
Appendix B

Blackbody Radiation

It is a highly important task to find this function. — Gustav Kirchhoff, referring
to the blackbody spectrum

An object that reflects no light (electromagnetic radiation) that falls on it, but absorbs
it all, is called a perfect blackbody. But, if it absorbs energy, it must also radiate energy
if it is not to heat up indefinitely. The form of this radiation is crucial in many fields of
physics and astrophysics, but measuring it and predicting it theoretically took a long time.
Because the nature of the atom was not revealed until the early 20th century, the “laws”
regarding thermal radiation were determined phenomenologically (i.e., from experimental
observation). Gustav Kirchhoff (1824-1887) was one of the premier investigators, and his
laws are now taught in introductory physics courses. One version states that the properties
of the radiation depend only on the object’s temperature T and not on the shape, size, or
composition of the blackbody. Specifically, the following three properties were well known
before 1900.

1. A blackbody emits electromagnetic radiation at all wavelengths (i.e., in all regions
of the spectrum).

2. The total power emitted by a blackbody is proportional to T 4, where T is the
temperature (in Kelvin) of the blackbody. (This is the Stefan-Boltzmann law.)

3. The wavelength at which a blackbody emits maximum power is inversely propor-
tional to its temperature λmax ∝ 1

T
. (This is Wien’s law.)

The first property means that blackbodies emit a “continuum” of radiation rather than
the discrete spectral lines emitted by gaseous elements that are heated (see Appendix A).

Radiative transfer

Because objects emit different amounts of energy in different regions of the spectrum, we
have to keep track of that radiation as a function of wavelength λ (or of frequency ν). The
quantity R(λ)dλ is defined to be the energy emitted per unit time per unit area from the
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310 APPENDIX B. BLACKBODY RADIATION

surface of a blackbody, between the wavelengths λ and λ + dλ. R(λ) is called the spectral
radiancy,1 and it has SI units W/m3.

The “energy per unit time per unit area” is called the energy flux. Flux is a concept
that is used in many different physics disciplines, particularly those dealing with transport
of some quantity. In fluid dynamics, for example, the quantity ρv (mass density×velocity)
is called the mass flux, and is nothing but the mass per unit time that passes through a unit
area. In laminar flow, the quantity ρvA remains constant along a streamline, where A is
the cross sectional area of the streamline. This is called the continuity equation. The field
of radiative transfer, while dealing with energy flux, has developed its own terminology,
which we will follow.

The three experimental properties above imply three important mathematical proper-
ties of R(λ), listed below.

1. Since the blackbody emits at all wavelengths, R(λ) > 0 for all λ. In addition, it was
known that R(λ) → 0 as both λ → 0 and λ →∞.

2. The total power emitted per unit area from the blackbody’s surface is just an integral
of R(λ) over all wavelengths. That is

R ≡
∫ ∞

0
R(λ)dλ = σT 4, (B.1)

where σ is the proportionality factor. This is called Stefan’s Law, because it was first
deduced by Jozef Stefan in 1879 from experimental observations. It is also called the
Stefan-Boltzmann law because Ludwig Boltzmann derived it theoretically in 1884,
and therefore σ = 5.67× 10−8 W m−2 K−4 is called the Stefan-Boltzmann constant.
R is called the “radiancy,”2 and has units W/m2.

Our Sun is not a perfect blackbody, but is a very good approx-
imation. Its surface temperature is about T¯ = 5780 K, and
therefore emits an energy flux R = σT 4

¯ = 6.33 × 107 W/m2.
Since the radius of the Sun is R¯ = 6.96×108 m, the radiant flux,
or “luminosity,” of the the Sun is L¯ = (4πR2

¯)σT 4
¯ = 3.85×1026

W.

3. R(λ) has exactly one maximum. That is, dR(λ)/dλ = 0 definines λmax, which is
found to be given by

λmaxT = b, (B.2)

where b = 2.898 × 10−3 m K. This is called Wien’s displacement law, which he
derived in 1893. Note that b has dimensions of length×temperature, so that ‘m K’
is ‘meters·Kelvin,’ not ‘milli-Kelvin.’

1Unfortunately, there is no standard terminology in this field. The quantity R(λ) is sometimes written
as Rλ or Eλ, and it is sometimes called radiancy, or monochromatic irradiance.

2Again, terminology varies, and R is sometimes called intensity or irradiance. The product RA, where
A is the surface area of the blackbody, is called the “radiant flux.”
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Again for the Sun, Wien’s law predicts that it emits its max-
imum power at the wavelength λmax = b/T¯ = 501 nm, very
near the center of the visible spectrum. Evolutionary biologists
suggest that our eyes developed sensitivity in this spectral region
simply because there is so much light available.

In 1860, Kirchhoff, speaking of R(λ), said, “It is a highly important task to find this
function.” A laudable goal, but how to achieve it? Accurate measurements of spectral
radiancy over a large range of wavelengths are needed, not just the visible region of the
spectrum. Ångstrom was able to measure visible wavelengths to a precision of 10−5,
but because absolute intensities are more difficult, it was not until the early 1900s that
measurements became precise enough to compare with theoretical predictions.

Cavity radiation

A simple technique to compare theoretical predictions with experimental measurements is
to consider Hohlraumstrahlung, or cavity radiation. As Kirchhoff put it

“Given a space enclosed by bodies of equal temperature, through which no
radiation can penetrate, then every bundle of radiation within this space is
constituted, with respect to quality and intensity, as if it came from a com-
pletely black body of the same temperature.”

If you cut a hole in the cavity wall, there will be light emitted from that hole, and as
Kirchhoff contends, that is “blackbody radiation.”

It turns out that while it is straightforward experimentally to measure the spectral
radiancy R(λ) from the hole, it is much simpler to theoretically calculate the energy
density of the radiation within the cavity. It can be shown (see Problem 2) that the
relation between the two quantities is

R(λ) =
c

4
u(λ), (B.3)

where u(λ)dλ is the energy per unit volume between the wavelengths λ and λ+dλ [the SI
units of u(λ) are obviously J/m4], and, similar to R, the total energy density U is a sum
over all wavelengths

U ≡
∫ ∞

0
u(λ)dλ. (B.4)

To understand the relation between R and U , another analogy with fluid dynamics is useful.
As discussed above, the mass flux ρv is just the mass density ρ times the flow velocity
v. Here, the energy flux R is just the energy density U times the velocity c, or R = Uc.
This works for R(λ) and u(λ) just as it does for R and U , because all wavelengths travel
at the same speed c. However, R = Uc only holds when all the energy is also traveling
in the same direction, as in laminar fluid flow, where all the mass is traveling in the same
direction. Inside our cavity, electromagnetic waves are traveling in all different directions,
and only those that happen to be heading out of the hole (and would reflect back into the
cavity if there were no hole) contribute to R(λ). This geometry is what is responsible for
the factor of 4 in Eq. (B.3).
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Early theoretical attempts to determine u(λ)

Lord Rayleigh (1900) and James Jeans (1905), using classical arguments, derived a formula
for the energy density u(λ)

uRJ(λ) =
8π

λ4
kT. (B.5)

This classical prediction agreed with the experimental measurements that had been made
up until that time, but an obvious problem was that the integral over all wavelengths
diverged, Eq. (B.4). The difficulty appeared at short wavelengths, and was therefore
called the “ultraviolet catastrophe.”

In 1905, with the help of Einstein, Rayleigh added an ad-hoc3 exponential factor to
get rid of the ultraviolet catastrophe

uR(λ) =
8π

λ4
kT e−c2/λT . (B.6)

This forces the integral
∫∞
0 u(λ)dλ to be finite, and, as we shall see below, agrees with the

correct function of Planck in the small wavelength limit if c2 = hc/k.
In 1900, Max Planck derived a spectral formula by assuming that within the cavity,

the electromagnetic waves and the walls could only exchange energy in discrete amounts
hν.4 He realized that this suggestion was not physical, but it was the only way that he
was able to obtain a formula in agreement with experiment. The spectrum that Planck
derived was

uP (λ) =
8π

λ4

(
hc

λ

1

ehc/λkT − 1

)
, (B.7)

which I’ve written in a suggestive way. The Planck function effectively replaces kT in the
Rayleigh-Jeans formula with a more complicated function of λ and T , and Planck showed
(Problem 5) that it agreed with the Rayleigh-Jeans formula in the long wavelength limit.
Also, it did not diverge at small wavelengths, i.e., there was no ultraviolet catastrophe.

During the period 1900-1905, it was not clear which of the theoretical predictions,
Eqs. (B.5)-(B.7) was correct. They all agreed with each other (and with experiments) in
the limit of long wavelengths,5 but the experiments were not precise enough to distinguish
between them in the short wavelength limit. It was only after 1905, when Einstein used
the same quantization (E = hν) to explain the photoelectric effect, that consensus started
to back Planck’s function.

Properties of the Planck function

The Planck function, Eq. (B.7), certainly satisfies the three experimental properties listed
above. Figure B.1 shows u(λ) for three values of the temperature T . It is clear that as

3ad-hoc, adj., made with a particular purpose, without reference to wider application.
4In the case of a neutral gas confined in a box, Boltzmann had already shown that during collisions

with the walls the molecules exchange momentum (and energy) with the walls. But in order for this
process to predict the ideal gas law, he showed that the energy exchanged can take on any value, i.e., a
continuous set of values.

5Two sets of measurements had confirmed the blackbody spectrum in the infrared: Lummer and
Pringsheim looked between 12-18 µm, and Rubens and Karlbaum looked between 30-60 µm.
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Figure B.1: Energy density uP (λ) given by the Planck function for three values of the
temperature, 3000 K, 5270 K, and 10 000 K. These temperatures were chosen for the
following reasons. A glowing metal can have a temperature on the order of 3000 K, and
it appears red due to the fact that the spectral radiancy at 700 nm is greater than that
at 400 nm; the Sun’s surface temperature is near 5270 K — which has a peak intensity at
λmax = 550 nm, exactly in the center of the visible spectrum — and it appears white since
the spectral radiancy is approximately flat in the visible region; and a very massive star
can have a surface temperature near 10 000K, which makes it appear blue (even though
the scale does not allow us to see the curve for this temperature, Wien’s law tells us that
its maximum must be at about 275 nm, well in the ultraviolet). Note: Rescaling the
ordinate results in a plot of spectral radiancy R(λ).

the temperature increases, the wavelength of maximum intensity decreases and the total
intensity (i.e., the area under the curve) increases. Looking at the strength of the Planck
function in the visible region of the spectrum, and the relative strengths in the red and
blue regions, it is clear that cool blackbodies appear red (they emit more red than blue),
hot blackbodies appear blue, and “medium” blackbodies (i.e., the Sun) appear white —
the spectral radiancy is approximately flat across the visible spectrum.

An interesting and useful mathematical property of u(λ), as well as R(λ), is that of
self-similarity. Self-similarity is commonly encountered in fractal theory where a portion
of an object looks the same as the entire object. In other words, an object is self-similar
if it looks the same on all scales, large and small. A function, on the other hand, is self-
similar if you can express it as a function of only one variable. For example, I can rewrite
the Planck function in the following way

u(λ)

T 5
=

8πhc

(λT )5

1

ehc/k(λT ) − 1
. (B.8)

Notice that the right-hand-side is a function of only the combination λT , not of λ and T
separately, with all other terms being constant. This means that if I know the form of
the curve for one temperature, I can determine it for another temperature in the following
manner. A plot of u versus λ for one particular value of the parameter T1 can be trans-
formed into a plot for another value of T2 by shrinking the abscissa axis by a factor equal
to the temperature ratio T2/T1 and stretching the ordinate axis by a factor (T2/T1)

5.
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Problems

1. What are the dimensions and SI units of “radiant flux.”

2. Show that Eq. (B.3) holds. HINT: see the discussion after Eq. (B.4).

3. For the Rayleigh-Jeans energy density in Eq. (B.5), evaluate the integral
∫ b
a uRJ(λ)dλ.

Which limit, a → 0 or b →∞, causes the integral to diverge?

4. Rayleigh added an exponential factor e−c2/λT to account for the high-frequency be-
havior of the measured blackbody radiation. His spectral radiance was therefore

R(λ) =
8πckT

4λ4
e−c2/λT ,

and this was called the “Rayleigh Law.” Assuming that c2 = hc/k, (a) calculate σ
[i.e., evaluate the integral R = σT 4 =

∫
R(λ) dλ], and (b) calculate the constant b in

Wien’s law, i.e., determine the maximum of the function. How well do these agree
with the similar parameters calculated from the correct Planck law?

5. Show explicitly that the Planck function, Eq. (B.7), agrees with the Rayleigh-Jeans
function, Eq. (B.5), in the limit where λ →∞. Also show explicitly that the Planck
function does not diverge in the λ → 0 limit. That is, determine an approximation
that is correct in this limit.

6. Locate the maximum of the Planck function and obtain a formula for b in terms of
other fundamental constants.

7. Evaluate Eq. (B.1) using Planck’s function in Eq. (B.7). Obtain a formula for the
Stefan-Boltzmann constant σ in terms of other fundamental constants. This theoret-
ical prediction of a quantity that had previously only been experimentally measured
was one of the great successes of Planck’s theory.

8. Derive the expression for the spectral radiancy as a function of frequency R(ν) from
a knowledge of R(λ), using the Planck function, given that R(ν)dν = −R(λ)dλ.
This last equation simply states that the energy emitted between λ and λ+dλ must
be the same as that emitted between ν and ν + dν. But, since the the two variables
are related by c = λν, the derivative dλ/dν is needed. Finally, the negative sign just
ensures that both R(λ) and R(ν) are positive.

Solution The derivative is
dλ

dν
= − c

ν2

so that R(ν) = R(λ)c/ν2. For the Planck function I obtain

u(ν) =
8πhν3

c3

1

ehν/kT − 1
,
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and for the Rayleigh-Jeans function I obtain

u(ν) =
8πν2

c3
kT.
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Appendix C

The Photoelectric Effect

It was in 1905 that Einstein made the first coupling of photo effects with quan-
tum theory by bringing forward the bold, not to say the reckless, hypothesis of
an electro-magnetic light corpuscle of energy hν, which energy was transferred
upon absorption to an electron. – R. A. Millikan, 1916

Heinrich Hertz (1857-1894) studied the spark discharges that occurred between two
metal surfaces when they were held at different electric potentials, and in 1886 was the
first to create and detect the electromagnetic waves that had been predicted by Maxwell
in 1865. In addition to the waves, he noticed that charged objects would easily lose their
charge when illuminated by light. Then, in 1887, in a series of experiments with spark
discharges, he found that not only a large potential difference between the two surfaces
(now called an anode and a cathode) was able to cause sparks, but ultraviolet light can
also produce sparks. Figure C.1 shows a schematic of Hertz’s experimental setup. He had
created what we now would call a “vacuum diode.” The vacuum chamber was important,
because air between the two metal plates inhibits current flow unless the electric field
between the plates exceeds the “breakdown” potential of air (which is about 3×106 V/m).
In this case, the electric field ionized the air and it becomes a good conductor—this is the
physical mechanism of lightning.

Figure C.1: The 1887 experiment by Hertz that first detected the photoelectric effect.
After placing a metal plate and a collector in a vacuum chamber, he biased the plate
negative with respect to the collector. If electrons can “jump” off the plate, cross the
vacuum gap and reach the collector, a current will flow as measured by the galvanometer
G.
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If the space is evacuated, however, there are no air molecules for the electrons to collide
with, and the only impediment to current flow is getting the electrons to leave the plate
in the first place. Hertz realized that there were two possible methods that could induce
the electrons to leave the metallic plate:

1. Heat up the plate, and the electrons would leave via thermionic emission.

2. Illuminate the plate, and the electrons would leave via photo-emission.

Both mechanisms give some of the electrons enough energy to overcome the binding energy
of the metal, also known as the “work function,” φ. That is, φ is just the minimum energy
necessary for an electron to escape from the metal. (Typically, work functions for metals
are between 1 eV and 10 eV.) That a minimum energy exists makes sense because removing
a negatively charged electron from a neutral metal plate results in a positively charged
metal plate. The resulting opposite charges attract, and the electron is pulled back toward
the metal plate, unless an external force does enough work to overcome that attractive
force. As Einstein put it

Energy quanta penetrate into the surface layer of the body, and their energy is
transformed, at least in part, into kinetic energy of the electrons. The simplest
way to imagine this is that a light quantum delivers its entire energy to a single
electron; we shall assume that this is what happens.1

Cutoff wavelength

One of the crucial experimental results, which was a key clue in determining that the
underlying physical mechanism is quantum in nature, was the existence of a cutoff wave-
length. If you, as the experimenter, vary the wavelength λ of the light incident on the
plate, while keeping the potential bias V constant, the current I measured by the gal-
vanometer would also vary. However, if the wavelength was greater than some maximum
wavelength, usually called the “cutoff” wavelength, λ > λc, there would be no current,
regardless of the intensity of the incident light. (See Fig. C.2 for a typical current trace.)
In this regime, the fact that there is no current implies that the electrons are not receiving
enough energy to overcome the work function, and any explanation of this must be based
on a theory of the interaction of light and matter.2

Maxwell’s wave theory of light predicted that matter obtains energy from light in a
continuous manner, just like an ocean wave washing up on the shore. As the amplitude E0

of the light wave increases, the intensity also increases (I ∝ E2
0), so that by increasing the

light intensity an electron should be able to absorb as much energy as needed, regardless of
the light’s wavelength. Figure C.2 shows that this is not what actually happens. In 1905,
Einstein realized that an adoption of Planck’s quantum hypothesis not only correctly
predicts the features of Fig. C.2, but many other discrepancies as well.

Here is Einstein’s logic. Light of frequency ν exists in discrete packets with energy
E = hν = hc/λ, called photons. If, during a “collision” with an electron, a photon is

1Einstein, 1905.
2Refer to Problems 5 and 6 for a simple theory of this interaction.
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Figure C.2: The current I as measured by the galvanometer as a function of the wavelength
λ of the light incident on the metal plate. If λ is small enough, this light causes photo-
emission of the electrons.

“annihilated,” that is, it gives up all its energy to the electron, then in order for the
electron to be ejected from the metal plate, the photon’s energy must be greater than the
work function of the metal, E > φ, or

λ <
hc

φ
≡ λc. (C.1)

For example, if the plate is made of nickel, whose work function is about 5 eV, then λc

can be calculated to be about 250 nm, which means the incident light must be in the
ultraviolet. Of course, in practice it is an experimental measurement of λc that is used to
determine φ.

The photoelectric equation

Applying the concept of energy conservation to the interaction between the photon and
electron results in the following equation

hν = φ + Kmax, (C.2)

where hν is the total energy before the interaction, since the electron is assumed to be
at rest, and the right hand side is the total energy of the electron after the interaction
(the photon no longer exists). The quantity Kmax is the maximum kinetic energy of the
electron after it has left the metal’s surface.3

It was found experimentally in 1902 by Philipp Lenard [Nobel Prize, Physics, 1905] that
Kmax was independent of the intensity of the light, and also that Kmax increased with the
frequency of the light ν, both of which are predicted by Einstein’s photoelectric equation
(C.2). In fact, a straightforward determination of h can be made by measuring the slope
of Kmax versus ν. This is exactly what Robert Millikan did in 1916 to obtain the most
precise value for h at that time. He obtained

h = (6.56± 0.03)× 10−34 J s.

3Equation (C.2) assumes, as Einstein did, that the “light quantum delivers its entire energy to a single
electron.”
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All this is fine, but how is one to determine Kmax? It turns out that
there is a very simple method. For a given frequency of incident light,
reverse the polarity of the battery in Fig. C.1 until it is strong enough
to stop the current. This value of V is called the “stopping potential,”
Vs. When the battery’s polarity is reversed, the electric field now points
from the plate to the collector, which serves to repel the electrons from
the collector. At this critical value of the potential, the electric field
is just barely large enough to repel the most energetic electrons, those
with energy Kmax, which means that Kmax = eVs. The experimentally
measured quantities Vs and ν are therefore related by

Vs =

(
h

e

)
ν − φ

e
, (C.3)

which means that in actuality the experimenter measures a slope of h/e, rather than h
directly.

Einstein’s revolution

The photoelectric effect, and the various interpretations of Einstein’s explanation, is useful
to illustrate some issues in the philosophy of science and some of the consequences of
Einstein’s quote on page xv. For example, it is usually stated that the experimental facts
of the photoelectric effect, and Einstein’s explanation, unambiguously suggest that light
comes in discrete clumps, or photons. In fact, the situation is not that clear, as we shall
see below.

Einstein’s 1905 paper, in which he explained the photoelectric effect, was primarily a
study of the thermodynamics of radiation, and in particular how that applied to blackbody
radiation. He limited his analysis to the so-called “Wien regime,” which can be expressed
as hν À kT . This is the regime where the ultraviolet catastrophe (see App. B) rears its
ugly head. That is, in this regime, “the classical theory becomes an unreliable predictor
for the quantum results.”4 After a study of Planck’s explanation of blackbody radiation,
Einstein was prompted to make the “light-quantum hypothesis:”

Monochromatic radiation...behaves in thermodynamic respect as if it consists
of mutually independent energy quanta of magnitude Rβν/N .5

You can think of this hypothesis (not a theorem) as “just a curious property of pure
radiation in thermal equilibrium, without any physical consequence,”6 but Einstein next
made a statement about physical reality, called the “heuristic principle:”

If...monochromatic radiation...behaves as a discrete medium consisting of en-
ergy quanta of magnitude Rβν/N , then this suggests [that] the laws of the

4Emch and Liu, The logic of thermostatistical physics, Springer 2001, page 363.
5Einstein, 1905. In Einstein’s notation Rβ/N = h.
6Pais, Subtle is the Lord, page 377.
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generation and conversion of light are also constituted as if light were to con-
sist of energy quanta of this kind.7

That is, the “light-quantum hypothesis” describes a property of radiation, nothing more
or less, but the “heuristic principle,” on the other hand, makes the stronger claim that
this property can be extended to the interaction of light and matter. Einstein is now
describing the underlying reason for a physical process, which, if not falsified, is the first
step on the road to becoming a physical theory.

In 1905, there was no quantum theory for electrons — the Schrodinger equation did not
make an entrance until 1926 — and so Einstein, as might be expected, treated the electrons
classically. Only the light was assumed to be quantized, and this was enough to explain
all the strange experimental observations. However, in 1927 after it became possible to
describe the electrons using a quantum theory, Gregor Wentzel was able to explain the
photoelectric effect without photons ! Either the electron or the light must be quantized,
but both is not necessary. We can conclude that the photoelectric effect does not prove
the existence of photons, but is somewhat more ambiguous. In addition, the Compton
effect (Appendix F) is also an experiment that claims to prove the existence of photons.
However, his explanation is from 1923, again before the advent of the Schrodinger equation.
In 1927, Schrodinger himself explained the Compton effect without photons, although he
had to quantize the electron, just as Wentzel did.

So we are left with a conundrum: are photons real or not? This is not the proper
question to ask, however. Two better questions are, “Do photons explain nature?” and
“Is the concept of a photon required to explain experimental observations?” The answer
to the first question is yes, but, considering only the photoelectric effect and the Compton
effect, the answer to the second question is no. Are there any other observations that
can decide the issue? In fact, there are. When an atom radiates light, it recoils. If we
viewed the electromagnetic radiation classically, atoms would radiate a spherical wave in
all directions (if the atom were spherically symmetric), and conservation of momentum
would dictate that the atom would not move. However, since atoms do recoil, this implies
that the radiation is emitted in a particular direction, and in fact, is a photon.

The moral of this story is that while there might be one experiment that is conceptually
straightforward and that experiment comes to be known as the “proof” of a concept, it
is usually several experiments that result in a “preponderance of the evidence.” That is,
one experiment does not usually remove “reasonable doubt.”

Collateral Reading

The following articles and sections of books give a brief introduction to problems of episte-
mology, especially as it applies to science. That is, as scientists we want to make statements
with certainty, or, barring that, at least know the degree of certainty that holds for each
particular statement.

• Sam Inglis, review of Karl Popper: Philosophy and Problems, Am. J. Phys., 65
162-164 (1997). (ERAU: Reynolds’ office)

7Einstein, 1905.
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• Bertrand Russell, The Problems of Philosophy, Chapter 1, 1912. (ERAU: online)

• Hans Reichenbach, Philosophic foundations of quantum mechanics, Sections §4-6,
University of California Press, 1944 (Dover, 1998). (ERAU: Reynolds’ office)

Problems

1. In his measurement of h, Millikan used sodium metal for the material of his metal
plate, and was able to determine that the minimum (cutoff) frequency was 0.439×
1015 Hz. What does this imply for the work function for sodium? How does Millikan’s
value compare with the presently accepted value?

Solution Multiplication gives φ = hν = (6.561 × 10−34 J s )(0.439 × 1015 Hz)
= 2.88× 10−19 J = 1.798 eV. The current values for sodium range from 1.82 eV to
2.75 eV depending on the surface cleanliness. This variable (surface cleanliness) was
what Millikan spent several years trying to improve. A recent value from CRC is
2.36 eV.



Appendix D

Rutherford Scattering

All science is either physics or stamp collecting. — Ernest Rutherford

After studying radioactivity for several years, and winning a Nobel Prize (in Chem-
istry!) for his efforts (see Section 3.7), in 1911 Ernest Rutherford attacked the question
of the composition of matter from a different perspective. Along with two students, Hans
Geiger and Ernest Marsden, Rutherford directed the α rays emitted by “radium emana-
tion,” 222Rn, at several thin solid targets, primarily gold.1 (He had by that time definitively
determined that α rays were nothing more than helium nuclei.) At this time, the prevailing
model of the atom was J. J. Thomson’s “plum pudding” model, in which he envisioned a
smeared out positive charge with electrons embedded like plums in a pudding. One way to
test this model was to fire a charged particle at an atom and then measure its trajectory.
This would give information about the location of the electric charges. In fact, this is the
primary method that has been used over the past 100 years to investigate the structure
of subatomic particles.

Rutherford’s results showed that the atom consisted of a small, massive “nucleus” that
was positively charged, surrounded by several light, negatively charged electrons. The
incoming α particle was deflected only by the nucleus and not by the light electrons,
so Rutherford developed a theory of scattering to analyze his results. This theory is
sufficiently important that I will derive its general form, and then apply it to two specific
situations.

1Radon-222 is the daughter of 226Ra, and it α decays to radium A (218Po) which then α decays to
214Pb which then β decays to radium C (214Bi). This is part of the 4n + 2 natural decay series (see
Section 3.8.1) starting with 238U. All of these isotopes were present and emitting α particles, each with
a characteristic energy. As Geiger and Marsden stated in “On a Diffuse Reflection of the α-Particles,”
Proc. Roy. Soc., 82, 495-500 (1909), “The tube contained an amount of emanation equivalent to about
20 milligrammes RaBr2 at a pressure of a few centimetres. The number of α-particles expelled per second
through the window was, therefore, very great, and, on account of the small pressure inside the tube, the
different ranges of the α-particles from the three products (i.e. emanation, RaA, and RaC) were sharply
defined.”
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Figure D.1: Scattering geometry for a fixed, repulsive scattering center. The scattered
particle initially has a speed v, and if no force were present, its straight line trajectory
would take it to within a distance b — the impact parameter — of the scattering center.
By symmetry, it will have a final speed v, but in a direction θ relative to its initial direction.

Scattering by a central force

The standard scattering problem is as follows: An object approaches a “scattering center”
with speed v, and if it felt no force it would miss the scattering center by a distance
b, known as the “impact parameter.” See Fig. D.1. If the force exerted on the object
is in the radial direction, and depends only on the radial distance r, then the resulting
trajectory will be symmetric, and the object will head away from the center asymptotically
approaching a line that is also a distance b from the center. At any given instant, the
object will be located at (r, φ) relative to the center, and the scattering angle θ is the
direction that it is heading (relative to its initial direction) when it is far away from the
center.

For any given force that the scattering center exerts on the object, the main theoretical
prediction is the function θ(b). That is, how does the scattering angle θ depend on the
impact parameter b? For repulsive forces, we can predict some general features of θ(b).
First, if b = 0, then the object hits the (repulsive) center head on and simply “bounces”
back, resulting in θ = π. As b increases θ must decrease, until for large b, θ must be small.
In the limit that b → ∞, it must be the case that θ → 0, as long as the scattering force
gets weaker with distance. See Fig. D.2, which shows the general case of θ(b). It is correct
for small b and for large b for all repulsive forces, but detailed shape depends on the actual
force law.

Hard sphere (billiard-ball) collisions

One of the simplest types of collisions to analyze is that of two solid spheres of radius
R, and the only force that exists between them is a repulsive, elastic contact force when
they touch. In this case, b = 0 results in θ = π, as we predicted above. However, if b is
greater than 2R, then the spheres miss each other completely, and there is no scattering,
which means θ = 0. Using the law of reflection (the angle of incidence equals the angle of
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Figure D.2: Typical plot of scattering angle θ versus impact parameter b for a repulsive
force. A direct hit (b = 0) must cause direct backscattering (θ = π), and as b increases,
θ must decrease toward zero. The exact form of the decrease depends on the form of the
repulsive force, so that a measurement of θ(b) can be inverted to infer Fr(r).

reflection), you can show (see Problem 1) that b and θ are related by

b = 2R cos

(
θ

2

)
. (D.1)

To obtain θ as a function of b, you simply need to invert the formula above

θ =

{
2 arccos(b/2R) b < 2R

0 b ≥ 2R
(D.2)

Rutherford scattering

Ernest Rutherford, of course, was interested in the case where the force law was a repulsive
Coulomb force, which was the case in his experiment of α particles scattering off gold
nuclei. The gold nucleus acted as the scattering center — it was very massive and did
not move very much during the “collision” — and the α particles were the objects being
scattered. If the repulsive force is

F =
1

4πε0

(ze)(Ze)

r2
, (D.3)

where Ze is the positive charge of the scattering center, and ze is the positive charge of
the object being scattered, then you can show that

b =
zZ

2K

e2

4πε0

cot

(
θ

2

)
, (D.4)

where K is the initial kinetic energy (when it is very far away) of the α particle. Notice
that the scattering angle depends on the speed of the object, which was not true in the
billiard-ball case. There, since there was no force except when the spheres made contact,
the speed did not matter at all, only the angle of the collision. Here, if the α particle
moves quickly, it spends less time in the region where the repulsive electric force is strong,
and therefore the scattering angle is small.
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Figure D.3: Scattering geometry for two solid spheres of radius R.

Figure D.4: Schematic of the Geiger-Marsden experiment. The scattering angle θ was
measured by noting a flash on the fluorescent screen in a darkened room. From Hyper-
physics.

The Rutherford scattering formula Unfortunately, Eq. (D.4) is not in the proper
form for comparison with experimental results. Why not? Well, since the detector is
typically located at an angle θ from the initial projectile direction, or at least the number
of particles that are deflected by an angle θ is measured, we wish to predict the probability
for an α particle to be scattered into any angle between θ and θ + dθ. In addition, there
are many α particles and many nuclei in the thin foil target, which means the density
of the gold nuclei and the thickness of the foil must be taken into account. If all these
factors are included, the probability above, that for scattering into any angle between θ
and θ + dθ, is given by N(θ)dθ. For the Coulomb force, Rutherford showed that

N(θ) =
nt

4r2

(
zZ

2K

)2
(

e2

4πε0

)2

sin−4

(
θ

2

)
, (D.5)

where n is the number density of the scatterers, t is the foil thickness, and r is the distance
of the detector from the point where the beam hits the foil. Geiger and Marsden were able
to reproduce the dependence of N on θ, Z, t, and K. All of the measurements matched
the predictions, which led to the acceptance of a “nuclear” atom.

Problems

1. Derive the scattering formula, Eq. (D.1), for two solid spheres.
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Solution The right triangle in the figure
has a hypotenuse of 2R, and hence sin φ =
b/2R. The scattering angle θ (see Fig. D.1)
is given by θ + 2φ = π, where the factor
of 2 comes from the fact that the angle
of incidence equals the angle of reflection.
Solving for b gives

b = 2R sin

(
π

2
− θ

2

)
= 2R cos

(
θ

2

)
.

2. Sketch the function θ(b) for billiard-ball collisions. One method is to sketch b(θ)
from Eq. (D.1), and then invert the sketch (flip it mirror-like around the line b = θ).

3. Sketch the function θ(b) for Coulomb collisions (i.e., Rutherford scattering).

4. If an α particle heads directly toward a gold nucleus (b = 0), how much kinetic
energy must it have so that its distance of closest approach (defined to be where its
kinetic energy is zero) is equal to the nuclear radius?

Solution Gold has A ∼ 197 so that R = R0A
1/3 = 1.2 fm × 5.8 ∼ 7 fm. The

potential energy between the α particle (z = 2) and the gold nucleus (Z = 79) when
they are 7 fm apart is

|U | = e2

4πε0

(2)(79)

7 fm)
≈ 32 MeV.

This is just what K must be when they are very far apart. However, this is much
larger than the ∼ 5 MeV α particles that are emitted radioactively, so that Ruther-
ford’s nuclei did not get close enough to experience the strong force.

5. Rutherford scattering. In polar coordinates, with a scattering nucleus (of charge
+Ze) fixed at the origin, the equation of the trajectory of the α particle (of charge
+ze) can be shown to be

1

r
=

1

b
sin ϕ +

D

2b2
(cos ϕ− 1) ,

where b is the “impact parameter,” and D is
the “distance of closest approach” in a head
on collision (b = 0), which is given by

D =
1

4πε0

zZe2

Mv2/2
.

In a head-on collision, the α particle will stop
and turn around at this location distance from
the nucleus. (a) Show that D is the distance
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at which the potential energy of the α particle is equal to its initial kinetic energy
(Mv2/2). (b) Show that the trajectory equation is a hyperbola. (In the figure, θ is
the scattering angle.)

Solution (a) The total energy of the α particle is E = K +U . When it is very far
from the gold nucleus, the potential energy is zero, so that E = K = 1

2
mv2. At its

distance of closest approach, the “turning point,” the kinetic energy is zero so that
E = U = +zZe2/4πε0r. The + sign indicates that the Coulomb force is repulsive.
Since E is the same in both cases, setting K = U and r = D gives the formula for
D. (b) This one is hard, and if anyone made a reasonable attempt, give them some
credit.

6. In Geiger and Marsden’s experiment, α particles impinged on a gold foil. Consider
one α particle heading directly toward one gold nucleus (197Au of course). How
much initial kinetic energy must the α particle have (when it is very far from the
nucleus) in order to have its distance of closest approach be equal to the radius of
the nucleus?

Solution Here, z = 2 and Z = 79, so that the kinetic energy can be written

1

2
mv2 =

zZe2

4πε0D
=

(2)(79)(1.4399 eV nm)

(1.2 fm)(197)1/3
= 32.6 MeV.

This is quite a bit of energy. Recall that Rutherford was using α particles from
radioactive decay, and they tended to have energies around 3-5 MeV. So his projec-
tiles never got close to the gold nuclei, which means that he “saw” strictly the 1/r
potential and no hint of structure in the nucleus.

7. In a collision between hard spheres, there is no scattering if b is larger than a max-
imum value. This means that you must “aim well” in order to see an effect. Not
true for the 1/r2 Coulomb force: any impact parameter will cause scattering. It is
instructive to investigate the “Born approximation,” where we take the limit of large
impact parameter (and thus a small scattering angle). Determine the relationship
between b and θ in this limit.

Solution Expanding the cotangent in Eq. (D.4) for small θ gives

b ≈ zZ

2K

e2

4πε0

(
2

θ

)
,

which shows that b and θ are inversely proportional. More interesting is that, in this
limit, the quantity bθK is constant.
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The Stern-Gerlach Experiment

...quantum-mechanical states are to be represented by vectors in abstract com-
plex vector space. —J.J. Sakurai1

In 1922, Otto Stern and Walther Gerlach measured the magnetic moment of the silver
atom using a technique that has come to be known as the “molecular beam method.” Due
to the electron configuration of silver (Z = 47), it was essentially a measurement of the
magnetic moment of the electron (see Section 2.4 and page 76). It is also a demonstration
of the simplest system that is inherently quantum mechanical, and it is instructive to
realize just how inadequate our macroscopic intuition really is.

Torques and Forces

Recall from elementary electromagnetism that electric dipoles and magnetic dipoles ex-
perience forces and torques due to electric fields and magnetic fields, respectively. For
magnetic dipoles, if the magnetic field ~B is uniform, then the force on the dipole is zero,
but the torque on the dipole is equal to ~τ = ~µ× ~B, where ~µ is the magnetic dipole moment.
This just says that field tries to align the moment with the field vector. More important
for the Stern-Gerlach experiment is the fact that if the field is nonuniform, then the dipole
feels a net force that is due to the gradient in the field. Specifically, a magnetic dipole
feels a force

~F = ∇
(
~µ · ~B

)
, (E.1)

which, if the field points primarily in the z direction, and its magnitude also varies in the
z direction, becomes approximately

Fz ≈ µz
∂Bz

∂z
. (E.2)

This was exactly the case in the Stern-Gerlach experiment. Otto Stern had the idea for
this experiment in 1921 in order to see if he could detect the “space quantization” of the
atom. In Bohr’s atomic model, the angular momentum perpendicular to the plane of the
electron orbit was quantized, Lz = nh̄, which meant that the magnetic moment due to the

1Sakurai, Modern Quantum Mechanics, page 10.
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Figure E.1: Schematic of the Stern-Gerlach experiment. Silver atoms were heated in
an oven, allowed to escape and sent in a particular direction via a collimated slit, passed
through a nonuniform magnetic field, and finally impinged on a photographic plate. Figure
1.1 from Sakurai, Modern Quantum Mechanics.

orbital motion was also quantized. It can be expressed (Problem 2) in units of the Bohr
magneton

µz = −nµB, (E.3)

exactly as in Eq. (2.9). From observations of the Zeeman effect, where the spectral lines
of atoms that have been place in a magnetic field are split into two, three, or more
components, it was postulated that the magnetic moment vector of an atom was forced
to be either parallel or anti-parallel to the external magnetic field. Since these two states
have different energies (the torque equation above implies that there is a potential energy

due to the interaction that is U = −~µ · ~B), this would explain the splitting of the spectral
lines. Stern proposed to verify this by means of Eq. (E.2).

As depicted in Fig. E.1, silver atoms would be heated in an oven, allowed to “effuse”2

through a hole in the oven and then a collimating slit. They then would pass through a
nonuniform magnetic field which would exert a force on the atoms via Eq. (E.2) and there-
fore spread out the beam. Classically, the magnetic moment vectors of the atoms point
in random directions, and therefore the z components would take on a continuous range
of values, which means that the initially narrow beam would be spread out. However, if
the quantum intuition of physicists like Niels Bohr was correct, then only certain discrete
values of µz would be allowed and the beam would split into two or more discrete beams,
resulting in discrete lines on the detecting photograph. This, in fact, was Stern’s motiva-
tion: to “decide unequivocally between the quantum theoretical and classical views.”3 It
took a year to complete the experiment because the deflection of the beam was small, and
the entire apparatus had to be aligned to a tolerance of 0.01 mm or the result would be
inconclusive.

Since silver has 47 electrons, the first 46 form a spherical cloud — and each pair of them

2effusion, n., the flow of gas through an aperture whose diameter is small as compared with the distance
between the molecules of the gas.

3Quoted in Friedrich and Herschbach, Physics Today, 2003.
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Figure E.2: Postcard from Gerlach to Bohr. The message reads “Attached [is] the exper-
imental proof of directional quantization. We congratulate [you] on the confirmation of
your theory.” Note the scale denoting 1.0 mm at the bottom right. Figure 4 from Friedrich
and Herschbach, Physics Today, 2003.

has their spins anti-aligned — while the 47th electron, the only one in the 5s subshell, is
the only one to contribute to the magnetic moment of the atom (see Problem 67 for a proof
that the nucleus contributes only negligibly to the atom’s magnetic moment). Of course,
Stern and Gerlach did not know about spin (it wasn’t proposed by George Uhlenbeck and
Samuel Goudsmit until 1925), but they assumed the Bohr model, which stated that the
unpaired electron would have a nonzero orbital angular momentum, and hence a nonzero
magnetic dipole moment, as in Eq. (E.3). Of course, as we now know, the 47th electron
has zero orbital angular momentum, so that the magnetic moment of the atom is solely
due to its spin, and can take on the values

µz = −gmsµB, (E.4)

as given in Eq. (2.10). When they found that the beam was split into two beams, and
that the strength of the splitting implied that silver had a magnetic moment equal to µB

to within 10%, Gerlach sent a postcard to Bohr in congratulations (see Fig. E.2). They
thought that they had confirmed Eq. (E.3) with n = 1. But in fact they had confirmed
Eq. (E.4), with g ≈ 2 and ms = ±1

2
. It wasn’t until 1927, after spin was discovered

and after Schrodinger modeled the hydrogen atom, that it was recognized that they had
actually measured the spin of the electron. In 1922, Stern and Gerlach were completely
in the dark about the true nature of their result.

Sequential Stern-Gerlach experiments

What is special about the z axis? Could we turn the magnets in Fig. E.1 horizontal and
measure µx? Of course, but then, quantum mechanics tells us, we would have no knowledge
of the z component. Recall from Section 2.3 that it is possible to know simultaneously only
the magnitude and one component of the spin vector — the other two components, as given
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Figure E.3: Schematic of three different possibilities for Stern-Gerlach type experiments
that are run in sequence, i.e., one after the other. Figure 1.3 from Sakurai, Modern
Quantum Mechanics.

by the angle φ, are completely “unknowable.” Since the magnetic moment is proportional
to spin, this restriction applies also to it. To illustrate this restriction, consider Fig. E.3(a).
We place two identical deflecting magnetic fields that are both oriented in the z direction,
so they each effectively measure the z component of the magnetic moment (or spin).
After the first “SGz” apparatus, which splits the beam in two, if we block the beam
that was deflected downward, and let the upward-deflected beam go through another SGz
apparatus, then there should be no downward deflected beam. This is because all the
atoms entering the second apparatus must have their magnetic moments pointing in the
+z direction, since they had just been measured by the first SGz apparatus.

Figure E.3(b) shows a similar setup, but with an SGx apparatus coming second. Again,
if we block the “spin down” component and let the spin up component through, the result
is that 50% of the beam is deflected right (which means it has Sx = +1

2
h̄) and 50% of the

beam is deflected left (which means it has Sx = −1
2
h̄). Now, it is tempting to conclude

that we have just measured two components of the spin vector, something we thought was
impossible. That is, a reasonable interpretation seems to be that half of the atoms in the
Sz = +1

2
h̄ beam leaving the first, SGz, apparatus have both Sz = +1

2
h̄ and Sx = +1

2
h̄,

and the other half have both Sz = +1
2
h̄ and Sx = −1

2
h̄.

Figure E.3(c) will show that our “reasonable interpretation” above is wrong. If we now
block the Sx = −1

2
h̄ beam after the second, SGx, apparatus, and then run the remaining

Sx = +1
2
h̄ beam through a third, SGz, apparatus, we find that even though we started with

atoms that had only Sz = +1
2
h̄, we now have both components. This effectively proves

that we cannot measure two components of the spin vector simultaneously. Specifically,
when the atoms passed through the SGx apparatus that measured their Sx, it destroyed
any prior knowledge about the z component. This result is not due to any experimental
inaccuracy or error, but is simply a microscopic limitation, as expressed by the Heisenberg
uncertainty principle. It turns out that this situation is almost identical with the classical
case of light passing through sequential polarizing filters. It means that one method of
representing the atom’s spin is to use a wave equation (since the results of the experiment
with light is due to the phenomenon of superposition), and that’s exactly what quantum
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mechanical equations are, wave equations. The Schrodinger equation is a nonrelativistic
wave equation, and the Dirac and Klein-Gordon equations are relativistic wave equations.

Collateral Reading

• Bretislav Friedrich and Dudley Herschbach, “Stern and Gerlach: How a Bad Cigar
Helped Reorient Atomic Physics,” Physics Today, 56(12) 53-59 (December 2003).

• J. J. Sakurai, Modern Quantum Mechanics, Benjamin-Cummings, 1985. Chapter 1.

Problems

1. What is meant by the term “space quantization?” Is space really quantized?

2. Derive Eq. (E.3). Recall that the magnetic moment of a current loop has a magnitude
µ = IA.

3. Estimate the separation distance of the images observed on the screen of Stern and
Gerlach’s experiment. Their source of atoms was an oven of temperature 1000 ◦C,
their deflecting magnet was 3.5 cm long, and the magnetic field gradient was 10
T/cm. Make any other assumptions that you need (but be sure to state them).

Answer The splitting was 0.2 mm.
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Appendix F

The Compton Effect

In 1923, Arthur Holly Compton [Nobel Prize, Physics, 1927] performed
a simple experiment concerning the scattering of X-rays. He used the
Kα X-rays from molybdenum (see Section 4.4 for a description) and
scattered them off a carbon target. X-rays had already been scat-
tered from crystal targets by the Braggs (father William Henry and
son William Lawrence) in 1913, and they had found that the wave-
length of the scattered X-rays was identical to the incident X-rays, but
the intensity varied with scattering angle. The angles that exhibited
the highest intensity were explained by constructive interference of the
electromagnetic wave with itself as it was scattered by parallel planes
in the crystal, and those that exhibited low intensity were the result of destructive inter-
ference. In these solids, however, the electrons were strongly bound to the atoms so that
they did not interact individually with the incident X-rays.

Compton used carbon (in the form of graphite) as his target. In this case, the high
electrical conductivity means that there are plenty of effectively “free” electrons willing
and able to collide with the X-ray photons allowing them to exhibit their particle nature.
In observing the scattered X-rays at different angles, Compton found that the wavelength
increased, which means that they must have lost energy during the interaction with the
graphite. The only way that Compton was able to explain this effect is by invoking
the quantum nature of light and treating the interaction as a two-body collision between
photon and electron, although using relativistic dynamics. This experiment, along with
Planck’s explanation of the blackbody spectrum and Einstein’s explanation of the pho-
toelectric effect, finally convinced most physicists that photons were “real.” In fact, it
wasn’t until after this experiment, in 1926, that the term “photon” was first used.

Two-body collisions

While the analysis is somewhat complicated algebraically, it is a straightforward appli-
cation of the laws of conservation of energy and momentum. Consider the geometry as
shown in Fig. F.1, where a stationary electron of mass me is hit by a photon of energy
E and momentum ~p = px̂. After the collision, the photon now has a different energy E ′

335



336 APPENDIX F. THE COMPTON EFFECT

Figure F.1: Scattering geometry for an incoming particle of energy E and momentum p,
moving in the x direction, and impacting a stationary particle at the origin. After the
collision, the incoming particle moves off with energy E ′ and momentum p′ at an angle
+θ with respect to the positive x axis, and the stationary particle moves off with energy
Ee and momentum pe at an angle −φ with respect to the positive x axis.

with a component of momentum in the ŷ direction, and the electron increases its energy
to Ee and has a component of momentum in the −ŷ direction. The three conservation
equations become (energy, x-momentum, and y-momentum)

E + mec
2 = E ′ + Ee (F.1a)

p = p′ cos θ + pe cos φ (F.1b)

0 = p′ sin θ − pe sin φ (F.1c)

where the scattering angles θ and φ are both taken to be positive. In principle, a knowledge
of the initial conditions — the photon’s initial wavelength λ, from which both its energy
and momentum can be calculated — allows us to calculate the final conditions — the
direction and momentum of both the photon and the electron. However, there are four
unknowns, pe, p′, θ, and φ, but there are only three equations. Hence the system is
underdetermined, and the best we can do is to either (a) fix one of the unknowns and solve
for the other three in terms of the first, or (b) eliminate two of the unknowns to obtain
a relationship between the other two unknowns. Since there is no general experimental
method to fix one of the unknowns, the second approach is the one that allows a comparison
with experiment. To illustrate the procedure, I’ll first analyze a classical, nonrelativistic
collision between two point particles that you have seen before in elementary mechanics.
Then I’ll look at the Compton scattering experiment, where relativistic dynamics are
required, but the physical principles are identical.

Billard ball collision. Let’s assume that Fig. F.1 and Eqs. (F.1) applies to two billiard
balls: a cue ball (instead of a photon), and an eight-ball (instead of an electron). In
the nonrelativistic case, the energy of each particle is just the kinetic energy, given by
K = mv2/2 plus the rest energy, and the momentum is the linear momentum ~p = m~v.
Assuming that the masses of the cue ball and eight-ball, m and me respectively, do not
change, the final unknowns are just the two speeds, v′ and ve, and the two angles, θ and
φ. Our goal is to determine these quantities in terms of the one initial quantity: the initial
kinetic energy K of the cue ball. The technique is identical to that used in Problem 60.
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Figure F.2: Graphical representation of conservation of momentum for the Compton scat-
tering geometry. The difference in the momenta before and after the collision must be
zero, which means that a vector sum of all the momentum vectors must return to the
original starting location.

The first step is to combine Eqs. (F.1b) and (F.1c) by squaring both sides and adding
the two equations. Using elementary trigonometric relations, I get

p2 − 2pp′ cos θ + p′2 = p2
e. (F.2)

This fundamental relation can be obtained very easily with a graphical analysis, as shown
in Fig. F.2. Since the momentum vector is conserved, a triangle can be drawn whose three
sides are the three momenta in the problem. A trivial application of the law of cosines
results in Eq. (F.2). Notice that we have effectively eliminated the angle φ.

The second step is to express the energy of each particle in terms of its momentum.
Since this problem is nonrelativistic, we have

E = mc2 + K (F.3a)

E ′ = mc2 +
p′2

2m
(F.3b)

Ee = mec
2 +

p2
e

2me

, (F.3c)

where K is the initial kinetic energy of the cue ball.1 Conservation of energy, Eq. (F.1a),
becomes

K =
p′2

2m
+

p2
e

2me

=
p′2

2m
+

1

2me

(
p2 − 2pp′ cos θ + p′2

)
, (F.4)

where I have eliminated pe using Eq. (F.2). This is our final result, and it is a relation
between p′ and θ. That is, given the fact that the cue ball deflects at a certain angle, then
Eq. (F.4) tells us what its final momentum and energy must be.

Of course, as you may know from playing billiards, the cue ball can deflect at any
angle depending on how it impacts the eight-ball. However, if you were to measure its
final momentum, you would find that p′ and θ are always related by Eq. (F.4) — see
Problems 1 and 2.

1This initial energy is a known quantity, so we are interested in solving for the other quantities in
terms of K. If desired, we could express it as K = p2/2m and take p and m as our known quantities.
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Photon-electron collision. How do we analyze the case of a X-ray interacting with
an electron? At first glance, it appears to be a completely different situation, but in fact
is remarkably similar. Energy and momentum are still conserved, so Eqs. (F.1) and (F.2)
still apply. The only difference is that we must allow for the fact that the electron might
be moving relativistically after the collision, and of course the photon is always moving
ultra-relativistically, so we must replace Eqs. (F.3) with

E = pc (F.5a)

E ′ = p′c (F.5b)

Ee =
√

(mec2)2 + p2
ec

2. (F.5c)

The conservation of energy equation, Eq. (F.1a), becomes slightly more complicated

(pc + mec
2 − p′c)2 = (p2 − 2pp′ cos θ + p′2)c2 + (mec

2)2. (F.6)

Again, I have eliminated pe using Eq. (F.2), so this is our final result, a relation between
p′ and θ.

There are two key differences between this case and the billiard-ball collision. First,
the initial condition is given by the photon momentum p rather than the cue ball kinetic
energy K. Second, we eliminated φ (rather than θ) because the electron remains in the
target so that only θ is measureable. With billiard balls, in principle we could measure
either θ or φ.

Compton wanted to compare this theoretical prediction, Eq. (F.6), with experimentally
observable quantities. It turns out that photon momentum is not simple to measure, but
photon wavelength is, so using the de Broglie relation p = h/λ and p′ = h/λ′, where λ and
λ′ are the photon wavelength before and after the collision, results in the famous Compton
scattering formula

λ′ − λ =
h

mec
(1− cos θ). (F.7)

The quantity

λC ≡ h

mec
, (F.8)

is called the Compton wavelength of the electron. It is not the de Broglie wavelength of
the electron matter wave, but rather indicates the magnitude of the wavelength shift of
the photon when it collides with an electron. Equation (F.7) predicts that the wavelength
of the scattered light is longer than the wavelength of the incident light — how much
longer depends on the angle of deflection. Figure F.3 shows some of Compton’s original
data clearly showing this effect.

This process is fundamental to the operation of NASA’s Compton Gamma Ray Ob-
servatory, which was in Earth orbit from 1991 through 2000. The NASA web site states,
“The Observatory was named in honor of Dr. Arthur Holly Compton, who won the Nobel
prize in physics for work on scattering of high-energy photons by electrons — a process
which is central to the gamma-ray detection techniques of all four instruments [on the
CGRO].”
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Figure F.3: Wavelength of the scattered γ-rays as a function of angle of deflection θ.
The four dots are experimental measurements, and the curve is Eq. (F.7). Figure 5 from
Compton, 1923.

Compton scattering vs. Bragg scattering

In principle, when X-rays are incident on a solid, both types of scattering will occur. The
wave properties of light allow it to interfere with itself and show preferential scattering
directions, while the particle properties allow it to interact with single electrons.

Problems

1. A cue ball of mass m with kinetic energy K collides elastically with an eight-ball
of mass me at rest. Derive the relationship between the deflection angle of the cue
ball (θ) and its kinetic energy after the collision (p′2/2m). That is, express θ as a
function of K ′ and K.

Solution Manipulating Eq. (F.4) by expressing the momenta in terms of the ki-
netic energy (p =

√
2mK) gives

cos θ =
(m + me)K

′ + (m−me)K

m
√

KK ′ .

2. For the situation described in Problem 1, if m < me then it is possible for m to
bounce directly backwards (i.e., with a deflection angle of θ = π). However, if
m > me, then there is a maximum deflection angle. Find this angle.

3. Derive Eq. (F.7).

Solution Expanding the square on the left-hand-side of Eq. (F.6) and canceling
terms gives

mec(p− p′) = pp′(1− cos θ).
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Expressing the momenta in terms of the wavelength gives

p− p′

pp′
=

1

h
λλ′

(
1

λ
− 1

λ′

)
=

λ′ − λ

h
.

Simplification results in Eq. (F.7).

4. If the incident photon has energy E (or hν), what is the maximum possible kinetic
energy imparted to the scattered electron? At what angle φ does this electron
scatter?

Solution The electron will have maximum kinetic energy is the photon loses a
maximum amount of energy. This occurs when the photon is backscattered, i.e.,
θ = π. For this angle, the Compton scattering formula can be written

1

E ′ −
1

E
=

2

mec2
.

Solving this for E ′ and then forming the quantity E − E ′, I get

E − E ′ =
2E2

mec2 + 2E
.

Since this is the energy lost by the photon, it is also the energy gained by the electron.

5. Obtain a formula that gives the electron’s kinetic energy as a function of the photon’s
scattering angle θ.

Solution Following the method of solution for the previous problem, but retaining
an arbitrary angle θ, the Compton scattering formula is

1

E ′ −
1

E
=

1

mec2
(1− cos θ) ,

and forming E − E ′ again (which is just the electron kinetic energy)

Ke = E − E ′ = (mec
2)

E2(1− cos θ)

E(1− cos θ) + mec2
.

Since the quantity (1− cos θ) is positive definite, the electron kinetic energy is also
positive definite. Also, you can show that Ke is zero when θ = 0, and that it is a
maximum when θ = π.

6. From Figure F.3, can you calculate the Compton wavelength λC? The units of the
y axis are Ångstroms.



Appendix G

Cosmic Rays and Muons

Coming out of space and incident on the high atmosphere, there is a thin rain
of charged particles known as the primary cosmic radiation. — Cecil Powell
[Nobel Prize, Physics, 1950]

The charged particles that make up the “primary” cosmic rays are
protons, α particles, heavier nuclei, and electrons, and they impact the
Earth from all directions and with various energies. Most of these are
protons (about 80%), second in abundance are α particles (about 14%),
while electrons make up less than 1%. When they impact nuclei in the
atmosphere — mostly oxygen and nitrogen nuclei — their energies are
such that they create “showers” of hadrons, mostly pions, along with
some kaons, and anti-protons, and anti-neutrons. These then decay into
photons, electrons, positrons, neutrinos, and muons (which themselves
decay into electrons and neutrinos). These are all called “secondary”
cosmic rays.

Where do the primary cosmic rays come from? Some come from the sun (mostly due
to solar flares), most come from galactic supernovae, and a few with the highest energy are
suspected to originate from outside the Milky Way. You might suspect the solar wind—a
neutral plasma that consists of low energy protons, electrons, and helium nuclei—as a
source of cosmic rays. Due to their low energies, however, these particles are stopped
from reaching the atmosphere by the Earth’s magnetic field, except in the polar regions.
While they have enough energy to cause aurora, they do not cause showers of secondary
subatomic particles.

How many are there? About 1 charged particle per second per cm2 impacts the Earth.1

This is a far cry from the 6× 1010 neutrinos s−1 cm−2 that come from the Sun.

What are their energies? The typical kinetic energy of these particles is about 10
MeV to 100 MeV, although there are some at higher energies. Figure G.1 shows the
distribution of the measured energy per particle. In fact, the cosmic ray with the highest
energy has been measured at 48 J! These ultra-high energy cosmic rays are suspected to
be extra-galactic, as there is no plausible mechanism of acceleration to these energies by

1Henley and Garcia, Subatomic Physics, page 597.
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a supernova, for example. Again, compare these energies to those of solar neutrinos that
have only 0.26 MeV.

Figure G.1: The energy spectrum
of the different nuclei that make up
cosmic rays. Carbon and oxygen
are lumped together. From Fried-
lander, Cosmic Rays, Figure 6.4.

What happens to the secondary cosmic rays?
The pions decay via the following modes

π0 → 2γ (G.1)

π± → µ± + ν, (G.2)

where the neutral pions decay electromagnetically
with an average lifetime of 8.4 × 10−17 s, and the
photons subsequently create electron-positron pairs.
Most of the energy of the original cosmic ray follows
this path. Some of the energy goes into charged pi-
ons, which decay into muons with an average lifetime
of 2.6× 10−8 s. This long lifetime indicates that the
decay is due to the weak interaction, and is there-
fore relatively unlikely. The muons then decay into
electrons (or positrons) and neutrinos

µ± → e± + 2ν, (G.3)

and their average lifetime is 2.2 µs, also a weak in-
teraction.2

What happens to these secondary cosmic rays
as they pass through the atmosphere? First of all,
in addition to possible decay, the charged particles
cause ionization of the atmospheric molecules and
therefore lose energy. For example, a typical muon
loses about 2 GeV of kinetic energy before it hits the ground (if it hasn’t decayed yet), and
by the time they do reach the ground, the average muon energy is about 4 GeV. Secondly,
the showers spread out laterally from the direction of the primary cosmic ray. The main
hadronic core (pions, etc.) covers a few meters by the time it hits the ground, and the
electromagnetic particles (electrons, positrons, photons) have spread further, about 100
m. Finally, the muons have spread the furthest, almost 1 km.

Muons as clocks

This spreading means that muons are continually bombarding the Earth’s surface and,
since it is not clear what direction they came from, statistical methods must be used to
interpret the muon flux. That is, the muons are all “born” at different altitudes, they travel
downward with different speeds, and they “live” for different intervals of time. Therefore,
you might expect that the muon flux would increase with increasing altitude, at least
initially, reach a maximum at some altitude, and then finally decrease. This is precisely

2Recall that the weak force is responsible for changing one family of quarks or leptons into another.
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what is observed, but the exact shape of this curve is a convolution of a source function
and a decay function, and therefore requires lots of modeling to interpret.

However, for our purpose — special relativity — we want to use the muons as a clock.
In Chapter 5 we assume that our muons are all created at the same altitude, and all live
for the same amount of time, 2.2 µs. You might think that we are not justified in doing
this, because of the statistical spread of muon lifetimes, but that turns out not to be true.
Scott and Burke state the case:

It may seem at first glance that a real particle that is formed and later de-
cays does not constitute an accurate clock, because of the uncertain nature
of the decay process. Given a number of particles, some will decay at times
less than the mean life, some will decay at times greater than the mean life,
and in general it is impossible to predict exactly when any given particle will
decay. However, it is possible to determine the mean lifetime of a number of
particles to any desired accuracy simply by observing a sufficient number of
such particles, and in this sense, decaying particles are just as good clocks as
vibrating molecules. Indeed, for a vibrating molecule it is necessary to observe
it for a large number of cycles in order to determine its frequency precisely;
this is analogous to observing a large number of decays in an exponentially
decaying system.3

Collateral Reading

• “The early history of cosmic ray research.” by Q. Xu and L. M. Brown, Am. J.
Phys., 55 23-33 (1987).

• Michael W. Friedlander, Cosmic Rays, Harvard University Press, 1989. (ERAU: QC
485 .F75 1989)

Problems

1. Calculate the energy in MeV of a 48-J proton. Also calculate γ and β for the same
proton.

2. (a) Calculate the reaction energy for a pion decaying into a muon and a neutrino.
(b) Using the conservation of momentum, calculate how much energy the muon has.
HINT: You can assume the muon is non-relativistic (check this), but you must take
relativistic effects into account for the neutrino. One approximation is to take the
highly relativistic limit for the neutrino, where the relationship between its energy
and momentum is Eν = pνc. As usual, ignore the neutrino mass.

3. Why can’t a π0 decay into a µ− and a µ+?

4. If a muon µ− is “born” due to a pion decay π− → µ− + ν̄µ at an altitude of 20
km, how fast must it be traveling to reach the ground before it decays 2.2 µs later?
Express your answer in the form β = 1− ε, and calculate ε.

3Scott and Burke, Special Relativity Primer, page 5.
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