- 1. For a simple harmonic motion governed by Hooke's Law, F = -kx, if T is the period then the quantity $T/2\pi$ is equal to
 - (a) $\sqrt{\frac{m}{k}}$
 - (b) $\sqrt{\frac{k}{m}}$
 - (c) $\frac{m}{k}$
 - (d) $\frac{k}{m}$
 - (e) the angular frequency ω
- 2. If the mass of a simple pendulum is quadrupled, then its period of small oscillations
 - (a) doubles
 - (b) quadruples
 - (c) is reduced to half
 - (d) is reduced to one quarter
 - (e) remains the same
- 3. A solid cylinder, of radius R = 0.3 m, mass M = 2 kg, has a horizontal spring with spring constant k = 1000 N/m attached to its axis as shown in the figure. The angular frequency for small oscillations if the cylinder rolls without slipping is closest to

- (a) 17 rad/s
- (b) 16 rad/s
- (c) 20 rad/s
- (d) 19 rad/s
- (e) 18 rad/s

4. If $y(x,t) = (0.02 \text{ m}) \sin [(30 \text{ m}^{-1})x - (400 \text{ s}^{-1})t]$, then the wavelength of the wave is

- (a) $\frac{\pi}{15}$ m
- (b) $\frac{15}{\pi}$ m
- (c) 60π m
- (d) 4.2 m
- (e) 30 m

- 5. The Principle of Superposition describes the observational fact that the total displacement at a given position (due to the superposition of two separate wave functions) can be obtained by
 - (a) adding the phases of the two separate wave functions at that position
 - (b) subtracting the magnitudes of the two separate wave functions at that position
 - (c) multiplying the magnitudes of the two separate wave functions at that position
 - (d) adding the two separate wave functions at that position
 - (e) multiplying the two separate wave functions at that position
- 6. A sinusoidal sound wave is described by the molecular displacement wave function

$$s(x,t) = (2 \ \mu \mathrm{m}) \cos \left[(20 \ \mathrm{m}^{-1})x - (1000 \ \mathrm{s}^{-1})t \right]$$

The maximum speed of the molecules' oscillatory motion is

- (a) 2.00 mm/s
- (b) 50 m/s
- (c) 100 m/s
- (d) 20 mm/s
- (e) 343 m/s
- 7. Two instruments produce a beat frequency of 5 Hz. If one has a frequency of 264 Hz, what could be the frequency of the other instrument?
 - (a) 269 Hz
 - (b) 254 Hz
 - (c) 264 Hz
 - (d) 266 Hz
 - (e) 274 Hz
- 8. A violin string 35.0 cm long has a mass density of 2.7 g/m. What is the string tension if the second harmonic has a frequency of 880 Hz?
 - (a) 77 N
 - (b) 325 N
 - (c) 1024 N
 - (d) 256 N
 - (e) 312 N

- 9. A pipe has a length of 1.23 m. If the pipe is open at both ends, what is the frequency of the third harmonic?
 - (a) 139 Hz
 - (b) 278 Hz
 - (c) 417 Hz
 - (d) 349 Hz
 - (e) 209 Hz

10. The reason why a coconut floats in water is because:

- (a) the surface area of the coconut contacting the water is the same as the surface area of the water contacting the coconut
- (b) the gravitational force acting on the coconut is less than the buoyant force
- (c) the density of the coconut is less than the density of the water it displaces
- (d) the density of the coconut is equal to the density of the water it displaces
- (e) no one knows, it is still a mystery
- 11. An open milk carton is pierced by an ice pick 12 cm below the surface of the liquid. Milk exits the carton at a speed of
 - (a) 1.0 m/s
 - (b) 1.5 m/s
 - (c) 1.9 m/s
 - (d) 2.4 m/s
 - (e) 3.8 m/s
- 12. An alloy of copper and gold has a mass of 300 g, but it weighs 2.74 N when completely submerged in water. What is its volume?
 - (a) 109 m^3
 - (b) 10.9 cm^3
 - (c) 2.79 cm^3
 - (d) $2.79 \times 10^{-3} \text{ m}^3$
 - (e) 20.7 cm^3

- 13. According to the kinetic theory of gases, the temperature of a gas is directly proportional to its
 - (a) potential energy
 - (b) kinetic energy
 - (c) volume
 - (d) universal gas constant
 - (e) specific heat
- 14. A steel beam is 5.0 m long at a temperature of 20°C. On a hot day, the temperature rises to 40°C. What is the change in the beam's length due to thermal expansion?
 - (a) 1.2 mm
 - (b) $3.0 \ \mu m$
 - (c) 2.4 mm
 - (d) 0.24 mm
 - (e) 5.0 mm
- 15. What is the volume of two moles of gas at standard temperature and pressure?
 - (a) 0.045 L
 - (b) 22.4 L
 - (c) 45 L
 - (d) 4.49×10^{-5} L
 - (e) 11.2 L
- 16. A half-liter of water, initially at 30°C, is cooled by removing 63 kJ of heat energy. What is the final temperature of the water?
 - (a) $79.1^{\circ}C$
 - (b) 45.1°C
 - (c) $0^{\circ}C$
 - (d) $15^{\circ}C$
 - (e) $12^{\circ}C$

- 17. There is no heat flow into or out of the system in an
 - (a) adiabatic process
 - (b) isothermal process
 - (c) isovolumetric process
 - (d) isobaric process
 - (e) isotropic process
- 18. A diatomic ideal gas with initial pressure 2.50×10^5 Pa expands isobarically from 0.700 m³ to 1.60 m³. What is the change in the internal energy of the gas?
 - (a) 5.63×10^5 J (b) 3.38×10^5 J (c) 2.74×10^5 J (d) 4.22×10^5 J (e) 0
- 19. A monatomic ideal gas with initial pressure 1.2×10^5 Pa and initial volume of 0.50 m³ expands isothermally to a volume of 1.8 m³. What amount of thermal energy is transferred to the gas during this process?
 - (a) 2.4×10^4 J
 - (b) $1.2 \times 10^5 \text{ J}$
 - (c) $3.3 \times 10^4 \text{ J}$
 - (d) $7.7 \times 10^4 \text{ J}$
 - (e) $4.1 \times 10^4 \text{ J}$
- 20. What is the change in entropy of 1 kg of ice initially at 0° C that melts to water and then warms to the ambient temperature of 25.0°C?
 - (a) 1230 J/K
 - (b) 1590 J/K
 - (c) 846 J/K
 - (d) 1010 J/K
 - (e) 628 J/K

- 21. Which of the following statements is false?
 - (a) The entropy of an isolated system cannot decrease.
 - (b) During a given process, the entropy change of the universe as a whole is always greater than or equal to zero.
 - (c) The entropy change during an adiabatic process is zero.
 - (d) The entropy change of a system in contact with its environment can never be negative.
 - (e) The entropy change for a reversible cycle is zero.
- 22. A heat engine does 1700 J of work while rejecting 4500 J to the cold reservoir. What is its efficiency?
 - (a) 0.45
 - (b) 0.34
 - (c) 0.27
 - (d) 0.18
 - (e) 0.22
- 23. A light ray traveling through air incident on a transparent material at an angle of 30.0° from the normal is refracted to 17.5°. What is the speed of light in the material?
 - (a) 2.4×10^8 m/s
 - (b) $3.6 \times 10^8 \text{ m/s}$
 - (c) 1.8×10^8 m/s
 - (d) $3.0 \times 10^8 \text{ m/s}$
 - (e) 2.7×10^8 m/s
- 24. A square mirror is lying on the ground with an identical mirror at a 60.0° angle with respect to the horizontal butting up to it. If a ray hits the first mirror at an angle of 65.0° with respect to the normal, at what angle with respect to the normal does it reflect off the second mirror?
 - (a) 65°
 - (b) 55°
 - (c) 25°
 - (d) 45°
 - (e) 35°

- 25. Rainbows are created due to what two physical effects?
 - (a) Reflection and transmittance
 - (b) Refraction and inversion
 - (c) Dispersion and refraction
 - (d) Diffraction and dispersion
 - (e) Reflection and refraction
- 26. An object is placed 6 cm in front of a converging lens that has a focal length of 4 cm. What is the character of the image?
 - (a) Real and inverted
 - (b) Real and upright
 - (c) Real and horizontal
 - (d) Virtual and upright
 - (e) Virtual and inverted
- 27. The diameter of Mars is 6794 km, and when it is closest to Earth, its distance from Earth is 5.58×10^7 km. When Mars is at this distance, find the diameter of the image of Mars formed by a spherical, concave, telescope mirror with a focal length of 1.75 m.
 - (a) 0.213 mm
 - (b) 0.213 m
 - (c) 1.75 m
 - (d) 3.14×10^{-11} m
 - (e) 3.14 mm
- 28. Young's double-slit experiment is performed with 589-nm light and a distance of 2.00 m between the slits and the screen. The tenth interference minimum is observed 7.26 mm from the central maximum. Determine the spacing between the slits.
 - (a) 7.26 mm
 - (b) 589 nm
 - (c) $3.67 \ \mu m$
 - (d) 54.9 mm
 - (e) 1.54 mm

ANSWERS

- 1. $\sqrt{\frac{m}{k}}$ (a)
- 2. remains the same (e)
- 3. 18 rad/s (e)
- 4. $\frac{\pi}{15}$ m (a)
- 5. adding the two separate wave functions at that position (d)
- 6. 2.00 mm/s (a)
- 7. 269 Hz (a)
- 8. 256 N (d)
- 9. 417 Hz (c)
- 10. the density of the coconut is less than the density of the water it displaces (c)
- 11. 1.5 m/s (b)
- 12. 20.7 cm^3 (e)
- 13. kinetic energy (b)
- 14. 1.2 mm (a)
- 15. 45 L (c)
- 16. $0^{\circ}C(c)$
- 17. adiabatic process (a)
- 18. 5.63 $\times 10^5$ J (a)
- 19. 7.7 $\times 10^4$ J (d)
- 20. 1590 J/K (b)
- 21. The entropy change of a system in contact with its environment can never be negative. (d)
- 22. 0.27 (c)
- 23. 1.8×10^8 m/s (c)
- 24. 55° (b)
- 25. Dispersion and refraction (c) [or (e) is also correct]

- 26. Real and inverted (a)
- 27. $0.213~{\rm mm}$ (a)
- 28. 1.54 mm (e)