was hinted at by Dalton (see Chapter 1), championed
by Boltzmann, and confirmed by Rutherford, Einstein and Bohr, in Maxwell’s day the
theory of matter’s interaction with light did not depend on its discreteness. In fact, for
light traveling in a transparent medium, the governing wave equation is just Eq. (A.3) with
ε0 → ε and µ0 → µ. That is, the correct permittivity and permeability of the medium
must be used. Maxwell explicitly thought about ε0 as describing the polarizability of the
ether, especially when describing the displacement current in a vacuum capacitor.

For most transparent media, µ ≈ µ0, so that the speed of light is reduced by a factor
equal to the index of refraction n of the material

v =
c

n
, (A.5)

where

n =

√
ε

ε0

, (A.6)

and therefore the speed of light in that material is

v =
1√
εµ

. (A.7)

Note that for this description, which agreed with experimental observations, matter is
assumed to be continuous. Of course, determining why a material had particular values
for ε and µ would require not only an atomic description, but quantum mechanics as well.
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Light and Matter

Light is emitted by matter, and there are, in general, three types of spectra that can
be observed. The first is a continuous spectrum, in which all colors (or wavelengths) are
present, but with differing intensities. A hot piece of metal emits such a spectrum, which is
usually close to a blackbody spectrum (see Appendix D). The second type is an emission
spectrum. Here, only specific, discrete, wavelengths are present, all other colors being
nonexistent. A low-density gas in a discharge tube, such as a neon light, has this type of
spectrum. Each element has its own set of spectral lines, its own “spectral fingerprint,”
which allows an unknown gas to be identified solely from the colors of the light it emits.
This is how, for example, helium was discovered — looking at the solar spectrum — and
it is also how α particles were proven to be the nuclei of helium atoms. In fact, neon lights
are not only made of neon. Different elements have their own characteristic color, so in
fact different colored “neon” lights must actually be filled with different elements. For
example, pure neon emits an orange glow, and argon is blue.

Finally, the third type is an absorption spectrum. This is characterized by a continuous
spectrum with dark lines where certain wavelengths are absent. It was first independently
discovered in a solar spectrum by Joseph von Fraunhofer in 1814.2 The solar surface is
a good approximation to a blackbody, so it emits a continuous spectrum. But as the
light passes through the solar atmosphere (i.e., the corona), atoms there absorb specific
wavelengths. In fact, for a given element, these are the same lines that are emitted by that
gas when it is in a discharge tube! This, then, is how elements in the solar atmosphere
are identified. Of course the solar spectrum contains many dark lines, and it is not always
simple to pick out the few that pertain to any given element. This complexity is part of the
reason that new elements have been thought to have been discovered in stellar spectra, only
later to be found that they are due to unknown lines from a previously known element.
These discrete spectra strongly imply that matter has some kind of discrete structure.
In fact, since the wavelengths of these spectral lines were hundreds of nanometers, the
structure of matter must be at least that small. Even if one assumed that matter were
composed of atoms, the atoms themselves could not be point particles (i.e., structureless),
but must have some kind of internal structure. Of course, it was Rutherford and Bohr
who initially determined that structure.

What happens when light, when propagating in a vacuum, encounters matter? Like
all waves that are described by a linear wave equation, like Eq. (A.2), light satisfies the
principle of superposition, and is therefore subject to interference and diffraction. However,
if light is confined to a cavity (or waves travel on a string that is held fixed at two ends),
resonances3 occur at frequencies corresponding to standing waves. The resonance condition
is given by

L = n

(
λ

2

)
n = 1, 2, 3, . . . (A.8)

which is a mathematical statement that an integer number of half wavelengths must fit

2These dark lines are sometimes called Fraunhofer lines.
3In this case, a resonance means that there is positive feedback. That is, waves with particular frequen-

cies (and wavelengths) add constructively and therefore reinforce themselves. Otherwise the interference
is destructive.



224 APPENDIX A. SUGGESTED BACKGROUND KNOWLEDGE

exactly in the confining space of the length L. This equation results from the fact that
when light encounters the matter at the edges of the cavity, Maxwell’s equations require
it to satisfy certain “boundary conditions,” which lead to Eq. (A.8). Along with the wave
formula above, these allowed wavelengths imply that the resonant frequencies are

νn =
nc

2L
(A.9)

Since the Schrodinger equation is a linear wave equation, interference is inherent in quan-
tum phenomena. In fact, this viewpoint is one method that is used to understand Bohr’s
atomic model (see Chapter 4).

Another consequence of interference is the two slit experiment of Young. Not only is
an “interference pattern” observed when light or sound waves passes through the two slits,
de Broglie’s assertion that electrons exhibit wave properties guarantees that their passage
through the slits results in the same effect (see Chapter 6). Finally, the fact that X-rays
are electromagnetic waves means that their diffraction from crystals allowed Moseley to
measure their wavelength (see Chapter 4). It also allowed William and Lawrence Bragg
to catalogue the geometry of the crystal structure of several solids, and it is still used
today for this purpose. Indeed, in 1953 it was used by Rosalind Franklin to help deduce
the structure of DNA.
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Rutherford Scattering

All science is either physics or stamp collecting. — Ernest Rutherford

After studying radioactivity for several years, and winning a Nobel Prize (in Chem-
istry!) for his efforts (see Section 3.7), in 1911 Ernest Rutherford attacked the question
of the composition of matter from a different perspective. Along with two students, Hans
Geiger and Ernest Marsden, Rutherford directed the α rays emitted by “radium emana-
tion,” 222Rn, at several thin solid targets, primarily gold.1 (He had by that time definitively
determined that α rays were nothing more than helium nuclei.) At this time, the prevailing
model of the atom was J. J. Thomson’s “plum pudding” model, in which he envisioned a
smeared out positive charge with electrons embedded like plums in a pudding. One way to
test this model was to fire a charged particle at an atom and then measure its trajectory.
This would give information about the location of the electric charges. In fact, this is the
primary method that has been used over the past 100 years to investigate the structure
of subatomic particles.

Rutherford’s results showed that the atom consisted of a small, massive “nucleus” that
was positively charged, surrounded by several light, negatively charged electrons. The
incoming α particle was deflected only by the nucleus and not by the light electrons,
so Rutherford developed a theory of scattering to analyze his results. This theory is
sufficiently important that I will derive its general form, and then apply it to two specific
situations.

1Radon-222 is the daughter of 226Ra, and it α decays to radium A (218Po) which then α decays to
214Pb which then β decays to radium C (214Bi). This is part of the 4n + 2 natural decay series (see
Section 3.8.1) starting with 238U. All of these isotopes were present and emitting α particles, each with
a characteristic energy. As Geiger and Marsden stated in “On a Diffuse Reflection of the α-Particles,”
Proc. Roy. Soc., 82, 495-500 (1909), “The tube contained an amount of emanation equivalent to about
20 milligrammes RaBr2 at a pressure of a few centimetres. The number of α-particles expelled per second
through the window was, therefore, very great, and, on account of the small pressure inside the tube, the
different ranges of the α-particles from the three products (i.e. emanation, RaA, and RaC) were sharply
defined.”
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Figure B.1: Scattering geometry for a fixed, repulsive scattering center. The scattered
particle initially has a speed v, and if no force were present, its straight line trajectory
would take it to within a distance b — the impact parameter — of the scattering center.
By symmetry, it will have a final speed v, but in a direction θ relative to its initial direction.

Scattering by a central force

The standard scattering problem is as follows: An object approaches a “scattering center”
with speed v, and if it felt no force it would miss the scattering center by a distance
b, known as the “impact parameter.” See Fig. B.1. If the force exerted on the object
is in the radial direction, and depends only on the radial distance r, then the resulting
trajectory will be symmetric, and the object will head away from the center asymptotically
approaching a line that is also a distance b from the center. At any given instant, the
object will be located at (r, φ) relative to the center, and the scattering angle θ is the
direction that it is heading (relative to its initial direction) when it is far away from the
center.

For any given force that the scattering center exerts on the object, the main theoretical
prediction is the function θ(b). That is, how does the scattering angle θ depend on the
impact parameter b? For repulsive forces, we can predict some general features of θ(b).
First, if b = 0, then the object hits the (repulsive) center head on and simply “bounces”
back, resulting in θ = π. As b increases θ must decrease, until for large b, θ must be small.
In the limit that b → ∞, it must be the case that θ → 0, as long as the scattering force
gets weaker with distance. See Fig. B.2, which shows the general case of θ(b). It is correct
for small b and for large b for all repulsive forces, but detailed shape depends on the actual
force law.

Hard sphere (billiard-ball) collisions

One of the simplest types of collisions to analyze is that of two solid spheres of radius
R, and the only force that exists between them is a repulsive, elastic contact force when
they touch. In this case, b = 0 results in θ = π, as we predicted above. However, if b is
greater than 2R, then the spheres miss each other completely, and there is no scattering,
which means θ = 0. Using the law of reflection (the angle of incidence equals the angle of
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Figure B.2: Typical plot of scattering angle θ versus impact parameter b for a repulsive
force. A direct hit (b = 0) must cause direct backscattering (θ = π), and as b increases,
θ must decrease toward zero. The exact form of the decrease depends on the form of the
repulsive force, so that a measurement of θ(b) can be inverted to infer Fr(r).

reflection), you can show (see Problem 1) that b and θ are related by

b = 2R cos

(
θ

2

)
. (B.1)

To obtain θ as a function of b, you simply need to invert the formula above

θ =

{
2 arccos(b/2R) b < 2R

0 b ≥ 2R
(B.2)

Rutherford scattering

Ernest Rutherford, of course, was interested in the case where the force law was a repulsive
Coulomb force, which was the case in his experiment of α particles scattering off gold
nuclei. The gold nucleus acted as the scattering center — it was very massive and did
not move very much during the “collision” — and the α particles were the objects being
scattered. If the repulsive force is

F =
1

4πε0

(ze)(Ze)

r2
, (B.3)

where Ze is the positive charge of the scattering center, and ze is the positive charge of
the object being scattered, then you can show that

b =
zZ

2K

e2

4πε0

cot

(
θ

2

)
, (B.4)

where K is the initial kinetic energy (when it is very far away) of the α particle.2 Notice
that the scattering angle depends on the speed of the object, which was not true in the

2For comparison, in the case of gravitational scattering, where a particle traverses a hyperbolic orbit
due to a central mass M , the relation between b and θ is

b =
(

GM

v2∞

)
cot

(
θ

2

)
,
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Figure B.3: Scattering geometry for two solid spheres of radius R.

billiard-ball case. There, since there was no force except when the spheres made contact,
the speed did not matter at all, only the angle of the collision. Here, if the α particle
moves quickly, it spends less time in the region where the repulsive electric force is strong,
and therefore the scattering angle is small.

The Rutherford scattering formula Unfortunately, Eq. (B.4) is not in the proper
form for comparison with experimental results. Why not? Well, since the detector is
typically located at an angle θ from the initial projectile direction, or at least the number
of particles that are deflected by an angle θ is measured, we wish to predict the probability
for an α particle to be scattered into any angle between θ and θ + dθ. In addition, there
are many α particles and many nuclei in the thin foil target, which means the density
of the gold nuclei and the thickness of the foil must be taken into account. If all these
factors are included, the probability above, that for scattering into any angle between θ
and θ + dθ, is given by N(θ)dθ. For the Coulomb force, Rutherford showed that

N(θ) =
nt

4r2

(
zZ

2K

)2
(

e2

4πε0

)2

sin−4

(
θ

2

)
, (B.5)

where n is the number density of the scatterers, t is the foil thickness, and r is the distance
of the detector from the point where the beam hits the foil. Geiger and Marsden were able
to reproduce the dependence of N on θ, Z, t, and K. All of the measurements matched
the predictions, which led to the acceptance of a “nuclear” atom.

Problems

1. Derive the scattering formula, Eq. (B.1), for two solid spheres.

where v∞ is the speed of the particle when it is infinitely far away. Note that, unlike the electrostatic
case, there is no dependence on the mass of the scattered particle, and this formula was used by Newton
to predict the deflection of light by the sun (remember that Newton believed light consisted of particles).
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Figure B.4: Schematic of the Geiger-Marsden experiment. The scattering angle θ was
measured by noting a flash on the fluorescent screen in a darkened room. From Hyper-
physics.

Solution The right triangle in the figure
has a hypotenuse of 2R, and hence sin φ =
b/2R. The scattering angle θ (see Fig. B.1)
is given by θ + 2φ = π, where the factor
of 2 comes from the fact that the angle
of incidence equals the angle of reflection.
Solving for b gives

b = 2R sin

(
π

2
− θ

2

)
= 2R cos

(
θ

2

)
.

2. Sketch the function θ(b) for billiard-ball collisions. One method is to sketch b(θ)
from Eq. (B.1), and then invert the sketch (flip it mirror-like around the line b = θ).

3. Sketch the function θ(b) for Coulomb collisions (i.e., Rutherford scattering).

4. In Geiger and Marsden’s experiment, α particles impinged on a gold foil. Consider
one α particle heading directly toward one gold nucleus (197Au of course). How
much initial kinetic energy must the α particle have (when it is very far from the
nucleus) in order to have its distance of closest approach (defined to be where its
kinetic energy is zero) be equal to the radius of the nucleus?

Solution Gold has A ∼ 197 so that R = R0A
1/3 = 1.2 fm × 5.8 ∼ 7 fm. The

potential energy between the α particle (z = 2) and the gold nucleus (Z = 79) when
they are 7 fm apart is

1

2
mv2 = |U | = zZe2

4πε0D
=

(
e2

4πε0

)
(2)(79)

(7 fm)
≈ 32 MeV.

This is just what K must be when they are very far apart. However, this is much
larger than the ∼ 5 MeV α particles that are emitted radioactively, so that Ruther-
ford’s nuclei did not get close enough to experience the strong force.
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5. Rutherford scattering. In polar coordinates, with a scattering nucleus (of charge
+Ze) fixed at the origin, the equation of the trajectory of the α particle (of charge
+ze) can be shown to be

1

r
=

1

b
sin ϕ +

D

2b2
(cos ϕ− 1) ,

where b is the “impact parameter,” and D is
the “distance of closest approach” in a head
on collision (b = 0), which is given by

D =
1

4πε0

zZe2

Mv2/2
.

In a head-on collision, the α particle will stop
and turn around at this location distance from
the nucleus. (a) Show that D is the distance
at which the potential energy of the α particle is equal to its initial kinetic energy
(Mv2/2). (b) Show that the trajectory equation is a hyperbola. (In the figure, θ is
the scattering angle.)

Solution (a) The total energy of the α particle is E = K +U . When it is very far
from the gold nucleus, the potential energy is zero, so that E = K = 1

2
mv2. At its

distance of closest approach, the “turning point,” the kinetic energy is zero so that
E = U = +zZe2/4πε0r. The + sign indicates that the Coulomb force is repulsive.
Since E is the same in both cases, setting K = U and r = D gives the formula for
D. (b) This one is hard, and if anyone made a reasonable attempt, give them some
credit.

6. In a collision between hard spheres, there is no scattering if b is larger than a max-
imum value. This means that you must “aim well” in order to see an effect. Not
true for the 1/r2 Coulomb force: any impact parameter will cause scattering. It is
instructive to investigate the “Born approximation,” where we take the limit of large
impact parameter (and thus a small scattering angle). Determine the relationship
between b and θ in this limit.

Solution Expanding the cotangent in Eq. (B.4) for small θ gives

b ≈ zZ

2K

e2

4πε0

(
2

θ

)
,

which shows that b and θ are inversely proportional. More interesting is that, in this
limit, the quantity bθK is constant.
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The Stern-Gerlach Experiment

...quantum-mechanical states are to be represented by vectors in abstract com-
plex vector space. —J.J. Sakurai1

In 1922, Otto Stern and Walther Gerlach measured the magnetic moment of the silver
atom using a technique that has come to be known as the “molecular beam method.” Due
to the electron configuration of silver (Z = 47), it was essentially a measurement of the
magnetic moment of the electron (see Section 2.4 and page 94). It is also a demonstration
of the simplest system that is inherently quantum mechanical, and it is instructive to
realize just how inadequate our macroscopic intuition really is.

Torques and Forces

Recall from elementary electromagnetism that electric dipoles and magnetic dipoles ex-
perience forces and torques due to electric fields and magnetic fields, respectively. For
magnetic dipoles, if the magnetic field ~B is uniform, then the force on the dipole is zero,
but the torque on the dipole is equal to ~τ = ~µ× ~B, where ~µ is the magnetic dipole moment.
This just says that field tries to align the moment with the field vector. More important
for the Stern-Gerlach experiment is the fact that if the field is nonuniform, then the dipole
feels a net force that is due to the gradient in the field. Specifically, a magnetic dipole
feels a force

~F = ∇
(
~µ · ~B

)
, (C.1)

which, if the field points primarily in the z direction, and its magnitude also varies in the
z direction, becomes approximately

Fz ≈ µz
∂Bz

∂z
. (C.2)

This was exactly the case in the Stern-Gerlach experiment. Otto Stern had the idea for
this experiment in 1921 in order to see if he could detect the “space quantization” of the
atom. In Bohr’s atomic model, the angular momentum perpendicular to the plane of the
electron orbit was quantized, Lz = nh̄, which meant that the magnetic moment due to

1Sakurai, Modern Quantum Mechanics, page 10.
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Figure C.1: Schematic of the Stern-Gerlach experiment. Silver atoms were heated in
an oven, allowed to escape and sent in a particular direction via a collimated slit, passed
through a nonuniform magnetic field, and finally impinged on a photographic plate. Figure
1.1 from Sakurai, Modern Quantum Mechanics.

the orbital motion was also quantized. It can be expressed (see Problem 2 at the end of
this appendix) in units of the Bohr magneton

µz = −nµB, (C.3)

exactly as in Eq. (2.9). From observations of the Zeeman effect, where the spectral lines
of atoms that have been placed in a magnetic field are split into two, three, or more
components, it was postulated that the magnetic moment vector of an atom was forced
to be either parallel or anti-parallel to the external magnetic field. Since these two states
have different energies (the torque equation above implies that there is a potential energy

due to the interaction that is U = −~µ · ~B), this would explain the splitting of the spectral
lines. Stern proposed to verify this by means of Eq. (C.2).

As depicted in Fig. C.1, silver atoms would be heated in an oven, allowed to “effuse”2

through a hole in the oven and then a collimating slit. They then would pass through a
nonuniform magnetic field which would exert a force on the atoms, described by Eq. (C.2),
and therefore spread out the beam. Classically, the magnetic moment vectors of the atoms
point in random directions, and therefore the z components would take on a continuous
range of values, which means that the initially narrow beam would be spread out. How-
ever, if the quantum intuition of physicists like Niels Bohr was correct, then only certain
discrete values of µz would be allowed and the beam would split into two or more dis-
crete beams, resulting in discrete lines on the detecting photograph. This, in fact, was
Stern’s motivation: to “decide unequivocally between the quantum theoretical and classi-
cal views.”3 It took a year to complete the experiment because the deflection of the beam
was small, and the entire apparatus had to be aligned to a tolerance of 0.01 mm or the
result would be inconclusive.

2effusion, n., the flow of gas through an aperture whose diameter is small as compared with the distance
between the molecules of the gas.

3Quoted in Friedrich and Herschbach, Physics Today, 2003.
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Figure C.2: Postcard from Gerlach to Bohr. The message reads “Attached [is] the exper-
imental proof of directional quantization. We congratulate [you] on the confirmation of
your theory.” Note the scale denoting 1.0 mm at the bottom right. Figure 4 from Friedrich
and Herschbach, Physics Today, 2003.

Since silver has 47 electrons, the first 46 form a spherical cloud — and each pair of them
has their spins anti-aligned — while the 47th electron, the only one in the 5s subshell, is
the only one to contribute to the magnetic moment of the atom (see Problem 67 for a proof
that the nucleus contributes only negligibly to the atom’s magnetic moment). Of course,
Stern and Gerlach did not know about spin (it wasn’t proposed by George Uhlenbeck and
Samuel Goudsmit until 1925), but they assumed the Bohr model, which stated that the
unpaired electron would have a nonzero orbital angular momentum, and hence a nonzero
magnetic dipole moment, as in Eq. (C.3). Of course, as we now know, the 47th electron
has zero orbital angular momentum, so that the magnetic moment of the atom is solely
due to its spin, and can take on the values

µz = −gmsµB, (C.4)

as given in Eq. (2.10). When they found that the beam was split into two beams, and
that the strength of the splitting implied that silver had a magnetic moment equal to µB

to within 10%, Gerlach sent a postcard to Bohr in congratulations (see Fig. C.2). They
thought that they had confirmed Eq. (C.3) with n = 1. But in fact they had confirmed
Eq. (C.4), with g ≈ 2 and ms = ±1

2
. It wasn’t until 1927, after spin was discovered

and after Schrodinger modeled the hydrogen atom, that it was recognized that they had
actually measured the spin of the electron. In 1922, Stern and Gerlach were completely
in the dark about the true nature of their result.

Sequential Stern-Gerlach experiments

What is special about the z axis? Could we turn the magnets in Fig. C.1 horizontal and
measure µx? Of course, but then, quantum mechanics tells us, we would have no knowledge
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Figure C.3: Schematic of three different possibilities for Stern-Gerlach type experiments
that are run in sequence, i.e., one after the other. Figure 1.3 from Sakurai, Modern
Quantum Mechanics.

of the z component. Recall from Section 2.3 that it is possible to know simultaneously only
the magnitude and one component of the spin vector — the other two components, as given
by the angle φ, are completely “unknowable.” Since the magnetic moment is proportional
to spin, this restriction applies also to it. To illustrate this restriction, consider Fig. C.3(a).
We place two identical deflecting magnetic fields that are both oriented in the z direction,
so they each effectively measure the z component of the magnetic moment (or spin).
After the first “SGz” apparatus, which splits the beam in two, if we block the beam
that was deflected downward, and let the upward-deflected beam go through another SGz
apparatus, then there should be no downward deflected beam. This is because all the
atoms entering the second apparatus must have their magnetic moments pointing in the
+z direction, since they had just been measured by the first SGz apparatus.

Figure C.3(b) shows a similar setup, but with an SGx apparatus coming second. Again,
if we block the “spin down” component and let the spin up component through, the result
is that 50% of the beam is deflected right (which means it has Sx = +1

2
h̄) and 50% of the

beam is deflected left (which means it has Sx = −1
2
h̄). Now, it is tempting to conclude

that we have just measured two components of the spin vector, something we thought was
impossible. That is, a reasonable interpretation seems to be that half of the atoms in the
Sz = +1

2
h̄ beam leaving the first, SGz, apparatus have both Sz = +1

2
h̄ and Sx = +1

2
h̄,

and the other half have both Sz = +1
2
h̄ and Sx = −1

2
h̄.

Figure C.3(c) will show that our “reasonable interpretation” above is wrong. If we now
block the Sx = −1

2
h̄ beam after the second, SGx, apparatus, and then run the remaining

Sx = +1
2
h̄ beam through a third, SGz, apparatus, we find that even though we started with

atoms that had only Sz = +1
2
h̄, we now have both components. This effectively proves

that we cannot measure two components of the spin vector simultaneously. Specifically,
when the atoms passed through the SGx apparatus that measured their Sx, it destroyed
any prior knowledge about the z component. This result is not due to any experimental
inaccuracy or error, but is simply a microscopic limitation, as expressed by the Heisenberg
uncertainty principle. It turns out that this situation is almost identical with the classical
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case of light passing through sequential polarizing filters. It means that one method of
representing the atom’s spin is to use a wave equation (since the results of the experiment
with light is due to the phenomenon of superposition), and that’s exactly what quantum
mechanical equations are, wave equations. The Schrodinger equation is a nonrelativistic
wave equation, and the Dirac and Klein-Gordon equations are relativistic wave equations.

Collateral Reading

• Bretislav Friedrich and Dudley Herschbach, “Stern and Gerlach: How a Bad Cigar
Helped Reorient Atomic Physics,” Physics Today, 56(12) 53-59 (December 2003).

• J. J. Sakurai, Modern Quantum Mechanics, Benjamin-Cummings, 1985. Chapter 1.

• see Stern’s Nobel Prize lecture at http://www.nobelprize.org.

Problems

1. What is meant by the term “space quantization?” Is space really quantized?

2. Derive Eq. (C.3). Recall that the magnetic moment of a current loop has a magnitude
µ = IA.

3. Estimate the separation distance of the images observed on the screen of Stern and
Gerlach’s experiment. Their source of atoms was an oven of temperature 1000 ◦C,
their deflecting magnet was 3.5 cm long, and the magnetic field gradient was 10
T/cm. Make any other assumptions that you need (but be sure to state them).

Answer The splitting was 0.2 mm.
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Appendix D

Blackbody Radiation

It is a highly important task to find this function. — Gustav Kirchhoff, referring
to the blackbody spectrum

An object that reflects no light (electromagnetic radiation) that falls on it, but absorbs
it all, is called a perfect blackbody. But, if it absorbs energy, it must also radiate energy
if it is not to heat up indefinitely. The form of this radiation is crucial in many fields of
physics and astrophysics, but measuring it and predicting it theoretically took a long time.
Because the nature of the atom was not revealed until the early 20th century, the “laws”
regarding thermal radiation were determined phenomenologically (i.e., from experimental
observation). Gustav Kirchhoff (1824-1887) was one of the premier investigators, and his
laws are now taught in introductory physics courses. At the fundamental level, they state
that the properties of the radiation emitted by a blackbody depend only on the object’s
temperature T and not on the shape, size, or composition of the blackbody. Specifically,
the following three properties were well known before 1900.

1. A blackbody emits electromagnetic radiation at all wavelengths (i.e., in all regions
of the spectrum).

2. The total power emitted by a blackbody is proportional to T 4, where T is the
temperature (in Kelvin) of the blackbody. (This is the Stefan-Boltzmann law.)

3. The wavelength at which a blackbody emits maximum power is inversely propor-
tional to its temperature λmax ∝ 1

T
. (This is Wien’s law.)

The first property means that blackbodies emit a “continuum” of radiation rather than
the discrete spectral lines emitted by gaseous elements that are heated (see Appendix A).

Radiative transfer

Because objects emit different amounts of energy in different regions of the spectrum, we
have to keep track of that radiation as a function of wavelength λ (or of frequency ν). The
quantity R(λ)dλ is defined to be the energy emitted per unit time per unit area from the
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surface of a blackbody, between the wavelengths λ and λ + dλ. R(λ) is called the spectral
radiancy,1 and it has SI units W/m3.

The “energy per unit time per unit area” is called the energy flux. Flux is a concept
that is used in many different physics disciplines, particularly those dealing with transport
of some quantity. In fluid dynamics, for example, the quantity ρv (mass density×velocity)
is called the mass flux, and is nothing but the mass per unit time that passes through a unit
area. In laminar flow, the quantity ρvA remains constant along a streamline, where A is
the cross sectional area of the streamline. This is called the continuity equation. The field
of radiative transfer, while dealing with energy flux, has developed its own terminology,
which we will follow.

The three experimental properties above imply three important mathematical proper-
ties of R(λ), listed below.

1. Since the blackbody emits at all wavelengths, R(λ) > 0 for all λ. In addition, it was
known that R(λ) → 0 as both λ → 0 and λ →∞.

2. The total power emitted per unit area from the blackbody’s surface is just an integral
of R(λ) over all wavelengths. That is

R ≡
∫ ∞

0
R(λ)dλ = σT 4, (D.1)

where σ is the proportionality factor. This is called Stefan’s Law, because it was first
deduced by Jozef Stefan in 1879 from experimental observations. It is also called the
Stefan-Boltzmann law because Ludwig Boltzmann derived it theoretically in 1884,
and therefore σ = 5.67× 10−8 W m−2 K−4 is called the Stefan-Boltzmann constant.
R is called the “radiancy,”2 and has units W/m2.

Our Sun is not a perfect blackbody, but is a very good approx-
imation. Its surface temperature is about T¯ = 5780 K, and
therefore emits an energy flux R = σT 4

¯ = 6.33 × 107 W/m2.
Since the radius of the Sun is R¯ = 6.96×108 m, the radiant flux,
or “luminosity,” of the the Sun is L¯ = (4πR2

¯)σT 4
¯ = 3.85×1026

W.

3. R(λ) has exactly one maximum. That is, dR(λ)/dλ = 0 definines λmax, which is
found to be given by

λmaxT = b, (D.2)

where b = 2.898 × 10−3 m K. This is called Wien’s displacement law, which he
derived in 1893. Note that b has dimensions of length×temperature, so that ‘m K’
is ‘meters·Kelvin,’ not ‘milli-Kelvin.’

1Unfortunately, there is no standard terminology in this field. The quantity R(λ) is sometimes written
as Rλ or Eλ, and it is sometimes called radiancy, or monochromatic irradiance, or spectral emissive power.
You must use dimensional analysis to determine which quantity is being discussed.

2Again, terminology varies, and R is sometimes called intensity or irradiance. The product RA, where
A is the surface area of the blackbody, is called the “radiant flux.”
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Again for the Sun, Wien’s law predicts that it emits its max-
imum power at the wavelength λmax = b/T¯ = 501 nm, very
near the center of the visible spectrum. Evolutionary biologists
suggest that our eyes developed sensitivity in this spectral region
simply because there is so much light available.

In 1860, Kirchhoff, speaking of R(λ), said, “It is a highly important task to find this
function.” A laudable goal, but how to achieve it? Accurate measurements of spectral
radiancy over a large range of wavelengths are needed, not just the visible region of the
spectrum. Ångstrom was able to measure visible wavelengths to a precision of 10−5,
but because absolute intensities are more difficult, it was not until the early 1900s that
measurements became precise enough to compare with theoretical predictions.

Cavity radiation

A simple technique to compare theoretical predictions with experimental measurements is
to consider Hohlraumstrahlung, or cavity radiation. As Kirchhoff put it

“Given a space enclosed by bodies of equal temperature, through which no
radiation can penetrate, then every bundle of radiation within this space is
constituted, with respect to quality and intensity, as if it came from a com-
pletely black body of the same temperature.”

If you cut a hole in the cavity wall, there will be light emitted from that hole, and as
Kirchhoff contends, that is “blackbody radiation.”

It turns out that while it is straightforward experimentally to measure the spectral
radiancy R(λ) from the hole, it is much simpler to theoretically calculate the energy
density of the radiation within the cavity. It can be shown (see Problem 8) that the
relation between the two quantities is

R(λ) =
c

4
u(λ), (D.3)

where u(λ)dλ is the energy per unit volume between the wavelengths λ and λ+dλ [the SI
units of u(λ) are obviously J/m4], and, similar to R, the total energy density U is a sum
over all wavelengths

U ≡
∫ ∞

0
u(λ)dλ. (D.4)

To understand the relation between R and U , another analogy with fluid dynamics is useful.
As discussed above, the mass flux ρv is just the mass density ρ times the flow velocity
v. Here, the energy flux R is just the energy density U times the velocity c, or R = Uc.
This works for R(λ) and u(λ) just as it does for R and U , because all wavelengths travel
at the same speed c. However, R = Uc only holds when all the energy is also traveling
in the same direction, as in laminar fluid flow, where all the mass is traveling in the same
direction. Inside our cavity, electromagnetic waves are traveling in all different directions,
and only those that happen to be heading out of the hole (and would reflect back into the
cavity if there were no hole) contribute to R. This geometry is what is responsible for the
factor of 4 in Eq. (D.3).
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Early theoretical attempts to determine u(λ)

The details of the different derivations of u(λ) can be found in most modern physics
textbooks. They are based on statistical mechanical arguments that count the number
of different ways the resonant waves can fit inside a cavity of a certain size. Statistical
mechanics is one of the topics that I chose not to cover in detail in this book, so in this
appendix I want to focus on the radiation concepts and not on the derivation of formulas.

Lord Rayleigh (1900) and James Jeans (1905), using classical arguments, derived a
formula for the energy density u(λ)

uRJ(λ) =
8π

λ4
kT. (D.5)

This classical prediction agreed with the experimental measurements that had been made
up until that time, but an obvious problem was that the integral over all wavelengths
diverged, Eq. (D.4). The difficulty appeared at short wavelengths, and was therefore called
the “ultraviolet catastrophe.” As historian Helge Kragh notes “In spite of its prominent
role in physics textbooks, the formula [Eq. (D.5)] played no part at all in the earliest phase
of quantum theory. The ‘ultraviolet catastrophe’ — a name coined by Paul Ehrenfest in
1911 — only became a matter of discussion in a later phase of quantum theory.”3

In 1905, with the help of Einstein, Rayleigh added an ad-hoc4 exponential factor to
get rid of the ultraviolet catastrophe

uR(λ) =
8π

λ4
kT e−c2/λT . (D.6)

This forces the integral
∫∞
0 u(λ)dλ to be finite; however, it did not agree with experiment.

In 1896, Wilhelm Wien had derived his own radiation law

uW (λ) =
a

λ5
e−b/λT , (D.7)

which unfortunately was also somewhat ad-hoc. With correct values for a and b, this
expression agrees with Planck’s spectrum below in the limit of small wavelength. In fact,
it was Planck’s desire to find a satisfactory theoretical explanation for this function that
led him to his own spectrum.

In 1900, Max Planck derived a spectral formula by assuming that within the cavity,
the electromagnetic waves and the walls could only exchange energy in discrete amounts
hν.5 He realized that this suggestion was not physical, but it was the only way that he
was able to obtain a formula in agreement with experiment. The spectrum that Planck
derived was

uP (λ) =
8π

λ4

(
hc

λ

1

ehc/λkT − 1

)
, (D.8)

3“Max Planck: The reluctant revolutionary,” Physics World, December 2000, pp 31-35.
4ad-hoc, adj., made with a particular purpose, without reference to wider application.
5In the case of a neutral gas confined in a box, Boltzmann had already shown that during collisions

with the walls the molecules exchange momentum (and energy) with the walls. But in order for this
process to predict the ideal gas law, he showed that the energy exchanged can take on any value, i.e., a
continuous set of values.
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Figure D.1: Energy density uP (λ) given by the Planck function for three values of the
temperature, 3000 K, 5270 K, and 10 000 K. These temperatures were chosen for the
following reasons. A glowing metal can have a temperature on the order of 3000 K, and
it appears red due to the fact that the spectral radiancy at 700 nm is greater than that
at 400 nm; the Sun’s surface temperature is near 5270 K — which has a peak intensity at
λmax = 550 nm, exactly in the center of the visible spectrum — and it appears white since
the spectral radiancy is approximately flat in the visible region; and a very massive star
can have a surface temperature near 10 000K, which makes it appear blue (even though
the scale does not allow us to see the curve for this temperature, Wien’s law tells us that
its maximum must be at about 275 nm, well in the ultraviolet).

which I’ve written in a suggestive way. The Planck function effectively replaces kT in the
Rayleigh-Jeans formula with a more complicated function of λ and T , and Planck showed
(Problem 2) that it agreed with the Rayleigh-Jeans formula in the long wavelength limit.
Also, it did not diverge at small wavelengths, i.e., there was no ultraviolet catastrophe.

During the period 1900-1905, it was not clear which of the theoretical predictions,
Eqs. (D.5)-(D.8) was correct. They all agreed with each other (and with experiments) in
the limit of long wavelengths,6 but the experiments were not precise enough to distinguish
between them in the short wavelength limit. It was only after 1905, when Einstein used
the same quantization (E = hν) to explain the photoelectric effect, that consensus started
to back Planck’s function.

Properties of the Planck function

The Planck function, Eq. (D.8), certainly satisfies the three experimental properties listed
above. Figure D.1 shows u(λ) for three values of the temperature T . It is clear that as
the temperature increases, the wavelength of maximum intensity decreases and the total
intensity (i.e., the area under the curve) increases. Looking at the strength of the Planck
function in the visible region of the spectrum, and the relative strengths in the red and

6Two sets of measurements had confirmed the blackbody spectrum in the infrared: Lummer and
Pringsheim looked between 12-18 µm, and Rubens and Karlbaum looked between 30-60 µm.
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blue regions, it is clear that cool blackbodies appear red (they emit more red than blue),
hot blackbodies appear blue, and “medium” blackbodies (i.e., the Sun) appear white —
the spectral radiancy is approximately flat across the visible spectrum.

Self similarity An interesting and useful mathematical property of u(λ), as well as
R(λ), is that of self-similarity. Self-similarity is commonly encountered in fractal theory
where a portion of an object looks the same as the entire object. In other words, an object
is self-similar if it looks the same on all scales, large and small. A function, on the other
hand, is self-similar if you can express it as a function of only one variable. For example,
I can rewrite the Planck function in the following way

u(λ)

T 5
=

8πhc

(λT )5

1

ehc/k(λT ) − 1
. (D.9)

Notice that the right-hand-side is a function of only the combination λT , not of λ and T
separately, with all other terms being constant. This means that if I know the form of
the curve for one temperature, I can determine it for another temperature in the following
manner. A plot of u versus λ for one particular value of the parameter T1 can be trans-
formed into a plot for another value of T2 by shrinking the abscissa axis by a factor equal
to the temperature ratio T2/T1 and stretching the ordinate axis by a factor (T2/T1)

5.

Problems

1. What are the dimensions and SI units of “radiant flux.”

2. Show explicitly that the Planck function, Eq. (D.8), agrees with the Rayleigh-Jeans
function, Eq. (D.5), in the limit where λ →∞. Also show explicitly that the Planck
function does not diverge in the λ → 0 limit. That is, determine an approximation
that is correct in this limit.

Solution As usual, it is imprecise to let a physical quantity become infinitely
large (or infinitesimally small), physical quantities must be large or small compared
with another physical quantity. In this case, the correct approximation should be
λkT À hc. In this limit, the argument of the exponential is small, and we can use
the Taylor series expansion ex ≈ 1 + x, which results in

uP (λ) ≈ 8πhc

λ5

1

(1 + hc/λkT )− 1
=

8πhc

λ5

λkT

hc
=

8π

λ4
kT,

which is just the Rayleigh-Jeans law. Note that another way to think about this
classical limit is that it is obtained by letting h become very small. This is a common
method to obtain the classical limit of quantum equations.

In the opposite limit, λkT ¿ hc, the argument of the exponential is large, so that
the −1 in the denominator can be ignored, resulting in

uP (λ) ≈ 8πhc

λ5

1

ehc/λkT
=

8πhc

λ5
e−hc/λkT ,
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which is just Wien’s law. Note that there is no ultraviolet catastrophe.

3. For the Rayleigh-Jeans energy density in Eq. (D.5), evaluate the integral
∫ b
a uRJ(λ)dλ.

Which limit, a → 0 or b →∞, causes the integral to diverge?

Solution Application of the power rule gives
∫ b

a
uRJ(λ) dλ = 8πkT

∫ b

a

dλ

λ4
=

8πkT

3

(
1

a3
− 1

b3

)
.

Letting b →∞ is fine since then b−3 → 0, but a−3 →∞ when a → 0. The ultraviolet
catastrophe.

4. Rayleigh added an exponential factor e−c2/λT to account for the high-frequency be-
havior of the measured blackbody radiation. His spectral radiance was therefore

RR(λ) =
(

c

4

)
8πkT

λ4
e−c2/λT ,

and this was called the “Rayleigh Law.” Assuming that c2 = hc/k, (a) calculate σ
[i.e., evaluate the integral RR =

∫
R(λ) dλ = σT 4], and (b) calculate the constant

b in Wien’s law, i.e., determine the maximum of the function. How well do these
agree with the similar parameters calculated from the correct Planck law?

Solution (a) Changing variables to x = c2/λT , the integral becomes

RR =
8πckT 4

4c3
2

∫ ∞

0
x2 e−xdx.

Using the fact that the gamma function is defined as

Γ(z) ≡
∫ ∞

0
dt tz−1 e−t,

where z is a complex argument, and for integer arguments, Γ(n + 1) = n!, so that
the integral becomes

RR =

(
4π

k4

h3c2

)
T 4.

The factor in parentheses is what the Rayleigh Law would predict for the Stefan-
Boltzmann constant σ Note that is has the same units as the correct σ (i.e., k4/h3c2),
but the numerical factor is wrong: the Rayleigh Law predicts 4π ≈ 12.6, whereas
the correct σ has 2π2/15 ≈ 40.8.

5. Locate the maximum of the Planck function (by taking its derivative with respect
to λ and setting it equal to zero) and obtain a formula for b in terms of other
fundamental constants.

6. Evaluate Eq. (D.1) using Planck’s function in Eq. (D.8). Obtain a formula for
the Stefan-Boltzmann constant σ in terms of other fundamental constants. This
theoretical prediction of a quantity that had previously only been experimentally
measured was one of the great successes of Planck’s theory.
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Partial solution The integral in Eq. (D.1) can be simplified by the change of
variables x = hc/λkT . It becomes

8πk4T 4

h3c2

∫ ∞

0

x3

ex − 1
dx.

The following definitions will help with evaluating this integral. The Riemann Zeta
function is defined as

ζ(s) ≡
∞∑

k=1

k−s <s > 1.

In 1740, Euler was able to evaluate ζ for even arguments, and obtained

ζ(2) =
π2

6

ζ(4) =
π4

90

ζ(6) =
π6

945
...

In addition, it can be shown that ζ(0) = −1
2
, and ζ(1) = ∞. Another expression for

ζ, useful in evaluating integrals related to Planck’s blackbody function (as in this
problem), is

ζ(s) =
1

Γ(s)

∫ ∞

0

xs−1

ex − 1
dx <s > 1

where Γ(s) is the Gamma function, and for integer arguments is related to the
factorial function Γ(n) = (n− 1)!

7. Derive the expression for the spectral radiancy as a function of frequency R(ν) from
a knowledge of R(λ), using the Planck function, given that R(ν)dν = −R(λ)dλ.
This last equation simply states that the energy emitted between λ and λ+dλ must
be the same as that emitted between ν and ν + dν. But, since the the two variables
are related by c = λν, the derivative dλ/dν is needed. Finally, the negative sign just
ensures that both R(λ) and R(ν) are positive.

Solution The derivative is
dλ

dν
= − c

ν2

so that R(ν) = R(λ)c/ν2. For the Planck function I obtain

u(ν) =
8πhν3

c3

1

ehν/kT − 1
,

and for the Rayleigh-Jeans function I obtain

u(ν) =
8πν2

c3
kT.

8. Show that Eq. (D.3) holds. HINT: see the discussion after Eq. (D.4).



Appendix E

The Photoelectric Effect

It was in 1905 that Einstein made the first coupling of photo effects with quan-
tum theory by bringing forward the bold, not to say the reckless, hypothesis of
an electro-magnetic light corpuscle of energy hν, which energy was transferred
upon absorption to an electron. – R. A. Millikan, 1916

Heinrich Hertz (1857-1894) studied the spark discharges that occurred between two
metal surfaces when they were held at different electric potentials, and in 1886 was the
first to create and detect the electromagnetic waves that had been predicted by Maxwell
in 1865. In addition to the waves, he noticed that charged objects would easily lose their
charge when illuminated by light. Then, in 1887, in a series of experiments with spark
discharges, he found that not only a large potential difference between the two electrodes
(now called an anode and a cathode) was able to cause sparks, but ultraviolet light can
also produce sparks. Figure E.1 shows a schematic of Hertz’s experimental setup. He had
created what we now would call a “vacuum diode.” The vacuum chamber was important,
because air between the two metal plates inhibits current flow unless the electric field
between the plates exceeds the “breakdown” potential of air (which is about 3 × 106

V/m). In this case, the electric field ionizes the air and it becomes a good conductor—this
is the physical mechanism of lightning.

Figure E.1: The 1887 experiment by Hertz that first detected the photoelectric effect.
After placing a metal plate and a collector in a vacuum chamber, he biased the plate
negative with respect to the collector. If electrons can “jump” off the plate, cross the
vacuum gap and reach the collector, a current will flow as measured by the galvanometer
G.
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If the space is evacuated, however, there are no air molecules for the electrons to collide
with, and the only impediment to current flow is getting the electrons to leave the plate
in the first place. Hertz realized that there were two possible methods that could induce
the electrons to leave the metallic plate:

1. Heat up the plate, and the electrons would leave via thermionic emission.

2. Illuminate the plate, and the electrons would leave via photo-emission.

Both mechanisms give some of the electrons enough energy to overcome the binding energy
of the metal, also known as the “work function,” φ. That is, φ is just the minimum energy
necessary for an electron to escape from the metal. (Typically, work functions for metals
are between 1 eV and 10 eV.) That a minimum energy exists makes sense because removing
a negatively charged electron from a neutral metal plate results in a positively charged
metal plate. The resulting opposite charges attract, and the electron is pulled back toward
the metal plate, unless an external force does enough work to overcome that attractive
force. As Einstein put it

Energy quanta penetrate into the surface layer of the body, and their energy is
transformed, at least in part, into kinetic energy of the electrons. The simplest
way to imagine this is that a light quantum delivers its entire energy to a single
electron; we shall assume that this is what happens.1

Cutoff wavelength

One of the crucial experimental results, which was a key clue in determining that the
underlying physical mechanism is quantum in nature, was the existence of a cutoff wave-
length. If you, as the experimenter, vary the wavelength λ of the light incident on the
plate, while keeping the potential bias V constant, the current I measured by the gal-
vanometer would also vary. However, if the wavelength was greater than some maximum
wavelength, usually called the “cutoff” wavelength, λ > λc, there would be no current,
regardless of the intensity of the incident light. (See Fig. E.2 for a typical current trace.)
In this regime, the fact that there is no current implies that the electrons are not receiving
enough energy to overcome the work function, and any explanation of this must be based
on a theory of the interaction of light and matter.2

Maxwell’s wave theory of light predicted that matter obtains energy from light in a
continuous manner, just like an ocean wave washing up on the shore. As the amplitude E0

of the light wave increases, the intensity also increases (I ∝ E2
0), so that by increasing the

light intensity an electron should be able to absorb as much energy as needed, regardless of
the light’s wavelength. Figure E.2 shows that this is not what actually happens. In 1905,
Einstein realized that an adoption of Planck’s quantum hypothesis not only correctly
predicts the features of Fig. E.2, but many other discrepancies as well.

Here is Einstein’s logic. Light of frequency ν exists in discrete packets with energy
E = hν = hc/λ, called photons. If, during a “collision” with an electron, a photon is

1Einstein, 1905.
2Refer to Problems 5 and 6 at the end of Chapter 1 for a simple theory of this interaction.
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Figure E.2: The current I as measured by the galvanometer as a function of the wavelength
λ of the light incident on the metal plate. If λ is small enough, this light causes photo-
emission of the electrons.

“annihilated,” that is, it gives up all its energy to the electron, then in order for the
electron to be ejected from the metal plate, the photon’s energy must be greater than the
work function of the metal, E > φ, or

λ <
hc

φ
≡ λc. (E.1)

For example, if the plate is made of nickel, whose work function is about 5 eV, then λc

can be calculated to be about 250 nm, which means the incident light must be in the
ultraviolet. Of course, in practice it is an experimental measurement of λc that is used to
determine φ.

The photoelectric equation

Applying the concept of energy conservation to the interaction between
the photon and electron results in the following equation

hν = φ + Kmax, (E.2)

where hν is the total energy before the interaction, since the electron
is assumed to be at rest, and the right hand side is the total energy
of the electron after the interaction (the photon no longer exists). The
quantity Kmax is the maximum kinetic energy of the electron after it
has left the metal’s surface.3

It was found experimentally in 1902 by Philipp Lenard [Nobel Prize, Physics, 1905] that
Kmax was independent of the intensity of the light, and also that Kmax increased with the
frequency of the light ν, both of which are predicted by Einstein’s photoelectric equation
(E.2). In fact, a straightforward determination of h can be made by measuring the slope

3Equation (E.2) assumes, as Einstein did, that the “light quantum delivers its entire energy to a single
electron.”
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of Kmax versus ν. This is exactly what Robert Millikan did in 1916 to obtain the most
precise value for h at that time. He obtained

h = (6.56± 0.03)× 10−34 J s.

All this is fine, but how is one to determine Kmax? It turns out that there is a very
simple method. For a given frequency of incident light, reverse the polarity of the battery
in Fig. E.1 until it is strong enough to stop the current. This value of V is called the
“stopping potential,” Vs. When the battery’s polarity is reversed, the electric field now
points from the plate to the collector, which serves to repel the electrons from the collector.
At this critical value of the potential, the electric field is just barely large enough to repel
the most energetic electrons, those with energy Kmax, which means that Kmax = eVs. The
experimentally measured quantities Vs and ν are therefore related by

Vs =

(
h

e

)
ν − φ

e
, (E.3)

which means that in actuality the experimenter measures a slope of h/e, rather than h
directly.

Einstein’s revolution

The photoelectric effect, and the various interpretations of Einstein’s explanation, is useful
to illustrate some issues in the philosophy of science and some of the consequences of
Einstein’s quote on page xv. For example, it is usually stated that the experimental facts
of the photoelectric effect, and Einstein’s explanation, unambiguously suggest that light
comes in discrete clumps, or photons. In fact, the situation is not that clear, as we shall
see below.

Einstein’s 1905 paper, in which he explained the photoelectric effect, was primarily a
study of the thermodynamics of radiation, and in particular how that applied to blackbody
radiation. He limited his analysis to the so-called “Wien regime,” which can be expressed
as hν À kT . This is the regime where the ultraviolet catastrophe (see App. D) rears its
ugly head. That is, in this regime, “the classical theory becomes an unreliable predictor
for the quantum results.”4 After a study of Planck’s explanation of blackbody radiation,
Einstein was prompted to make the “light-quantum hypothesis:”

Monochromatic radiation...behaves in thermodynamic respect as if it consists
of mutually independent energy quanta of magnitude Rβν/N .5

You can think of this hypothesis (not a theorem) as “just a curious property of pure
radiation in thermal equilibrium, without any physical consequence,”6 but Einstein next
made a statement about physical reality, called the “heuristic principle:”

4Emch and Liu, The logic of thermostatistical physics, Springer 2001, page 363.
5Einstein, 1905. In Einstein’s notation Rβ/N = h.
6Pais, Subtle is the Lord, page 377.
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If...monochromatic radiation...behaves as a discrete medium consisting of en-
ergy quanta of magnitude Rβν/N , then this suggests [that] the laws of the
generation and conversion of light are also constituted as if light were to con-
sist of energy quanta of this kind.7

That is, the “light-quantum hypothesis” describes a property of radiation, nothing more
or less, but the “heuristic principle,” on the other hand, makes the stronger claim that
this property can be extended to the interaction of light and matter. Einstein is now
describing the underlying reason for a physical process, which, if not falsified, is the first
step on the road to becoming a physical theory.

In 1905, there was no quantum theory for electrons — the Schrodinger equation did not
make an entrance until 1926 — and so Einstein, as might be expected, treated the electrons
classically. Only the light was assumed to be quantized, and this was enough to explain
all the strange experimental observations. However, in 1927 after it became possible to
describe the electrons using a quantum theory, Gregor Wentzel was able to explain the
photoelectric effect without photons ! Either the electron or the light must be quantized,
but both is not necessary. We can conclude that the photoelectric effect does not prove
the existence of photons, but is somewhat more ambiguous. In addition, the Compton
effect (Appendix H) is also an experiment that claims to prove the existence of photons.
However, his explanation is from 1923, again before the advent of the Schrodinger equation.
In 1927, Schrodinger himself explained the Compton effect without photons, although he
had to quantize the electron, just as Wentzel did.

So we are left with a conundrum: are photons real or not? This is not the proper
question to ask, however. Two better questions are, “Do photons explain nature?” and
“Is the concept of a photon required to explain experimental observations?” The answer
to the first question is yes, but, considering only the photoelectric effect and the Compton
effect, the answer to the second question is no. Are there any other observations that
can decide the issue? In fact, there are. When an atom radiates light, it recoils. If we
viewed the electromagnetic radiation classically, atoms would radiate a spherical wave in
all directions (if the atom were spherically symmetric), and conservation of momentum
would dictate that the atom would not move. However, since atoms do recoil, this implies
that the radiation is emitted in a particular direction, and in fact, is a photon.

The moral of this story is that while there might be one experiment that is conceptually
straightforward and that experiment comes to be known as the “proof” of a concept, it is
usually several experiments that result in a “preponderance of the evidence.” That is, one
experiment does not usually remove “reasonable doubt.” A slightly different viewpoint is
put forth by Luis Alvarez when he was discussing the impact theory for the extinction of
the dinosaurs:

A few words on how theories become accepted are appropriate here. Most
laymen feel that theories can be proved or disproved, but with very few ex-
ceptions, theories can’t be proved, only disproved. For example, Newton’s
extremely accurate theory of gravity was disproved by Einstein’s general the-
ory of relativity, but Einstein’s theory wasn’t proved in that processsome new

7Einstein, 1905.
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theory may prove that Einstein was wrong. So how do some theories gain
nearly universal acceptance, when proofs are so rare? The answer is that ev-
ery useful theory explains all known observations and makes predictions, and
if the predictions turn out to be true, particularly if some of them are very
surprising, then that theory becomes an accepted theory, even though some-
one may later find that one of its predictions doesn’t correspond to reality and
thereby invalidates it. An example of what I’ve called a surprising prediction
comes from Maxwell’s kinetic theory of gases, which predicted that the viscosi-
ties of gases would increase with temperature. This was counter to everyone’s
intuition — viscosities of liquids decrease with increasing temperature – but it
turned out to be true. 8

Collateral Reading

The following articles and sections of books give a brief introduction to problems of episte-
mology, especially as it applies to science. That is, as scientists we want to make statements
with certainty, or, barring that, at least know the degree of certainty that holds for each
particular statement.

• Sam Inglis, review of Karl Popper: Philosophy and Problems, Am. J. Phys., 65
162-164 (1997). (ERAU: Reynolds’ office)

• Bertrand Russell, The Problems of Philosophy, Chapter 1, 1912. (ERAU: online)

• Hans Reichenbach, Philosophic foundations of quantum mechanics, Sections §4-6,
University of California Press, 1944 (Dover, 1998). (ERAU: Reynolds’ office)

Problems

1. In his measurement of h, Millikan used sodium metal for the material of his metal
plate, and was able to determine that the minimum (cutoff) frequency was 0.439×
1015 Hz. What does this imply for the work function for sodium? How does Millikan’s
value compare with the presently accepted value?

Solution Multiplication gives φ = hν = (6.561 × 10−34 J s )(0.439 × 1015 Hz)
= 2.88× 10−19 J = 1.798 eV. The current values for sodium range from 1.82 eV to
2.75 eV depending on the surface cleanliness. This variable (surface cleanliness) was
what Millikan spent several years trying to improve. A recent value from CRC is
2.36 eV.

8“Mass extinctions caused by large bolide impacts,” Physics Today, July 1987, pp 24-33.
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Reduced Mass

Consider two particles of mass m1 and m2 located at positions ~r1 and ~r2 respectively, as
shown in Fig. F.1. If, in addition to the forces that they exert on each other, there is an
external force ~Fext that is exerted on each of them, then the equations of motion for each
of the particles are

~Fext + ~F21 = m1
d2

dt2
~r1, (F.1)

~Fext + ~F12 = m2
d2

dt2
~r2, (F.2)

where ~F12 is the force exerted by m1 on m2, and ~F12 = −~F21 (by virtue of Newton’s Third
Law). The two (vector) dependent variables in this description that are to be solved for
as functions of time are ~r1(t) and ~r2(t). This “two-body problem” can be reduced to an
equivalent “one-body problem” by making the following change of variables

~R =
m1~r1 + m2~r2

m1 + m2

, (F.3)

~r = ~r1 −~r2,

where ~R is the position of the center of mass of the system and ~r is the relative position
of the particles. It doesn’t matter whether you use the original set of dependent variables,

Figure F.1: Geometry for two particles moving in one coordinate system. If there is no
external forces, then only the relative position vector ~r is needed.
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~r1(t) and ~r2(t), or the new set, ~R(t) and ~r(t). Therefore, in order to recast Eqs. (F.1) and
(F.2) we need to invert the transformation in Eq. (F.3) and express ~r1 and ~r2 in terms of
~R and ~r. Doing this I obtain

~r1 =
(m1 + m2)~R + m2~r

m1 + m2

, (F.4)

~r2 =
(m1 + m2)~R−m1~r

m1 + m2

.

Plugging these into the original equations of motion, (F.1) and (F.2), I obtain two new

equations of motion, for ~R and ~r. First, adding (F.1) and (F.2) gives

2~Fext = (m1 + m2)
d2

dt2
~R, (F.5)

and then subtracting (F.2) from (F.1) results in

~F12 =
(

m1 −m2

2

)
d2

dt2
~R +

m1m2

m1 + m2

d2

dt2
~r

=
(

m1 −m2

m1 + m2

)
~Fext +

m1m2

m1 + m2

d2

dt2
~r. (F.6)

Eq. (F.5) is simply the equation of motion for the entire system—the total force, 2~Fext, is
equal to the total mass, (m1 + m2), times the acceleration of the center of mass. The first

term in Eq. (F.6) is zero if ~Fext = 0, so that in the absence of external forces the internal
dynamics are determined by

~F = µ
d2

dt2
~r, (F.7)

where ~F = ~F12 is the internal force between the two particles, and

µ =
m1m2

m1 + m2

(F.8)

is called the “reduced mass.” Equation (F.7) is identical to that for one particle of mass

µ moving in a central force ~F. Another, more suggestive, way of expressing the reduced
mass is

1

µ
=

1

m1

+
1

m2

.

The net result of this transformation has been to reduce a two-body problem to a
one-body problem. For many situations, m1 À m2, and the approximation µ ≈ m2 is
valid. Such is the case, for example, for a low-mass planet orbiting a high-mass star.
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Cosmic Rays and Muons

Coming out of space and incident on the high atmosphere, there is a thin rain
of charged particles known as the primary cosmic radiation. — Cecil Powell
[Nobel Prize, Physics, 1950]

The charged particles that make up the “primary” cosmic rays are
protons, α particles, heavier nuclei, and electrons, and they impact the
Earth from all directions and with various energies. Most of these are
protons (about 80%), second in abundance are α particles (about 14%),
while electrons make up less than 1%. When they impact nuclei in the
atmosphere — mostly oxygen and nitrogen nuclei — their energies are
such that they create “showers” of hadrons, mostly pions, along with
some kaons, and anti-protons, and anti-neutrons. These then decay into
photons, electrons, positrons, neutrinos, and muons (which themselves
decay into electrons and neutrinos). These are all called “secondary”
cosmic rays.

Where do the primary cosmic rays come from? Some come from the sun (mostly due
to solar flares), most come from galactic supernovae, and a few with the highest energy are
suspected to originate from outside the Milky Way. You might suspect the solar wind—a
neutral plasma that consists of low energy protons, electrons, and helium nuclei—as a
source of cosmic rays. Due to their low energies, however, these particles are stopped
from reaching the atmosphere by the Earth’s magnetic field, except in the polar regions.
While they have enough energy to cause aurora, they do not cause showers of secondary
subatomic particles.

How many are there? About 1 charged particle per second per cm2 impacts the Earth.1

This is a far cry from the 6× 1010 neutrinos s−1 cm−2 that come from the Sun.

What are their energies? The typical kinetic energy of these particles is about 10
MeV to 100 MeV, although there are some at higher energies. Figure G.1 shows the
distribution of the measured energy per particle. In fact, the cosmic ray with the highest
energy has been measured at 48 J! These ultra-high energy cosmic rays are suspected to
be extra-galactic, as there is no plausible mechanism of acceleration to these energies by

1Henley and Garcia, Subatomic Physics, page 597.
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a supernova, for example. Again, compare these energies to those of solar neutrinos that
have only 0.26 MeV.

Figure G.1: The energy spectrum
of the different nuclei that make up
cosmic rays. Carbon and oxygen
are lumped together. From Fried-
lander, Cosmic Rays, Figure 6.4.

What happens to the secondary cosmic rays?
The pions decay via the following modes

π0 → 2γ (G.1)

π± → µ± + ν, (G.2)

where the neutral pions decay electromagnetically
with an average lifetime of 8.4 × 10−17 s, and the
photons subsequently create electron-positron pairs.
Most of the energy of the original cosmic ray follows
this path. Some of the energy goes into charged pi-
ons, which decay into muons with an average lifetime
of 2.6× 10−8 s. This long lifetime indicates that the
decay is due to the weak interaction, and is there-
fore relatively unlikely. The muons then decay into
electrons (or positrons) and neutrinos

µ± → e± + 2ν, (G.3)

and their average lifetime is 2.2 µs, also a weak in-
teraction.2

What happens to these secondary cosmic rays
as they pass through the atmosphere? First of all,
in addition to possible decay, the charged particles
cause ionization of the atmospheric molecules and
therefore lose energy. For example, a typical muon
loses about 2 GeV of kinetic energy before it hits the ground (if it hasn’t decayed yet), and
by the time they do reach the ground, the average muon energy is about 4 GeV. Secondly,
the showers spread out laterally from the direction of the primary cosmic ray. The main
hadronic core (pions, etc.) covers a few meters by the time it hits the ground, and the
electromagnetic particles (electrons, positrons, photons) have spread further, about 100
m. Finally, the muons have spread the furthest, almost 1 km.

Muons as clocks

This spreading means that muons are continually bombarding the Earth’s surface and,
since it is not clear what direction they came from, statistical methods must be used to
interpret the muon flux. That is, the muons are all “born” at different altitudes, they travel
downward with different speeds, and they “live” for different intervals of time. Therefore,
you might expect that the muon flux would increase with increasing altitude, at least
initially, reach a maximum at some altitude, and then finally decrease. (This altitude of
maximum flux is called the “Pfotzer maximum.”) This is precisely what is observed, but

2Recall that the weak force is responsible for changing one family of quarks or leptons into another.
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the exact shape of this curve is a convolution of a source function and a decay function,
and therefore requires lots of modeling to interpret.

However, for our purpose — special relativity — we want to use the muons as a clock.
In Chapter 5 we assume that our muons are all created at the same altitude, and all live
for the same amount of time, 2.2 µs. You might think that we are not justified in doing
this, because of the statistical spread of muon lifetimes, but that turns out not to be true.
Scott and Burke state the case:

It may seem at first glance that a real particle that is formed and later de-
cays does not constitute an accurate clock, because of the uncertain nature
of the decay process. Given a number of particles, some will decay at times
less than the mean life, some will decay at times greater than the mean life,
and in general it is impossible to predict exactly when any given particle will
decay. However, it is possible to determine the mean lifetime of a number of
particles to any desired accuracy simply by observing a sufficient number of
such particles, and in this sense, decaying particles are just as good clocks as
vibrating molecules. Indeed, for a vibrating molecule it is necessary to observe
it for a large number of cycles in order to determine its frequency precisely;
this is analogous to observing a large number of decays in an exponentially
decaying system.3

Collateral Reading

• “The early history of cosmic ray research.” by Q. Xu and L. M. Brown, Am. J.
Phys., 55 23-33 (1987).

• Michael W. Friedlander, Cosmic Rays, Harvard University Press, 1989. (ERAU: QC
485 .F75 1989)

Problems

1. Calculate the energy in MeV of a 48-J proton. Also calculate γ and β for the same
proton.

Solution The conversion factor is, of course, just the electronic charge e

48 J = 48 J
(

1 eV

1.602× 10−19 J

)
= 3.00× 1014 MeV

To calculate γ, this total energy must be divided by the proton’s rest energy

γ =
E

mc2
=

3.00× 1014 MeV

938.27 MeV
= 3.19× 1011

3Scott and Burke, Special Relativity Primer, page 5.
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For this large γ, the value of β will be extremely close to unity, so we can use the
usual approximation

β =

√
1− 1

γ2
≈ 1− 1

2γ2
= 1− 4.9× 10−24

2. (a) Calculate the reaction energy for a pion decaying into a muon and a neutrino.
(b) Using the conservation of momentum, calculate how much energy the muon has.
HINT: You can assume the muon is non-relativistic (check this), but you must take
relativistic effects into account for the neutrino. One approximation is to take the
highly relativistic limit for the neutrino, where the relationship between its energy
and momentum is Eν = pνc. As usual, ignore the neutrino mass.

3. Why can’t a π0 decay into a µ− and a µ+?

4. If a muon µ− is “born” due to a pion decay π− → µ− + ν̄µ at an altitude of 20
km, how fast must it be traveling to reach the ground before it decays 2.2 µs later?
Express your answer in the form β = 1− ε, and calculate ε.
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The Compton Effect

In 1923, Arthur Holly Compton [Nobel Prize, Physics, 1927] performed
a simple experiment concerning the scattering of X-rays. He used the
Kα X-rays from molybdenum (see Section 4.4 for a description of sec-
ondary X-rays) and scattered them off a carbon target. X-rays had al-
ready been scattered from crystal targets by the Braggs (father William
Henry and son William Lawrence) in 1913, and they had found that the
wavelength of the scattered X-rays was identical to the incident X-rays,
but the intensity varied with scattering angle. The angles that exhib-
ited the highest intensity were explained by constructive interference
of the electromagnetic wave with itself as it was scattered by parallel
planes in the crystal, and those that exhibited low intensity were the result of destructive
interference. This process is called “Bragg scattering.” In these solids, however, the elec-
trons were strongly bound to the atoms so that they did not interact individually with
the incident X-rays.

Compton used carbon (in the form of graphite) as his target. In this case, the high
electrical conductivity means that there are plenty of effectively “free” electrons willing
and able to collide with the X-ray photons allowing them to exhibit their particle nature.
In observing the scattered X-rays at different angles, Compton found that the wavelength
increased, which means that they must have lost energy during the interaction with the
graphite. This process is called “Compton scattering.” The only way that Compton
was able to explain this effect is by invoking the quantum nature of light and treating the
interaction as a two-body collision between photon and electron, although using relativistic
dynamics. This experiment, along with Planck’s explanation of the blackbody spectrum
and Einstein’s explanation of the photoelectric effect, finally convinced most physicists
that photons were “real.” In fact, it wasn’t until after this experiment, in 1926, that the
term “photon” was first used.

In principle, when X-rays are incident on a solid, both types of scattering, Bragg and
Compton, will occur. The wave properties of light allow it to interfere with itself and
show preferential scattering directions, while the particle properties allow it to interact
with single electrons.
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Figure H.1: Scattering geometry for an incoming particle of energy E and momentum p,
moving in the x direction, and impacting a stationary particle at the origin. After the
collision, the incoming particle moves off with energy E ′ and momentum p′ at an angle
+θ with respect to the positive x axis, and the stationary particle moves off with energy
Ee and momentum pe at an angle −φ with respect to the positive x axis.

Two-body collisions

While the analysis is somewhat complicated algebraically, it is a straightforward appli-
cation of the laws of conservation of energy and momentum. Consider the geometry as
shown in Fig. H.1, where a stationary electron of mass me is hit by a photon of energy
E and momentum ~p = px̂. After the collision, the photon now has a different energy E ′

with a component of momentum in the ŷ direction, and the electron increases its energy
to Ee and has a component of momentum in the −ŷ direction. The three conservation
equations become (energy, x-momentum, and y-momentum)

E + mec
2 = E ′ + Ee (H.1a)

p = p′ cos θ + pe cos φ (H.1b)

0 = p′ sin θ − pe sin φ (H.1c)

where the scattering angles θ and φ are both taken to be positive. In principle, a knowledge
of the initial conditions — the photon’s initial wavelength λ, from which both its energy
and momentum can be calculated — allows us to calculate the final conditions — the
direction and momentum of both the photon and the electron. However, there are four
unknowns, pe, p′, θ, and φ, but there are only three equations. Hence the system is
underdetermined, and the best we can do is to either (a) fix one of the unknowns and solve
for the other three in terms of the first, or (b) eliminate two of the unknowns to obtain
a relationship between the other two unknowns. Since there is no general experimental
method to fix one of the unknowns, the second approach is the one that allows a comparison
with experiment. To illustrate the procedure, I’ll first analyze a classical, nonrelativistic
collision between two point particles that you have seen before in elementary mechanics.
Then I’ll look at the Compton scattering experiment, where relativistic dynamics are
required, but the physical principles are identical.
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Figure H.2: Graphical representation of conservation of momentum for the Compton
scattering geometry. The difference in the momenta before and after the collision must
be zero, which means that a vector sum of all the momentum vectors must return to the
original starting location.

Billard ball collision. Let’s assume that Fig. H.1 and Eqs. (H.1) applies to two billiard
balls: a cue ball (instead of a photon), and an eight-ball (instead of an electron). In
the nonrelativistic case, the energy of each particle is just the kinetic energy, given by
K = mv2/2 plus the rest energy, and the momentum is the linear momentum ~p = m~v.
Assuming that the masses of the cue ball and eight-ball, m and me respectively, do not
change, the final unknowns are just the two speeds, v′ and ve, and the two angles, θ and
φ. Our goal is to determine these quantities in terms of the one initial quantity: the initial
kinetic energy K of the cue ball. The technique is identical to that used in Problem 60.

The first step is to combine Eqs. (H.1b) and (H.1c) by moving the terms containing θ
to the left side of the equations, squaring both sides and adding the two equations. Using
elementary trigonometric relations, I get

p2 − 2pp′ cos θ + p′2 = p2
e. (H.2)

This fundamental relation can be obtained very easily with a graphical analysis, as shown
in Fig. H.2. Since the momentum vector is conserved, a triangle can be drawn whose three
sides are the three momenta in the problem. A trivial application of the law of cosines
results in Eq. (H.2). Notice that we have effectively eliminated the angle φ.

The second step is to express the energy of each particle in terms of its momentum.
Since this problem is nonrelativistic, we have

E = mc2 + K (H.3a)

E ′ = mc2 +
p′2

2m
(H.3b)

Ee = mec
2 +

p2
e

2me

, (H.3c)

where K is the initial kinetic energy of the cue ball.1 Conservation of energy, Eq. (H.1a),
becomes

K =
p′2

2m
+

p2
e

2me

1This initial energy is a known quantity, so we are interested in solving for the other quantities in
terms of K. If desired, we could express it as K = p2/2m and take p and m as our known quantities.
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=
p′2

2m
+

1

2me

(
p2 − 2pp′ cos θ + p′2

)
, (H.4)

where I have eliminated pe using Eq. (H.2). This is our final result, and it is a relation
between p′ and θ. That is, given the fact that the cue ball deflects at a certain angle, then
Eq. (H.4) tells us what its final momentum and energy must be.

Of course, as you may know from playing billiards, the cue ball can deflect at any
angle depending on how it impacts the eight-ball. However, if you were to measure its
final momentum, you would find that p′ and θ are always related by Eq. (H.4) — see
Problems 1 and 2 at the end of this appendix.

Photon-electron collision. How do we analyze the case of a X-ray interacting with an
electron? At first glance, it appears to be a completely different situation, but in fact is
remarkably similar. Energy and momentum are still conserved, so Eqs. (H.1) and (H.2)
still apply. The only difference is that we must allow for the fact that the electron might
be moving relativistically after the collision, and of course the photon is always moving
ultra-relativistically, so we must replace Eqs. (H.3) with

E = pc (H.5a)

E ′ = p′c (H.5b)

Ee =
√

(mec2)2 + p2
ec

2. (H.5c)

The conservation of energy equation, Eq. (H.1a), becomes slightly more complicated

(pc + mec
2 − p′c)2 = (p2 − 2pp′ cos θ + p′2)c2 + (mec

2)2. (H.6)

Again, I have eliminated pe using Eq. (H.2), so this is our final result, a relation between
p′ and θ.

There are two key differences between this case and the billiard-ball collision. First,
the initial condition is given by the photon momentum p rather than the cue ball kinetic
energy K. Second, we eliminated φ (rather than θ) because the electron remains in the
target so that only θ is measureable. With billiard balls, in principle we could measure
either θ or φ.

Compton wanted to compare this theoretical prediction, Eq. (H.6), with experimentally
observable quantities. It turns out that photon momentum is not simple to measure, but
photon wavelength is, so using the de Broglie relation p = h/λ and p′ = h/λ′, where λ and
λ′ are the photon wavelength before and after the collision, results in the famous Compton
scattering formula

λ′ − λ =
h

mec
(1− cos θ). (H.7)

The quantity

λC ≡ h

mec
, (H.8)

is called the Compton wavelength of the electron. It is not the de Broglie wavelength of
the electron matter wave, but rather indicates the magnitude of the wavelength shift of
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Figure H.3: Wavelength of the scattered γ-rays as a function of angle of deflection θ.
The four dots are experimental measurements, and the curve is Eq. (H.7). Figure 5 from
Compton, 1923.

the photon when it collides with an electron. Equation (H.7) predicts that the wavelength
of the scattered light is longer than the wavelength of the incident light — how much
longer depends on the angle of deflection. Figure H.3 shows some of Compton’s original
data clearly showing this effect.

This process is fundamental to the operation of NASA’s Compton Gamma Ray Ob-
servatory, which was in Earth orbit from 1991 through 2000. The NASA web site states,
“The Observatory was named in honor of Dr. Arthur Holly Compton, who won the Nobel
prize in physics for work on scattering of high-energy photons by electrons — a process
which is central to the gamma-ray detection techniques of all four instruments [on the
CGRO].”

Problems

1. A cue ball of mass m with kinetic energy K collides elastically with an eight-ball
of mass me at rest. Derive the relationship between the deflection angle of the cue
ball (θ) and its kinetic energy after the collision (p′2/2m). That is, express θ as a
function of K ′ and K.

Solution Manipulating Eq. (H.4) by expressing the momenta in terms of the ki-
netic energy (p =

√
2mK) gives

cos θ =
(m + me)K

′ + (m−me)K

m
√

KK ′ .

2. For the situation described in Problem 1, if m < me then it is possible for m to
bounce directly backwards (i.e., with a deflection angle of θ = π). However, if
m > me, then there is a maximum deflection angle. Find this angle.
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3. Derive Eq. (H.7).

Solution Expanding the square on the left-hand-side of Eq. (H.6) and canceling
terms gives

mec(p− p′) = pp′(1− cos θ).

Expressing the momenta in terms of the wavelength gives

p− p′

pp′
=

1

h
λλ′

(
1

λ
− 1

λ′

)
=

λ′ − λ

h
.

Simplification results in Eq. (H.7).

4. If the incident photon has energy E (or hν), what is the maximum possible kinetic
energy imparted to the scattered electron? At what angle φ does this electron
scatter?

Solution The electron will have maximum kinetic energy is the photon loses a
maximum amount of energy. This occurs when the photon is backscattered, i.e.,
θ = π. For this angle, the Compton scattering formula can be written

1

E ′ −
1

E
=

2

mec2
.

Solving this for E ′ and then forming the quantity E − E ′, I get

E − E ′ =
2E2

mec2 + 2E
.

Since this is the energy lost by the photon, it is also the energy gained by the electron.

5. Obtain a formula that gives the electron’s kinetic energy as a function of the photon’s
scattering angle θ.

Solution Following the method of solution for the previous problem, but retaining
an arbitrary angle θ, the Compton scattering formula is

1

E ′ −
1

E
=

1

mec2
(1− cos θ) ,

and forming E − E ′ again (which is just the electron kinetic energy)

Ke = E − E ′ =
E2(1− cos θ)

E(1− cos θ) + mec2
.

Since the quantity (1− cos θ) is positive definite, the electron kinetic energy is also
positive definite. Also, you can show that Ke is zero when θ = 0, and that it is a
maximum when θ = π.
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6. Determine the maximum wavelength shift in the Compton scattering of photons
from protons.

7. What is the maximum possible kinetic energy of a recoiling Compton electron?
Express your answer in terms of the incident photon energy hν and the electron’s
rest energy mec

2.

8. From Figure H.3, can you calculate the Compton wavelength λC? The units of the
y axis are Ångstroms.
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Appendix I

Relativistic quantum mechanics

The Klein-Gordon Equation

The pseudo-derivation of the Schrodinger equation in Sec. 7.1 started with the nonrela-
tivistic relation between energy and momentum, E = p2/2m + U . If we use instead the
correct relativistic equation, Eq. (5.62),

E2 = (pc)2 + (mc2)2, (I.1)

and make the same assumptions, i.e., that the wave function is a traveling plane wave
and the wave-particle duality relations hold, Eqs. (7.2), then we can make the usual
replacements

E → ih̄
∂

∂t
(I.2)

~p → −ih̄∇.

Since each power of E represents one time derivative, these replacements result in a second
order (in time) differential equation

−h̄2 ∂2

∂t2
Ψ(~r, t) = −h̄2c2∇2Ψ(~r, t) + m2c4Ψ(~r, t). (I.3)

This is the Klein-Gordon equation, named after Oskar Klein and Walter Gordon, who were
only one of many in 1926 that proposed this equation to describe relativistic electrons.
In fact, this equation was first developed by Schrodinger in 1925, but he didn’t publish it
because he couldn’t make it correctly describe the hydrogen atom. It turned out that the
Klein-Gordon equation describes spinless particles, like the pion, and the Dirac equation
is needed to relativistically describe the spin 1

2
electron.

To see that this equation can also describe photons (even though they are spin 1), we
can rewrite it more compactly as

∂2Ψ

∂t2
= c2∇2Ψ−

(
m2c4

h̄2

)
Ψ, (I.4)

where it reduces to the scalar wave equation for m = 0. Clearly, then, any particle with
zero mass must travel at speed c.

265
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Solutions to the Klein-Gordon equation and the Schrodinger equa-
tion

From the viewpoint of 1926, Eq. (I.4) should be able to describe a particle at rest — of
course if m = 0 it cannot, but that is precisely the role of the m2 term. One simple,
spatially independent, solution is

Ψ ∼ e−i(mc2/h̄)t. (I.5)

This wave function is not moving, but is simply oscillating in time. Using our knowledge
that E = h̄ω and E0 = mc2, the coefficient of t can be defined as

ω0 ≡ mc2

h̄
, (I.6)

the “rest frequency” of the particle.1

A more interesting solution can be obtained by making the trial solution

Ψ(~r, t) = ψ(~r, t) e−i(mc2/h̄)t. (I.7)

This is similar to the technique we have used to obtain the time-independent Schrodinger
equation by separation of variables, except that here ψ still retains a time dependence.
Although we are making no assumptions about the time dependence of ψ (yet), this
technique is often used to obtain approximate solutions to a differential equation when
the time dependence of ψ is much slower than ω0.

2 Plugging this trial function into the
Klein-Gordon equation results in a differential equation for ψ

∂2ψ

∂t2
− 2iω0

∂ψ

∂t
= c2∇2ψ. (I.8)

Since this is a linear equation, the usual technique of assuming an exponential solution

ψ ∼ ei(~k·~r−ωt) turns the differential equation into an algebraic equation

ω2 + 2ωω0 = k2c2. (I.9)

This algebraic equation is, of course, just the dispersion relation. In the limit ω À ω0,
Eqs. (I.8) and (I.9) are just the wave equation and its associated dispersion relation,
respectively, because the second terms on the left-hand-sides are ignorable. However,

1For an electron, this rest frequency has the numerical value

ω0 =
mc2

h̄
≈ 7.5× 1020 s−1,

which are extremely fast oscillations. This, of course, is just the angular frequency of the photons created
in an electron-positron annihilation event.

2That is, it is common to make the following approximation

1
ψ

∂ψ

∂t
¿ ω0.
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if ω ¿ ω0, then the first terms on the left-hand-sides are small, and Eq. (I.8) is the
Schrodinger equation for a free particle and Eq. (I.9) is the non-relativistic dispersion
relation that we have already derived in Eq. (6.15).

What does this low-frequency approximation really mean? From the non-relativistic
dispersion relation

ω =
k2c2

2ω0

=
h̄

2m
k2 (I.10)

we can obtain the group velocity, Eq. (6.17)

vg =
∂ω

∂k
=

h̄k

m
.

Comparing this speed to c, we have

(
vg

c

)2

=
h̄2k2

m2c2
=

2h̄ω

mc2
¿ 2h̄ω0

mc2
= 2. (I.11)

So, this implies that we have found a non-relativistic equation — the Schrodinger equation!

Exchange particles

In addition to being the starting point for a derivation of the Schrodinger equation, the
Klein-Gordon equation is also a way to understand the physics of the exchange particles,
and is similar to the way that Yukawa originally derived the properties of the “meson,”
the mediator of the strong nuclear force (see page 26). The π-meson is spin 0 and therefore
is governed by the Klein-Gordon equation. Let’s assume we are in the rest frame of the
pion and take the time-independent version (∂/∂t = 0) which can be written

∇2Ψ−
(

m2c2

h̄2

)
Ψ = 0. (I.12)

This is called the “screened Poisson equation.” If we make a further approximation and
look for a spherically symmetric solution, i.e., no dependence on the angular coordinates
θ or φ, we obtain the equation

1

r2

∂

∂r

(
r2∂Ψ

∂r

)
− k2

0Ψ = 0, (I.13)

where k0 = ω0/c. You can show that a solution to this equation is

Ψ ∼ 1

r
e−k0r, (I.14)

which is the so-called “Yukawa potential.” In contrast with the electric potential for a
point charge, this potential is “screened” — i.e., it decays exponentially — with a screening
distance equal to

d ∼ 1

k0

=
h̄

mc
= λC . (I.15)
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This screening distance is just the Compton wavelength of the exchange particle (see page
260). This means that, unlike a massless photon whose spatial range is infinite, the pion
with nonzero mass can only makes its effect felt out to a distance d. Since the π0 has a
mass of 135 MeV, its effective distance is only about 1 fm. Because the strong nuclear
force was known to have a range of only 1 fm, this correspondence led Yukawa to his
suggestion that a “meson,” with a mass of about 200 MeV, must be responsible for the
strong force. Hence, an exchange particle with a large mass represents a force with a
short range (d ∼ 1/m), while those with zero mass (e.g., a photon) describe forces with
an infinite range.

This result can be obtained in a more approximate way by using the energy-time
uncertainly relation

∆E∆t ∼ h̄. (I.16)

As mentioned several times in Chapter 2, virtual exchange particles can only last for a
time that is consistent with Eq. (I.16). This means that if they are traveling at near the
speed of light, then that time is ∆t ∼ d/c, where d is the maximum distance they can
travel. And since the uncertainty in their energy must be equal to their rest energy (since
the particle is appearing out of “thin air”), ∆E ∼ mc2. Inserting these expressions into
Eq. (I.16) results in Eq. (I.15).

Technical details

The reason why Eq. (I.14) appears to be a solution to Eq. (I.12) is because

∇2
(

1

r

)
= 0. (I.17)

However, this is only true when r 6= 0. When r = 0, you can show that the derivative
diverges. The correct equation and solution are given by

∇2Ψ− k2
0Ψ = −Gδ(~r), (I.18)

and

Ψ =
G

4πr
e−k0r, (I.19)

where δ(~r) = δ(x)δ(y)δ(z) is the three-dimensional Dirac delta function, and G is the
“strength” of the charge at the origin. Note that this is an inhomogeneous linear equation
and therefore the solution is known exactly, without any arbitrary multiplicative constat.

This turns out to be the same formalism that describes a point electric charge in a
plasma, and k0 is the inverse of the Debye length. That is, the plasma particles “screen”
out the potential of the point charge, so that beyond a distance 1/k0 the charge’s effects
are not felt.
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Particle Discovery Timeline

1874 electron coined by Stoney

1876 cathode rays (Kathodenstrahlen) coined by Goldstein

1897 electron discovered by Thomson

1905 light quantum proposed by Einstein

1911 nucleus discovered by Rutherford

1913 isotope coined by Soddy

1920 proton named

1925 Rhenium [Re] discovered by Walter Noddack and Ida Tacke (later Noddack), by
concentrating it from gadolinite. They claimed they discovered technetium [Tc]
(they named it masurium) but this is controversial.

1926 photon coined by Gilbert Lewis

1928 positron predicted by Dirac (discovered 1933)

1930 neutrino proposed by Pauli (observed 1956)

1931 deuterium discovered by Harold Urey (1H called ’protium’)

1932 neutron discovered by Chadwick

1933 positron discovered by Anderson, and Blackett & Ochialini using a cloud chamber.

1935 meson predicted by Yukawa

1937 muon discovered by J. C. Street and E. C. Stevenson in a cloud chamber at Harvard.
Also Carl Anderson and Seth Neddermeyer saw the muon.

1937 Technetium [Tc] discovered by Emilio Segré [Nobel Prize, Physics, 1959] and Carlo
Perrier.

269
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1940 14C discovered by Martin Kamen and Sam Ruben at the University of California,
Berkeley, Radiation Laboratory.

1941 nucleon invented by Christian Møller

1946 lepton invented by Pais and Møller

1947 pions (all three) discovered by Lattes, Occhialini and Cecil Powell [Nobel Prize,
Physics, 1950]

1947 Λ0 (uds) in cosmic rays; first “strange” baryon; long lifetime (10−8 s), hence weak
force.

1949 ∆ resonances by Fermi and H.L. Anderson

1950 π0 discovered

1950s Technetium (43Tc) identified in stellar spectra by Paul Merrill at Mt Wilson.

1954 baryon coined

1955 anti-proton discovered by Owen Chamberlain and Emilio Segré, for which they
earned the Nobel Prize in Physics, 1959.

1956 anti-neutron discovered

1956 electron neutrino observed by Cowan and Reines

1961 ρ, ω, η, and K∗ discovered

1962 muon neutrino discovered by Lederman, Schwartz, and Steinberger at Columbia
University

1962 hadron coined

1964 quarks discovered by Friedman, Kendall and Taylor (1990 Nobel)

1964 Ω− discovered at Brookhaven

1964 charm quark proposed

1968 quarks experimentally confirmed by Friedman, Kendall, and Taylor; a SLAC-MIT
collaboration

1974 charm quark discovered by Richter and Ting at SLAC and Brookhaven (the J/ψ =
cc̄ was discovered simultaneously in November: the “November revolution”)

1975 tau lepton discovered by Martin Perl at Stanford

1977 bottom quark discoverd by Lederman at Fermilab (Υ = bb̄)

1983 W± and Z0 by Carlo Rubbia and Simon van der Meer at CERN
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1995 top quark discovered at Fermilab, CDF and D0 collaborations

2000 tau neutrino discovered at Fermilab
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