Challenge Problems - Physics II

1. Calculate, using integral calculus, the moment of inertia I of a hoop of mass M and radius R, through an axis that passes through the center of the hoop, but is in the plane of the hoop. NOTE: the moment of inertia that we know and love $\left(I=M R^{2}\right)$ is through an axis that is perpendicular to the plane of the hoop.

2. Assuming the earth to be a homogeneous sphere of radius r and mass m, show that the period T of rotation about its axis is related to its radius by

$$
T=\left(\frac{4 \pi m}{5 L}\right) r^{2}
$$

where L is the angular momentum of the earth due to its rotation. Suppose that the radius r changes by a very small amount Δr due to some internal effect, e.g., thermal expansion. (a) Show that the fractional change in the period T is given approximately by

$$
\frac{\Delta T}{T}=\frac{2 \Delta r}{r}
$$

HINT: Use differentials $d r$ and $d T$ to approximate the changes in these quantities. (b) By how many miles would the earth need to expand for the period to change by $\frac{1}{4}$ day/year, so that leap years would not be needed?
3. Given an object moving with simple harmonic motion, $x(t)=A \cos (\omega t+\phi)$, with ω known, determine the constants A and ϕ in terms of the initial conditions $x_{0}=x(0)$, $v_{0}=v(0)$.
4. Confirm, by direct substitution, that the solution to the equation of motion for a damped harmonic oscillator

$$
-k x-b \frac{d x}{d t}=m \frac{d^{2} x}{d t^{2}}
$$

is given by

$$
x(t)=A e^{-\alpha t} \cos \left(\omega^{\prime} t+\phi\right)
$$

where

$$
\omega^{\prime}=\sqrt{\frac{k}{m}-\left(\frac{b}{2 m}\right)^{2}}
$$

and $\alpha=b / 2 m$. Note that when $b \rightarrow 0$, this reduces to the known solution of simple harmonic motion.

