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We are all familiar, at least intuitively, with the procedure used to “do physics”
in the macroscopic world. We take an object, subject it to known forces (say gravity
or friction, or both), start it off with a particular position and velocity and follow its
trajectory. When we measure the dynamical properties (say position or energy) of that
object at a later time, we compare those measurements with our theoretical prediction
using Newton’s Laws. Newton’s Laws directly predict what those quantities should be at
that later time, so the comparison is straightforward. The microscopic laws of physics,
quantum mechanics, aren’t so simple.

Bohr 1913

One of the first “weird facts” of quantum mechanics came out of Niels Bohr’s attempt to
understand the atom in 1913. Only two years before, in 1911, Rutherford (with the help
of Geiger and Marsden) had shown that atoms were composed of a tiny, massive nucleus
with positive charge surrounded by electrons of negative charge. Hydrogen, with only
one electron, was the simplest of these.

From classical electrodynamics it was predicted that the combination of a single elec-
tron orbiting a proton (as the hydrogen nucleus was called) in planetary fashion was not
stable. The accelerating electron radiated electromagnetic waves, losing energy, and spi-
ralled into the proton in about 10−11 s. Of course, as there is plenty of hydrogen around,
this prediction must be wrong. Bohr therefore hypothesized that the electron could only
occupy a “stationary state” in which it did not spiral into the proton. He chose what
would later be called “energy eigenstates” in order to correctly predict the spectrum of
hydrogen (i.e., specifically the Balmer formula).1

In modern notation, a single particle in a stationary state (in this example, an electron
in a hydrogen atom) can be written

|ψ〉 = |ψn〉. (1)

That is, the state of the electron, |ψ〉, is a stationary state given by the quantum number
n, |ψn〉, and has energy

En =
−13.6 eV

n2
, (2)

1In addition, he had to make the crucial assumption that when the electron was far from the proton,
the radiation would agree with the classical electrodynamic prediction. This was the first use of the
so-called “correspondence principle.”

1



where n can take on the discrete integer values 1, 2, . . ., ∞. The Dirac “ket” notation |〉
is used to remind you that we are not really talking about a function, but simply labeling
the state that the electron is in. The stationary states (which will turn out to be solutions
to Schrödinger’s equation) can also be written simply as |n〉. Of course, there are really
four quantum numbers that completely describe the state of the electron in a hydrogen
atom, n, `, m`, and ms, but for our purposes, all the weird physics can be had with only
one quantum number.

The hydrogen spectrum is obtained by assuming that the electron can “jump” from
one stationary state to another stationary state (with a lower energy) and to conserve
energy must emit a photon with an energy equal to the energy difference between the
two states

hν = ∆E = Em − En, (3)

where the “quanta of light” assumption of Planck and Einstein has been used.2 This
predicted the hydrogen spectrum perfectly, but physicists were confused about what was
meant by a state. And how did the electron know when to jump, and to what other state
to jump to? Why were these the only states that were stationary? These are questions
that we still have today, but we answer them in a probabilistic fashion. As Abraham Pais
puts it

At a moment which cannot be predicted an excited atom makes a transition
to its ground state by emitting a photon. Where was the photon before that
time? It was not anywhere; it was created in the act of transition.... Is there
a theoretical framework for describing how particles are made and how they
vanish? There is: quantum field theory. It is a language, a technique, for
calculating the probabilities of creation, annihilation, scatterings of all sorts
of particles: photons, electrons, positrons, protons, mesons, others ...3

Weird Fact #1 This, then, is our first “weird fact.” In certain situations electrons
(particles, in general) must occupy stationary states with a definite energy (completely
contrary to the predictions of classical mechanics) and they emit or absorb photons when
they transition between these states. They are not allowed to have any other energy.

Schrödinger 1926

The second weird fact of quantum mechanics arose with Erwin Schrödinger’s equation
(which is just Axiom 3 — see the Appendix — where the observable A is the energy E).
He was able to derive Bohr’s result from solving his eponymous equation

H|ψn〉 = En|ψn〉, (4)

which is an “eigenvalue equation,” and Bohr’s energies turned out to be just the energy
eigenvalues. Since this is a differential equation, there are many possible solutions, one
for each value of n in the set n = 1, 2, 3, . . ., ∞. As is true for all linear differential
equations, the most general solution is a linear combination of all viable solutions, and

2This assumption is related to the so-called “axioms” of quantum mechanics. We will use a few of
them during our story, but for completeness, the full set of axioms is listed in a coherent fashion at the
end.

3Pais, Inward Bound, pages 324-5.
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this means that the electron in a hydrogen atom doesn’t have be in just one state, as
assumed in (1), but can be in a “superposition state”

|ψ〉 =
∑
n

cn|ψn〉, (5)

that is, many states at once. (This, of course, is counter to our everyday experience
in which we never find objects in superposition states, but always find them in a single
state.)

Weird fact #2 Again, contrary to the predictions of classical physics, and counter to
our everyday experience, electrons (particles in general) are allowed to be in superposition
states, in which they can take on the characteristics of each of the stationary states (for
example, the energy) with a certain probability.

The measurement process

This weirdness manifests itself when we talk about the measurement process. If an
electron is in such a superposition state as depicted by (5), the axioms of quantum
mechanics state that if you measure the energy, you won’t obtain just any value for
the result of your measurement, but the only possible values will be En. In addition, the
probability of measuring a certain energy, say En, is given by the coefficient squared, |cn|2.
Since the probability of measuring any energy must be unity, there must be a restriction∑

n |cn|2 = 1. The way it is usually put is as follows. When measuring the energy of one
electron, there is no way of knowing which energy you will obtain, but after measuring
the energies of many identically prepared electrons (this set is called an ensemble), the
probability distribution of the different energies obtained should be as given above. Even
though Schrödinger had developed the equation that led to this formalism, he thought
that the situation was ridiculous. To show this, he came up with a thought experiment
(involving the infamous cat) to highlight how strange this is. In his own words:

One can even set up quite ridiculous cases. A cat is penned up in a steel
chamber, along with the following device (which must be secured against
direct interference by the cat): in a Geiger counter there is a tiny bit of
radioactive substance, so small, that perhaps in the course of the hour one
of the atoms decays, but also, with equal probability, perhaps none; if it
happens, the counter tube discharges and through a relay releases a hammer
which shatters a small flask of hydrocyanic acid. If one has left this entire
system to itself for an hour, one would say that the cat still lives if meanwhile
no atom has decayed.4

That is, imagine a cat in an opaque box. Also in this box is a vial of poison gas, and if
this vial breaks, the cat will die. Also in this box is a radioactive atom, arranged such
that if the atom decays, it will trigger a small hammer to break the vial, killing the cat.
Now then, after one hour, the cat is in a superposition state (in this case there are only
two states, i.e., n = 1, 2,

|ψcat〉 = calive|ψalive〉+ cdead|ψdead〉, (6)

4This quote is from a three-part paper, E. Schrödinger, “Die gegenwärtige Situation in der Quanten-
mechanik,” Naturwissenschaften, 23 807-812; 823-828; 844-849 (1935). Translated by John D. Trimmer.
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where we have chosen the radioactive substance so that the values of cdead and calive are
each equal to 1/

√
2, which means that the probabilities of the cat being alive or dead are

each 1/2.
Now, even though Schrödinger — and many others — think this is weird, it is an

observational fact that these rules predict accurately the outcomes of subatomic experi-
ments. How these rules translate to the macroscopic world is a topic that I won’t cover
here, but has been the subject of much controversy over the past one hundred years.

Bell 1956

Our third weird fact comes into play when we consider two identical particles simultane-
ously, for example two electrons in an atom (now Helium). Following our previous rules,
you might think that each electron must either occupy a stationary state, or perhaps
occupy a superposition state. In general, this is true, but the presence of one electron
affects the other electron — specifically, one electron modifies the potential energy expe-
rienced by the second electron, so the stationary states (and their energies) are modified
from the one-electron case.

But more important, there really is only one wave function, but it depends on prop-
erties of both electrons. That is, we can write this wave function as a “product” state

|ψ〉 = |ψa
n〉|ψb

m〉, (7)

which means that particle a is in state n and particle b is in state m. However, in quantum
mechanics, identical particles are truly identical. In classical physics, two white billiard
balls, while they look the same, can be distinguished by looking closely at any possible
scuffs or scratches. But two electrons, for example, are indistinguishable, and no one,
not even God, can tell them apart. This means that we don’t know whether particle a
is in state n and particle b is in state m or vice versa. Therefore (7) is not an accurate
representation of the state of the system. We must allow for the possibility that the
particles are switched. This means that the wave function must be written as

|ψ〉 = |ψa
n〉|ψb

m〉+ |ψa
m〉|ψb

n〉, (8)

which is called an “entangled” state. In reality, the wave function must be normalized,
and we must write

|ψ〉 = α|ψa
n〉|ψb

m〉+ β|ψa
m〉|ψb

n〉, (9)

where |α|2 is the probability of finding particle a in state n and particle b in state m
and |β|2 is the probability of finding particle a in state m and particle b in state n. Of
course, normalization requires that |α|2 + |β|2 = 1. And since either case is equally
probable, |α|2 = |β|2 = 1/2. There are two choices: either α = 1/

√
2 and β = 1/

√
2,

which is called a symmetric wave function, or α = 1/
√

2 and β = −1/
√

2, which is called
an anti-symmetric wave function. The “spin-statistics theorem” in quantum mechanics
states that identical boson wave functions must be symmetric and identical fermion wave
functions must be anti-symmetric.

Weird fact #2 When the system consists of two identical (i.e., indistinguishable)
particles, they are in a superposition state together, which is called an entangled state.
It is not known which particle is in which state, but it is equally likely to be either.
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