What is the moment of inertia of a uniform sphere of mass M and radius R about an axis that passes through the center of the sphere? The general equation for the moment of intertia is

$$
I=\int r^{2} d m
$$

where r is the perpendicular distance between the mass $d m$ and the axis of rotation.
For the case of a sphere, we can break up the sphere into mass elements that are in the shape of rings of radius r, centered on the z axis, and parallel to the $x-y$ plane, as shown in the figure.

The mass of this ring is $d m=\rho d V=\rho 2 \pi r d r d z$. We will need to integrate over the variable r from 0 to $r_{\max }=\sqrt{R^{2}-z^{2}}$, and then integrate over z from $-R$ to R. The integral for the moment of inertia is then

$$
I=\int r^{2} d m=2 \pi \rho \iint r^{3} d r d z
$$

where the integral over r is just

$$
\int_{0}^{r_{\max }} r^{3} d r=\frac{\left(R^{2}-z^{2}\right)^{2}}{4}
$$

The integral over z is then

$$
I=2 \pi \rho \int_{-R}^{R} \frac{\left(R^{2}-z^{2}\right)^{2}}{4} d z=\pi \rho \int_{0}^{R}\left(R^{4}-2 R^{2} z^{2}+z^{4}\right) d z=\frac{8}{15} \pi \rho R^{5}
$$

Finally, noting that $\rho=\frac{M}{\frac{4}{3} \pi R^{3}}$, I get

$$
I=\frac{2}{5} M R^{2}
$$

