
Chapter 2

Fundamental Theoretical Formulation:
The Microscopic Kinetic Equation

A. Maxwell’s and Newton’s Equations

We start from the simplest and most basic description of a collection of charged particles:
Maxwell’s equation for the electromagnetic field and Newton’s equation (or its quantum
mechanical equivalent, Schrodinger’s equation) for the particle motion. The sources of the
electromagnetic field are any external charges and current plus those due to the plasma
particles.

We shall adopt a classical point of view here, using Newton’s equation for the mechanical
motion and treating the electrons and ions as point particles. So long as the de Broglie

wavelength,
√

h2/2πmT , for each particle is smaller than any other length in the problem,

this is a good approximation.1 In the high density/low temperature regime where quantum
mechanical effects become important, the description of the mechanical motion must be
appropriately modified and, more importantly, other expansion parameters replace εp. This
regime is outside the scope of the text.

Our basic equations are then

miv̇i = miẍi = qi

(
Ẽ + vi × B̃/c

)
(2.1)

i = 1, 2, ..., N0 (2.2)

and

∇ · Ẽ = 4π (ρp + ρe) (2.3)

∇× Ẽ + B̃/c = 0 (2.4)

∇× B̃ =
4π

c

(
jp + je + Ẽ/4π

)
(2.5)

∇ · B̃ = 0 (2.6)

where the subscripts p, e denote plasma particle and external source terms, respectively, and
N0 is the total number of particles. Since this is a microscopic theory, we need only one

1For electrons, this length is λe = 3× 10−8cm/
√

TeV.
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electric field vector, Ẽ, and one magnetic field vector, B̃. All “material” effects are contained
in the charge and current densities,

ρp(x, t) =
N0∑

i=1

qi δ[x− xi(t)] (2.7)

and

jp(x, t) =
N0∑

i=1

qi vi(t) δ[x− xi(t)], (2.8)

and since we shall be examining these in great detail, there is no particular advantage in
introducing the auxiliary fields D and H.

B. The Microscopic Distribution Function and Kinetic

Equation

Our study of plasma physics is based entirely on the set of equations (2.1), (2.3), and (2.7).
They are exact, but, of course not soluble in closed form, since the total number of particles,
N0, is typically of order 106 or larger. It is convenient to reformulate (2.1) and (2.7) by
introducing the concept of the microscopic distribution function of Klimontovich. For each
species, σ, we define

f̃σ(x,v, t) =
1

n̄σ

Nσ∑

i=1

δ[x− xi(t)] δ[v − vi(t)] (2.9)

where Nσ is the total number of particles of this species and n̄σ is their average density,
n̄σ = Nσ/V , V being the volume of the system. In terms of f̃σ, we have from (2.7)

ρp(x, t) =
∫
– d3v n̄qf̃(x,v, t) (2.10)

jp(x, t) =
∫
– d3v n̄qvf̃(x,v, t) (2.11)

where the symbol
∫
– means integration over v and summation over the species index σ.

(Note that in (2.10) we have suppressed the species index, as we shall generally do in order
to minimize notational clutter.) Our choice of normalization,2 whose advantages will be
apparent later, gives ∫

d3xd3vf̃ = V. (2.12)

It also follows that the integral of f̃σ/V over any region R of the (x,v) phase space is
equal to the fraction of particles of species σ contained in R. Thus, f̃σ has the character
of a distribution function in the (x,v) phase space. We call it the microscopic distribution

2Another choice, made by Lenard, is to normalize to the total number of particles N ,
∫

d3xd3vf̃ = N .
The difference between the two is a factor of n̄, which appears in our equations, but not Lenard’s. A third
choice, made by Ichimaru, is to use box normalization, which essentially means making the replacement∫

d3k → ∑
k(2π)3/V .
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function to distinguish it from the function we will obtain presently by taking a suitable
average of f̃σ.

Using the equations of motion (2.1) and the definition (2.9) of f̃σ, we have

∂

∂t
f̃(x,v, t) = − 1

n̄

N∑

i=1

[vi · ∇δ (x− xi) δ (v − vi) + ai · ∇vδ (v − vi) δ (x− xi)] (2.13)

where ai = v̇i is the acceleration of particle i. We now take advantage of the delta functions
to replace vi by v in the first term and ai by (q/m)(Ẽ + v × B̃/c) in the second, Ẽ and B̃
being the fields at x (we have again suppressed the species indices). Thus, we have replaced
the equations of motion (2.1) by the microscopic kinetic equations (one for each species)

∂f̃

∂t
+ v · ∂f̃

∂x
+

q

m

(
Ẽ +

1

c
v × B̃

)
· ∂f̃

∂v
= 0. (2.14)

While (2.14) (which is also referred to as the Klimontovich equation3) is deceptively
simple in appearance, involving only 6 independent phase space variables plus the time, it is
nonlinear. Even more important, f̃ is stochastic, i.e., a wildly varying function of x, v, and
t, due to the delta functions involved in its definition. Naturally, none of the many-body
complexity of (2.1) has been eliminated. Since we have simply reformulated the problem
without introducing any approximations, (2.14) is exactly equivalent to (2.1).

C. Ensemble Averages and Fluctuations

As in all statistical mechanical problems, and exact formulation is of little practical value.
The quantities of principle physical interest are just the average properties and the fluctua-
tions about these. We therefore introduce the usual notion of statistical ensemble, i.e., a set
of very many (conceptual) copies of the physical system, each having the same observable,
macroscopic properties (density, mean velocity, temperature, etc.) but differing in the mi-
croscopic variables, e.g., the initial particle positions and velocities. We denote the ensemble
averages by

f ≡ 〈f̃〉 (2.15)

E ≡ 〈Ẽ〉 (2.16)

B ≡ 〈B̃〉 (2.17)

No special notation is required for the external sources, since these will be the same for each
member of the ensemble. Thus

〈ρ〉 = ρe+
∫
– dv n̄qf, (2.18)

〈j〉 = je+
∫
– dv n̄qvf. (2.19)

In accordance with the usual ideas of statistical mechanics, the ensemble averages E
and B are to be identified with the physical electromagnetic fields in an experiment. The

3reference
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averaged distribution function, f , has just the significance of the single particle distribution
function of classical kinetic theory: n̄f(x,v, t) is the number of particles per unit phase space
volume that would be found at time t in the vicinity of the phase space point (x,v). [We
shall sometimes use ξ to denote the set (x,v).] Thus, f , E, and B are the principal physically
significant, macroscopic dynamical variables. Next most important are fluctuations about
these averages:

δf̃ ≡ f̃ − f (2.20)

δẼ ≡ Ẽ− E (2.21)

δB̃ ≡ B̃−B (2.22)

where, by definition,
〈δf̃〉 = 〈δẼ〉 = 〈δB̃〉 = 0 (2.23)

It will often simplify the notation to dentoe the total Lorentz force per unit charge by

F̃ = Ẽ + v × B̃/c (2.24)

with

F = 〈F̃〉, (2.25)

δF̃ = F̃− F. (2.26)

Taking the ensemble average of (2.14) gives an equation for the single particle distribution
function, f ,4

∂f

∂t
+ v · ∂f

∂x
+

q

m
F · ∂f

∂v
= − q

m

〈
δF̃ · ∂δf̃

∂v

〉
(2.27)

and subtracting this from (2.14) gives an equation for the fluctuations,5

[
∂

∂t
+ v · ∇+

q

m
F · ∇v

]
δf̃ +

q

m
δF̃ · ∇vf = − q

m
∇v ·

[
δF̃δf̃ − 〈δF̃δf̃〉

]
. (2.28)

Since Maxwell’s equations are linear, their partition into average and fluctuation parts is
trivial

∇ · E = 4π (ρe+
∫
– dvn̄qf) (2.29)

∇×B =
4π

c
(je+

∫
– dvn̄qvf) +

1

c

∂E

∂t
(2.30)

∇× E +
1

c

∂B

∂t
= 0 (2.31)

∇ ·B = 0 (2.32)

4The ensemble average of a product is given by 〈ÃB̃〉 = AB + 〈δÃδB̃〉.
5The velocity divergence symbol stands for ∇v = ∂

∂v = x̂ ∂
∂vx

+ ŷ ∂
∂vy

+ ẑ ∂
∂vz

.
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and

∇ · δẼ = 4π
(
ρe+

∫
– dvn̄qδf̃

)
(2.33)

∇× δB̃ =
4π

c

(
je+

∫
– dvn̄qvδf̃

)
+

1

c

∂δẼ

∂t
(2.34)

∇× δẼ +
1

c

∂δB̃

∂t
= 0 (2.35)

∇ · δB̃ = 0 (2.36)

Again, we are simply making definitions, and the set (2.27) through (2.33) is identical, as
regards both contents and difficulty, with the original set (2.1) through (2.7). However, the
problem is now formulated in a way to facilitate the approximations necessary if we are to
make any progress. We see that (2.27) and (2.29) would constitute a closed set of equations
for the ensemble averages f , E, and B if only we knew enough about the fluctuations to
compute the average value 〈δF̃δf̃〉 which occurs on the right side of (2.27). On the other
hand, if we knew f , E, and B, we need only solve the equations (2.28) and (2.33) for the
fluctuations (a task made formidable, of course, by their nonlinear character). At the very
least, some approximation scheme to decouple the fluctuations from the ensemble averages
would be helpful.

D. The Expansion in Fluctuations

The rationale of the method of approximation which we shall use is very simple: we suppose
the fluctuations to be, in some sense, “small,” and we therefore expand in the fluctuations.
Specifically, to lowest order, we neglect terms of second order in the fluctuations, such as the
right hand side of (2.27); this completely decouples (2.27) and (2.29) from (2.28) and (2.33).
Thus, to lowest order (we shall call it first order, since the next order involves retention
of terms quadratic in the fluctuations) we have just an ensemble-averaged kinetic equation,
plus the ensemble-averaged Maxwell equations,

Lf ≡
(

∂

∂t
+ v · ∇+

q

m
F · ∇v

)
f = 0 (2.37)

∇ · E = 4π (ρe+
∫
– dvn̄qf) (2.38)

∇×B =
4π

c
(je+

∫
– dvn̄qvf) +

1

c

∂E

∂t
(2.39)

∇× E +
1

c

∂B

∂t
= 0 (2.40)

∇ ·B = 0 (2.41)

This set of equations was first written down, on phenomenological grounds, by A. Vlasov6

and is generally referred to by his name, although the misnomer “collisionless Boltzmann

6reference
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equation” is sometimes used. We shall refer to this lowest order of the expansion as the
Vlasov approximation. The differential operator L is sometimes called the Vlasov oper-
ator.

In the second order we retain the quadratic terms, 〈δF̃δf̃〉 on the right hand side of (2.27)
but neglect terms of third order in the fluctuations. When (2.28) and (2.33) are solved for
δf̃ and δF̃, the contributions of the right hand side of (2.28) will lead to terms of third order
in (2.27), so in this order we can neglect the right hand side of (2.28) from the start. We
then have

Lf = − q

m
∇v · 〈δf̃δF̃〉 (2.42)

Lδf̃ +
q

m
δf̃ · ∇vf = 0 (2.43)

plus the Maxwell equations (2.29) and (2.33) for the self-consistent determination of F and
δF̃. We shall designate this as the quasilinear approximation since (2.43) is linear in δf̃ ,
albeit nonlinear terms are retained in equation (2.42) for f . The fluctuations modify the
average distribution, f , but interactions among the fluctuations, such as mode coupling, are
neglected.

Finally, in third order we retain the right hand side of (2.28), so that the third order
equations are formally identical with the exact equations, (2.27) through (2.33). As we
shall see later, the approximation consists in solving (2.27) and (2.33) by a perturbation
expansion, keeping only terms of third order in the fluctuations. Only in this order do we
have mode coupling of fluctuations, nonlinear wave-particle interactions, self-interaction of
large-amplitude waves and similar exotic phenomena, so we may describe it as the nonlinear
wave approximation.

For a plasma in equilibrium, one can prove that this “expansion in fluctuations” is tan-
tamount to an expansion in the plasma parameter, εp, and hence well justified if εp ¿ 1.
However, the most interesting problems in plasma physics involve non-equilibrium phenom-
ena, where this expansion procedure can really be justified only on an a posteriori basis, for
each problem.

To avoid confusion with other treatments, we should emphasize that even within the
Vlasov approximation one may make an expansion in the fields E and B (or in their deviation
from the values characterizing some elementary solution), and hence encounter equations of
“second order” or “third order” in the fields. These equations will be formally similar to those
describing what we have called the quasilinear and nonlinear waves approximations, simply
because of the obvious formal similarity between the Vlasov and Klimontovich equations.
The possibility of confusion is compounded by the circumstance that in many problems the
formal analysis (expansion in diagrams, etc.) may be quite similar. However, the physical
interpretations are quite different, since within the Vlasov approximation we deal only with
ensemble-averaged quantities, whereas the quasilinear and nonlinear wave approximations
involve, in an essential way, stochastic variables.
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E. An Overview

In subsequent chapters we shalll study systematically the consequences of these various orders
of approximation. Before doing so, we make a few comments on their general properties:

1) The Vlasov approximation shows clearly the self-consistent aspect of plasma physics,
with f determined by E and B, whose sources are determined by f , along with ρe and je.

2) Most of our understanding of the properties of the Vlasov system is based on a lin-
earization of f about some time and space independent “equilibrium” or “unperturbed”
function, f0(v). Since any f0(v) satisfies (2.37) when F = 0, we must look elsewhere for
guidance in making a sensible choice for f0. For this, we need to consider the second order
effects. The neglect of fluctuations at the Vlasov level means that of the total force on a
given particle we are including only the average part, F, and ignoring the rapidly fluctuat-
ing portions which arise from the discrete, particulate character of the plasma. However, it
is just the latter which determines the equilibrium f0. In fact, the 〈δf̃δF̃〉 term in (2.27)
corresponds to two physical effects:

1. “close” collisions (meaning those with impact parameter less than the Debye length,
as we shall see later); and

2. “quasilinear” modifications of the average distribution function by the fluctuations.

For a plasma near equilibrium, where the fluctuations are, and remain, small, of order εp,
only the first of these two effects is important and the right hand side of (2.27), which we
write as

δf

δt
≡ − q

m
∇v · 〈δF̃δf̃〉, (2.44)

satisfies the H-theorem, i.e., tends to drive f0 towards a Maxwellian distribution,

fM(v) =
exp (−v2/a2)

a3π3/2
. (2.45)

We shall often make this choice for f0.
3) For many purposes, even the Vlasov description is too difficult to solve, and we deal

instead with the velocity moments of f , i.e., density n, mean velocity u, and pressure tensor
p, as functions of x and t. It is easy to derive equations for these variables from (2.37),
albeit the set does not close without further approximations. This leads to “two-fluid mag-
netohydrodynamics (MHD),” so-called because there are equations and dependent variables
for each of the two (or more) species in the plasma. A further approximation, valid at low
frequencies and large wavelengths, reduces this to “one fluid MHD.” These fluid approxima-
tions are strictly justified only in the case of large collision frequencies, since the short mean
free path tends to preserve the initial grouping of particles. However, they often give a good
account of many phenomena, even when their use is not clearly justified, probably because
they represent the basic conservation laws—mass, momentum, and energy.

4) It is often useful to make the “electrostatic approximation,” neglecting the v×B part
of the force. This represents an enormous simplification for the analysis, but it must be
justified in each particular context.
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5) So far as an external magnetic field, B0, is concerned, the simplest case is, of course,
B0 = 0, and we shall consider that first in discussing the Vlasov equation. Next simplest
is the case of very strong B0 (i.e., the cyclotron frequency is much larger than all other
significant frequencies and the cyclotron radius is much smaller than all other significant
lengths) when the Alfvén guiding center approximation and related techniques, which we
shall discuss later, are applicable.

6) The relation amongst the various approximations or “models” of the plasma can be
summarized in a block diagram (Fig 2.1).

7) Many of the approximations depicted here can be derived directly, on phenomenological
grounds. For example, if we simply introduce a density function, f(x,v, t), in six-dimensional
phase space, then in the absence of “collisions” between particles, conservation of particles
gives a six dimensional continuity equation,

∂f

∂t
+∇ · (vf) +∇v ·

(
dv

dt
f

)
= 0. (2.46)

With external fields Ee and Be given by

dv

dt
=

q

m
(Ee + v ×Be/c) (2.47)

∇v · dv

dt
= 0 (2.48)

so that (
∂

∂t
+ v · ∇+

q

m
(Ee + v ×Be/c) · ∇v

)
f = 0. (2.49)

If we allow the “external” fields to have as sources also the plasma charge and current
densities described by f , i.e., replace Ee and Be with E and B satisfying

(
∂

∂t
+ v · ∇+

q

m
F · ∇v

)
f = 0 (2.50)

∇ · E = 4π (ρe+
∫
– dv n̄qf) (2.51)

∇×B =
4π

c
(je+

∫
– dv n̄qvf) +

1

c

∂E

∂t
(2.52)

∇× E +
1

c

∂B

∂t
= 0 (2.53)

∇ ·B = 0 (2.54)

then we have just the Vlasov formulation. As we will see later, this includes, in the “self-
consistent” fields, E − Ee and B − Be, the particle interactions associated with impact
parameter, b, greater than LD and neglects the “close” collisions, b < LD. It is the latter
which are described by the 〈δf̃δF̃〉 terms neglected in the Vlasov approximation.
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Figure 2.1: Ordering by expansion in fluctuations.
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