4.1 THE JULIAN AND GREGORIAN CALENDARS

One may regulate a calendar by means of the Sun alone, by means of the
Moon alone, or by means of the Sun and Moon together. Thus, there are
three principal types of calendar: solar, lunar, and luni-solar. At various times
and in various cultures, all three types of calendars have been used. Indeed,
all three types are still in use today. A good example of a lunar calendar is
the Muslim calendar, which is still used in some countries of the Middle East,
and which is used worldwide in Muslim religious practice. The most important
luni-solar calendar still in use is the Jewish calendar. But the ancient Greek
and Babylonian calendars were also of this type. The most familiar example
of a solar calendar is the Gregorian calendar, which is used nearly worldwide
today. However, to reckon time reliably in astronomical and historical work,
one must also understand its relation to the Julian calendar that preceded it.

The Julian Calendar

Structure of the Julian Calendar The Julian calendar was instituted in Rome
by Julius Caesar in the year we now call 45 B.C.. It reached its final form by
A.D. 8 and continued in use without further change until a.D. 1582, when it
was modified by the Gregorian reform. The Julian calendar adopts a mean
length of 365 1/4 days for the year. This is in good agreement with the length
of the tropical year, that is, the time from one spring equinox to the next.
The Julian calendar is therefore a solar calendar and keeps good pace with
the seasons. Two kinds of calendar year are distinguished: common years and
leap years. Three years of every four are common years of 365 days each. One
year of every four is a leap year of 366 days.

The months of the calendar year, and the number of days contained in
them are

January 31 July 31
February 28 (29inleapyear) August 31
March 31 September 30
April 30 October 31
May 31 November 30
June 30 December 31

The average length of the synodic month (the time from one new Moon to
the next) is about 29 1/2 days. But, except for February, every month in the
Julian calendar is longer than this. The calendar months therefore have no
fixed relation to the Moon: the new Moon does not, for example, fall on a
fixed day of the month.'

Years are customarily counted from the beginning of the Christian era.
The first year of the Christian era is A.D. 1. The immediately preceding year
is 1 B.C. There is no year o. This arrangement is inconvenient for doing
arithmetic. More convenient is the astronomical way of representing years
before the beginning of the Christian era by negative numbers. In this system,
the year immediately before A.D. 1 is called the year o; the year before that,
-1, and so on:

Historical way Astronomical way
AD. 2 +2
A.D. 1 +1
1 B.C. 0
2 B.C. ~-I
3 B.C. -2

F O UR
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The utility of the astronomical system can be made clear by an example. Let
us compute the time elapsed between January 1, 23 B.C. and January 1, A.D.
47. The simplest approach is to express the B.c. date astronomically and then

subtract:

23 B.C. = —22.

47 —(—22) = 69.

Thus, 69 years elapsed between the two dates.

The leap years are those evenly divisible by four: a.p. 4, 8, 12, and so on.
This rule may be extended to the years before the beginning of the Christian
era, if the years are expressed astronomically: o, —4, —8, —12 are all leap years.
Note that if the years are expressed in the historical way the leap years are 1,
5, 9, 13 B.C.

The Roman manner of designating the days of the month was not the
same as our own. The first day of the month was called Kalendae, or Kalends
in English. The sth of most months was called Nonze (Nones in English).
The 13th day of most months was called /dus (Ides). However, four months
had the Nones on the 7th and the Ides on the 15sth (March, May, July,
October). Other days of the month were specified in terms of the days
remaining until the next of these three guideposts. For example,

Our way ~ Roman way

April 1 Kalends of April

2 4th day before the Nones of April
3rd day before the Nones of April
the day before the Nones of April
Nones of April
8th day before the Ides of April
7th day before the Ides of April

N Nw AW

11 3td day before the Ides of April
12 the day before the Ides of April
13 Ides of April

14  18th day before the Kalends of May
15 17th day before the Kalends of May

29 3rd day before the Kalends of May
30 the day before the Kalends of May
May 1 Kalends of May

The Roman way of counting the days continued in use to the end of the
Middle Ages. In manuscripts of the fifteenth century, for example, one sees
the Roman way and the modern way of counting used side by side. The
fifteenth century was a period of transition. Note also the Roman manner of
inclusive counting. We would say that April 11 is two days before the Ides. But
the Romans called it the third day before the Ides—counting the 11th, 12th,
and 13th. The Nones was so called because it came nine days before the Ides
(counting inclusively). Time expressions based on inclusive counting survive
in the Romance languages. For example, in French, an expression for a week
is huit jours, literally eight days. Similarly, for two weeks, the French often
say quinze jours, fifteen days.

The Julian calendar did not exist before 45 B.C., but that does not prevent
us from using it as if it did. We say that Xerxes invaded Greece and fought
the battle of Salamis in 480 B.c., or that Alexander died in 323 B.c. A Julian

calendar date used in this way is always a translation into modern terms of

a more ancient, and now defunct, system of chronology. An ancient Greek,
for example, might have said that the battle of Salamis was fought in the year
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that Kalliades was archon of Athens® and that Alexander died during the archon-
ship of Kephisodoros.’

History of the Julian Calendar The Roman calendar that Caesar eliminated
was a luni-solar calendar, consisting of twelve months.*’ There were four
months of 31 days, Martius, Maius, Quintilis (= July), and October; seven of
29 days, lanuarius, Aprilis, Iunius, Sextilis (= August), September, November,
and December; and one of 28 days (Februarius). The length of the year was
therefore 355 days, in fair agreement with the length of twelve lunar months.
But as this year was some ten days shorter than the tropical or solar year, its
months would not maintain a fixed relation to the seasons. Consequently,
roughly every other year an intercalary month, called Inzercalaris or Mercedo-
nius, consisting of 27 or 28 days, was inserted after February 23, and the five
remaining days of February were dropped. Thus, the year with an intercalated
month consisted of 377 or 378 days. Some scholars suggest that the intercalary
month alternated regularly between its two possible lengths,’ so that the
calendar years went through the regular four-year cycle: 355, 377, 355, 378.
Four successive calendar years therefore totaled 1,465 days, and the average
year amounted to 366 days, about one day longer than the tropical year. The
intercalation was in the charge of the pontifices (priests of the state religion).
But, through neglect, incompetence, or corruption, the necessary intercalations
had not been attended to, and by 5o B.c. the calendar was some two months
out of step with the seasons.

Julius Caesar, who had been elected Pontifex Maximus in 63 B.C., aban-
doned the old luni-solar calendar entirely and adopted a purely solar calendar.
In the technical details he followed the advice of Sosigenes, a Greek astronomer
from Alexandria. To bring the calendar back into step with the seasons, it
was decided to apply two intercalations to the year 46 B.c.. The first was the
customary insertion of a month following February 23, which was scheduled
to be done in that year anyway. The second was the insertion of two additional
months totaling 67 days between the end of November and the beginning of
December, to make up for previous intercalations that had been neglected.
The effect of this was to bring the vernal equinox back to March. After this
annus confusionis (“year of confusion”), as it was called by Macrobius, the
new calendar began to operate in 45 B.C..

The year was to consist of 365 days, ten more than in the old calendar.
To make up the new total, the ten days were distributed among the old 29-
day months: January, Sextilis, and December received two days each, while
April, June, September, and November each gained one day. The old 31-day
months (March, May, Quintilis, and October) remained unchanged,” as did
February. An intercalary day was to be added to the month of February one
year out of every four. After Caesar’s assassination in 44 B.C., the Senate
decided to honor his memory by renaming his birth-month (Quintilis) Tulius.

Unfortunately, owing to a mistake by the pontifices, the intercalation was
actually performed once every three years so that, by 9 B.c., 12 intercalary
days had been inserted, while Caesar’s formula had called for only 9. The
pontifices, who were inclusive counters like all Romans, had misunderstood
Sosigenes’ prescription. To bring the calendar back into step with the original
plan, Augustus decreed in 8 B.c. that all intercalations be omitted until A.D.
8. In that year, the Roman Senate honored Augustus by renaming for him
the month of Sextilis, since it was in this month that Augustus was first
admitted to the consulate and thrice entered the city in triumph. From a.p.
8 the Julian calendar operated without further change until the Gregorian
reform of 1582,

The week was not originally a feature of the Julian calendar. There is some
evidence for an eight-day cycle of market days in Rome. The seven-day week
seems to have originated from the Jewish practice: six days of work and one
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day of rest. The Jews had no names for the days of the week, except the
Sabbath, and simply numbered them. As the week penetrated to the western
Mediterranean, the practice grew up of naming the days of the week after
the planets.® Most of these planetary names are still apparent in the French:

Planet Latin French English
Saturn Dies Saturni Samedi Saturday
Sun Dies Solis Dimanche  Sunday
Moon Dies Lunae Lundi Monday
Mars Dies Martis Mardi Tuesday
Mercury Dies Mercurii Mercredi Wednesday
Jupiter Dies Jovis Jeudi Thursday
Venus Dies Veneris Vendredi Friday

In the Teutonic languages, the names of the Roman deities Mars, Mercury,
Jupiter, and Venus were replaced by their counterparts Tiu, Woden, Thor,
and Frigga. The seven-day planetary week was made official by the emperor
Constantine in 321

The practice of reckoning years from the beginning of the Christian era
was introduced in the sixth century a.p. by the Roman abbot Dionysius
Exiguus. Before this time, a year was commonly specified by the names of the
consuls for that year or, later, in terms of the number of years elapsed since the
beginning of the reign of some emperor, for example, Diocletian. In his tables
for computing the date of Easter, Dionysius Exiguus identified A.D. 532 with
year 248 of the Diocletian era. This fixed once and for all the relation of the
Christian era to the Julian calendar—but not quite correctly. Modern scholarship
has placed the actual year of Jesus’s birth between 8 and 4 B.c.

The Gregorian Reform

The Error in the Julian Year The Julian year (the average length of the Julian
calendar year) is 365.25 days. But the time required for the Sun to travel from
one tropic, all the way around the ecliptic, and return to the same tropic is
about 365.2422 days. This is called the #ropical year. Obviously, the tropical
year can only be measured with such precision over an interval of many years.
The Julian year exceeds the tropical year by 0.0078 day:

1 Julian year = 1 tropical year + 0.0078 day.

In any one year, or even over a period of several years, this discrepancy
would not be noticed. But over the centuries, it mounts up. In A.D. 300, to
take a definite example, the vernal equinox fell on March 20. For the next
several decades the equinox continued to fall on March 20 or 21. (The dare
of the equinox oscillated between the 20th and 21st, because of the leap day
system.) But gradually, over a longer period of time, a systematic shift in the
date of the equinox occurred. Consider an interval of 400 years. If we multiply
the relation above by 400 we obtain

400 Julian years = 400 tropical years + 400 X 0.0078 day

= 400 tropical years + 3.12 days.

Therefore, the spring equinox of the year 700 did not take place on March
20, but on March 17. Because of the difference in length between the Julian and
the tropical year, the date of the equinox retrogresses through the Julian calendar
by about 3 days every 400 years. By the sixteenth century, the equinox had
worked its way back to the 11th of March.

The Easter Problem The principal motive for reform was the desire to correct
the ecclesiastical calendar of the Catholic church, particularly the placement
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of Easter. As Easter is the festival of the resurrection, its celebration depended
on the proper dating of the crucifixion and the events around it. According
to the Gospels, the last supper occurred on a Thursday evening; the trial,
crucifixion, and burial of Christ on Friday. On the evening of the same Friday,
the Passover was celebrated by the Jews.” Finally, the resurrection occurred
on the following Sunday."’ The Passover, around which all these events center,
is celebrated for the week beginning in the evening of the 14th day of Nisan
in the Jewish calendar. Now, the Jewish calendar is of the luni-solar type,
and the beginning of each month corresponds closely to a new Moon. It
follows, then, that the 14th day of Nisan was the date of a full Moon. Moreover,
the month of Nisan was traditionally connected with the spring equinox: a
month was intercalated before Nisan whenever necessary to ensure that Passover
week did not begin before the Jewish calendrical equinox. The proper time to
celebrate Easter was therefore shortly after the first full Moon of spring.

In the early church, this general principle was interpreted in a number of
different ways. Some Christians celebrated Easter on the third day after the
full Moon, regardless of whether this was a Sunday or not. Most, however,
celebrated Easter on a Sunday, although there was disagreement over which
Sunday was proper. An attempt to regularize practice was made by the Council
of Nicaea in 325. The rule adopted by the Council, expressed somewhat
inexactly, was this: Easter is the Sunday following the full Moon that occurs
on or just after the vernal equinox. The Council also decreed that if the date
of Easter, so calculated, coincided with the Jewish Passover, then Easter should
be celebrated one week later. This description of the Council’s rule is the one
commonly encountered today in nontechnical books on the subject, but it is
inexact for the following reason: neither the true Sun nor the true Moon was
used in the determination of Easter. For example, the Council fixed the date
of the equinox at March 21. (This was correct for A.D. 325, as we have seen.)
Moreover, the determination of the Easter Moon was not carried out through
observation of the real Moon, but through calculation based on lunar cycles.

The Council of Nicaea does not seem to have regularized practice regarding
the Moon, for different lunar cycles continued to be used in the East and the
West. Thus, Easter was sometimes celebrated on different Sundays by different
sects. For example, in A.p. 501, Pope Symmachus, following the cycle then
used at Rome, celebrated Easter on March 25. But his political and religious
opponents at Rome, the Laurentians, followed the Greek cycle and celebrated
Easter that year on April 22. Moreover, they sent a delegation to the emperor
at Constantinople to accuse Symmachus of anticipating the Easter festival."
Uniform practice between East and West was not achieved until 525, when
the nineteen-year Metonic cycle was introduced at Rome. It had long been
used in the East, where Greek influence predominated. Tables were prepared,
based on this cycle, by means of which the date of Easter in any year could
readily be determined. Again, the date of the full Moon on or next after March
21 was determined from these tables, not from astronomical observation; the
Sunday following was Easter. Even after 525, other cycles continued to be used
in Gaul and Britain. Feeling often ran high. The celebration of Easter on the
wrong day was often deemed sufficient grounds for excommunication.”? Com-
pletely uniform practice across Europe was not achieved until about a.p. 800."

The Reform  In practice, then, Easter was celebrated on a Sunday in March
or April following March 21. But by the sixteenth century the date of the
equinox had retrogressed to March 11, so that Easter was steadily moving
toward the summer. The need for reform had long been felt, but the state of
astronomy in Europe had been inadequate for the task." In 1545, the Council
of Trent authorized Pope Paul III to act, but neither Paul nor his successors
were able to arrive at a solution. Work by the astronomers continued, however,
and when Gregory XIII was elected to the papacy in 1572 he found several
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proposals awaiting him and agreed to act on them. The plan finally adopted
had been proposed by Aloysius Lilius (the Latinized name of Luigi Giglio,
an Italian physician and astronomer, d. 1576). The final arrangement was
worked out by Christopher Clavius, Jesuit astronomer and tireless explainer
and defender of the new system."” The reformed calendar was promulgated
by Gregory in a papal bull issued in February, 1582.

The most difficult part of the reform involved adjustments to the luni-
solar ecclesiastical calendar used for calculating Easter. The details of this part
of the reform need not concern us. New lunar tables were constructed to restore
the ecclesiastical Moon to agreement with the true Moon. This reformed luni-
solar calendar has never been accepted by the Orthodox churches, which still
reckon Easter according to the tables that the Roman Church abandoned in
1582. As a result, the Orthodox Easter may coincide with the Roman Easter,
or it may lag behind it by one, four, or five weeks.'¢

By contrast, the reform of the solar, or Julian, calendar was simple. First,
to bring the vernal equinox back to the 21st of March, the day following
October 4, 1582, was called October 15. That is, ten days were omitted.
However, there was no break in the sequence of the days of the week: this
sequence has therefore continued uninterrupted since its inception. Second,
to correct the discrepancy between the lengths of the calendar year and the
tropical year, it was decided that three leap days every 400 years were to be
omitted. These were to be centennial years not evenly divisible by 400. Thus,
in the old Julian calendar the years 1600, 1700, 1800, 1900, 2000, 2100, and
so on, were all leap years. But under the new Gregorian calendar, 1700, 1800,
1900, and 2100 are not leap years.

The new calendar was immediately adopted in the Catholic countries of
southern Europe, but in the Protestant north, most refused to go along.
Denmark did not change over until 1700; Great Britain, not until 1752. In a
few countries that had been dominated by the Eastern church, the change
was not made until the twentieth century. Thus, Russia did not adopt the
Gregorian calendar until 1918, after the revolution.

Using the Julian and Gregorian Calendars

In historical writing, the common practice is to use the Julian calendar for
dates before 1582 and the Gregorian for dates after 1582. Consistent practice
therefore requires translating many Julian calendar dates—for example, from
seventeenth-century England—into their Gregorian equivalents. However, in
astronomical discussion it is sometimes preferable to use the Gregorian calendar
even for the remote past, since the dates of the equinoxes and solstices are
nearly fixed in that calendar. The only safe practice is to clearly specify which
calendar is being used whenever there is any possibility of confusion. Sometimes,
in older writing, one comes across references to the “old style” and “new
style,” which refer to the Julian and the Gregorian calendar, respectively.
Table 4.1 may be used to make conversions. For example, Russia changed
from the old to the new calendar on February 1, 1918 (Julian calendar). Let
us express this date in terms of the Gregorian calendar. From table 4.1, we
find that in 1918 there was a 13-day difference between the two calendars. The
corresponding Gregorian date is therefore February 14, 1918. To put things
as clearly as possible, “February 1, 1918 (Julian calendar)” and “February 14,
1918 (Gregorian calendar)” are two different names for the same day: it was
a Thursday. Note that when the Gregorian calendar was promulgated in 1582
the difference between the two calendars was 10 days. But 1700, 1800, and
1900 were leap years in the Julian calendar, and not in the Gregorian; thus,
by 1918 the difference had grown to 13 days. The Russian Orthodox Church
uses the Julian calendar to this day. They celebrate Christmas on December
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TABLE 4.1. Equivalent Dates in the Julian and Gregorian Calendars

Time Interval Difference

From =500 Mar 6 Julian (= Mar 1 Gregorian) =5 days
Through —300 Mar 4 Julian (= Feb 28 Gregorian)

From =300 Mar 5 Julian (= Mar 1 Gregorian) —4 days
Through =200 Mar 3 Julian (= Feb 28 Gregorian)

From —200 Mar 4 Julian (= Mar 1 Gregorian) -3 days
Through —100 Mar 2 Julian (= Feb 28 Gregorian)

From —100 Mar 3 Julian (= Mar 1 Gregorian) -2 days
Through 100 Mar 1 Julian (= Feb 28 Gregorian)

From 100 Mar 2 Julian (= Mar 1 Gregorian) -1 day
Through 200 Feb 29 Julian (= Feb 28 Gregorian)

From 200 Mar 1 Julian (= Mar 1 Gregorian) +0 days
Through 300 Feb 28 Julian (= Feb 28 Gregorian)

From 300 Feb 29 Julian (= Mar 1 Gregorian) +1 day
Through 500 Feb 28 Julian (= Mar 1 Gregorian)

From 500 Feb 29 Julian (= Mar 2 Gregorian) +2 days
Through 600 Feb 28 Julian (= Mar 2 Gregorian)

From 600 Feb 29 Julian (= Mar 3 Gregorian) +3 days
Through 700 Feb 28 Julian (=Mar 3 Gregorian)

From 700 Feb 29 Julian (= Mar 4 Gregorian) +4 days
Through 900 Feb 28 Julian (= Mar 4 Gregorian)

From 900 Feb 29 Julian (= Mar 5 Gregorian) +5 days
Through 1000 Feb 28 Julian (= Mar 5 Gregorian)

From 1000 Feb 29 Julian (= Mar 6 Gregorian) +6 days
Through 1100 Feb 28 Julian (= Mar 6 Gregorian)

From 1100 Feb 29 Julian (= Mar 7 Gregorian) +7 days
Through 1300 Feb 28 Julian (= Mar 7 Gregorian)

From 1300 Feb 29 Julian (= Mar 8 Gregorian) +8 days
Through 1400 Feb 28 Julian (= Mar 8 Gregorian)

From 1400 Feb 29 Julian (= Mar 9 Gregorian) +9 days
Through 1500 Feb 28 Julian (= Mar 9 Gregorian)

From 1500 Feb 29 Julian (=Mar 10 Gregorian) +10 days
Through 1700 Feb 28 Julian (= Mar 10 Gregorian)

From 1700 Feb 29 Julian (= Mar 11 Gregorian) +11 days
Through 1800 Feb 28 Julian (= Mar 11 Gregorian)

From 1800 Feb 29 Julian (= Mar 12 Gregorian) +12 days
Through 1900 Feb 28 Julian (= Mar 12 Gregorian)

From 1900 Feb 29 Julian (= Mar 13 Gregorian) +13 days

Through 2100 Feb 28 Julian (= Mar 13 Gregorian)

25 of the Julian calendar, which is January 7 in the Gregorian—r13 days after
the Christmas of the Roman Church.

As a second example of the relation between the two calendars, consider
the birth date of George Washington. In encyclopedias, this date is given as
February 22, 1732. However, an entry in the Washington family Bible preserved
at Mt. Vernon reads

George Washington Son to Augustine & Mary his Wife was Born ye 1rth
Day of February 1731/2 about 10 in the Morning & was Baptiz’d on the
3oth of April following,"”

Two features of this entry require comment. First, the date of birth recorded
by the family was the 11th of February (Julian calendar). Virginia in 1732 was
an English colony and therefore used the same calendar as did the English.
The colonies changed with England to the Gregorian calendar in 1752. The
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date that eventually became a national holiday, February 22, is the Gregorian
equivalent of the date recorded in the family Bible. In 1732 there was an 11-
day difference between the two calendars. o

The second feature that requires comment is the designation of the year
as 1731/2. There were several different practices regarding the beginning of
the year. The most common initial dates were December 25, January 1, March
1, and March 25. These different reckonings of the year were kr?own' as
styles—not to be confused with the usage old style, new sfyle for designating
the Julian and Gregorian calendars. In England, the Nativity style (December
25) was used until the fourteenth century, when it was sup.erseded by the
Annunciation style (March 25). This was the style still in use in tl.ue first half
of the eighteenth century, when Washington was born. That is, in England
and the English colonies the year officially began on March 25. However, l?y
this time most of Europe was using the January 1 style. Therefore, to avoid
ambiguity, it was common to specify both years in cases where the date fell
between January 1 and March 24. The designation 1731/2 :hercfore means
“1731 in the March 25 style, but 1732 in the January 1 'sryle. The January 1
style was adopted in England in 1752 in connection w1t'h the chang? to .the
Gregorian calendar. The January 1 style is always used in modern historical

writing.

4.2 EXERCISE: USING THE JULIAN
AND GREGORIAN CALENDARS

1. Octavian assumed imperial powers and took the name‘August.us in
January, 27 B.c. He died in August, A.p. 14. How long did he relgn?

2. The following list gives the Julian calendar dates of the vernal equinox
over an interval of 3,000 years.

Date of vernal equinox
Year (Julian calendar)

AD. 1500 11 March

1000 14 March

500 18 March

0 22 March

-500 26 March

-1000 30 March
-1500 3 April

Express these dates in terms of the Gregorian calendar. For year
—s00 and later, use table 4.1. For the earlier dates you will have to apPly
the rule for the leap years governing the centurial years in the Gregorian
calendar. '

3. Consider the following common remark: Isaac Newt(.)n was born in
1642, the year of Galileo’s death. The popularity of this remark stems
from its symbolic value. It seems to signify a passing of the torch (g
intellect. And it even seems to be true. Galileo died on January 9, 1642.
Newton was born on December 25, 1642."”

However, as Galileo lived in Italy, where the Gregorian reform was
immediately accepted, the date of his death is naturally expressed in
terms of the Gregorian calendar. Newton was born in England when
that nation still used the Julian calendar. (Both dates have been expressed
in the January 1 style.) .

Express both dates in terms of the same calendar—first try the Julian,
then the Gregorian. Do both fall in the same calendar year in one system
or the other?
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4. Compute the length of the Gregorian year, that is, the average length
of the calendar year according to the Gregorian calendar. (Hint: begin
by counting the number of common years and the number of leap years
in the 400-year cycle.) Is the Gregorian year too long or too short in
comparison with the tropical year> How much time will elapse before
the Gregorian calendar loses step with the Sun by one day? The tropical
year is 365.2422 days long.

4.3 JULIAN DAY NUMBER

The Julian day number is a count of days, widely used by modern astronomers.
The day January 1, 4713 B.C. is called day zero, and for each successive day
the count increases by 1.

For example, the Julian day number of December 31, A.D. 1899, is 2,415,020.
The Julian day number of September 15, A.D. 1948, is 2,432,810. Knowledge
of the Julian day numbers makes the calculation of time intervals simple:

September 15, 1948 = .. 2,432,810
December 31, 1899 = j.p. 2,415,020

Difference 17,790

Thus, 17,790 days elapsed between the two dates. The calculation of this
time interval by some other method would be much more complicated, for
it would involve the reckoning of months of different lengths and the careful
counting of leap days.

When the Julian day number is a whole number, as in the examples quoted
so far, it signifies Greenwich mean noon of the calendar day:

September 15, 1948, noon (at Greenwich) = J.p. 2,432,810

If the time of day falls after noon, the appropriate number of hours may be
added to the Julian day number:

September 15, 1948, 6 p-m. (Greenwich) = j.p. 2,432,810%",

where * and * stand for days and hours. If the time falls before noon, the
appropriate number of hours must be subtracted from the Julian day number:

September 15, 1948, 9 a.Mm. (Greenwich) = j.p. 2,432,809%21",

The Julian day number, although used now as a continuous count, origi-
nally specified the location of the day within a repeating period, called the
Julian period. The length of the Julian period is 7,980 years. In principle,
after 7,980 years have elapsed the Julian day numbers are supposed to start
over again. (Whether the astronomers will actually consent to begin the count
of days afresh at the start of the second Julian period in A.D. 3268, we shall
have to wait and see!) In publications from the early part of the twentieth
century, one often sees the expression “day of the Julian period,” where we
would now say, “Julian day number.” The two expressions mean the same
thing.

The Julian period and the practice of numbering the days within this
period were introduced in 1583 by Joseph Justus Scaliger, the founder of
modern chronology.” The period was formed by combination of three shorter
periods. The first of these is the 19-year luni-solar (or Metonic) period, dis-
cussed in section 4.7. The second is a 28-year calendrical period: for any two
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TABLE 4.2 Julian Day Number: Century Years. Days Elapsed at Greenwich Mean Noon of January 0

Julian Calendar Gregorian Calendar
AD. 0 172 1057 AD. 600 194 0207 A.D. 1200 2159357 A.D. 1500% 226 8923
100 117 7582 700 197 6732 1300 219 5882 1600 230 5447
200 179 4107 800 201 3257 1400 223 2407 1700t 2341972
300 183 0632 900 204 9782 1500 226 8932 1800F 237 8496
400 186 7157 1000 208 6307 1600 230 5457 19001 241 5020
500 190 3682 1100 2122832 1700 2341982 2000 245 1544

tCommon years.

years in the Julian calendar that are 28 years apart, all the days of the year
will fall on the same days of the week. Thus, the calendars for the years 1901,
1929, 1957, 1985, and so on, are exactly the same. (Note that in the Gregorian
calendar, this pattern is broken by the three century years in four that are
not leap years.) The third period, called indiction, was a 15-year taxation period
introduced in the Roman empire in the third century a.n. The Julian period
is simply the product of these three: 19 X 28 X 15 = 7980 years. Scaliger’s
starting year for the Julian period, 4713 B.C., is the most recent year in which
all three periods were simultaneously at their beginnings.

Tables 4.2, 4.3, and 4.4 provide a convenient way of obtaining the Julian

day number for any date.

Precepts for Use of the Tables for Julian Day Number

Dates after the Beginning of the Christian Era  For years before 1500, the date
must be expressed in terms of the Julian calendar. For the year 1800 and
thereafter, the date must be expressed in terms of the Gregorian calendar.
Between the dates 1500 and 1800, either calendar may be used. In any case,
the date must be expressed in terms of Greenwich mean time.

1. Enter the table of century years (table 4.2) with the century year immedi-
ately preceding the desired date and take out the tabular value. If the
Gregorian calendar is being used and if the century year is marked with
a dagger ', note this fact for use in step 2.

2. Enter the table of the years of the century (table 4.3), with the last two
digits of the year in question and take out the tabular value. If the
century year used in step 1 was marked with a dagger !, diminish the
tabular value by one day unless the tabular value is zero.

3. Enter the table of the days of the year (table 4.4) with the day in
question, and take out the tabular value. If the year in question is a
leap year, and the table entry falls after February 28, add one day to
the tabular value. The sum of the values obtained in steps 1, 2, and 3
then gives the Julian day number of the date desired. This Julian day

number applies to noon of the calendar date.

First Example: September 15, A.D. 1948, Greenwich mean noon:

1. Century year 1900' 241 5020
2. Year of the century 48 17532 —1= 17531
3. Day of the year September 15 258 + 1= 259

Julian day number 243 2810

Note that in step 2 the tabular value has been diminished by 1 because 1900
is a common year (marked with "in table 4.2). In step 3, the tabular value

TABLE 4.3. Julian Day Number: Years of the Century. Days Elapsed at Greenwich Mean Noon of January 0

(1)§ 0 20* 7 305 40* 14610 60* 21915 80* 29 220
: ;g? 21 7 671 41 14 976 61 22 281 81 29 586
: o 22 8 036 42 15 341 62 22 646 82 29 951
* 23 8401 43 15 706 63 23011 83 30316
4 1461 24* 8766 44* 16 071 64* 23 376 84* 30681
5 1827 25 9132 45 16 437 65 23742 85 31047
6 2192 26 9497 46 16 802 66 24 107 86 31412
7 2557 27 9 862 47 17 167 67 24 472 87 31777
8* 2922 28* 10 227 48* 17 532 68* 24 837 88* 32142
9 3288 29 10 593 49 17 898 69 25203 89 32508
10 3653 30 10 958 50 18 263 70 25568 90 32873
11 4018 31 11323 51 18 628 71 25933 91 33238
]1;.* ;i 323 32* 11 688 52* 18 993 72* 26298 92* 33603
" ; ZIZ 33 12 054 53 19 359 73 26 664 93 33969
34 12 419 54 19724 74 27 029 94 34334
15 5479 35 12784 55 20089 75 27 394 95 34699
16* 5844 36* 13 149 56* 20 454 76* 27 759 96* 35 064
17 6210 37 13515 57 20 820 77 28125 97 35 430
18 6575 38 13 880 58 21185 78 28 490 98 35795
19 6 940 39 14 245 59 21550 79 28 855 99 36 160
*Leap year.
SLeap year unless the century is marked t.
In Gregorian centuries marked T, subtract one day from the tabulated values for the years 1 through 99.
TABLE 4.4. Julian Day Number: Days of the Year

Day of Mo. Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec

1 1 32 60 91 121 152 182 213 244 274 305 335

2 2 33 61 92 122 153 183 214 245 275 306 336

3 3 34 62 93 123 154 184 215 246 276 307 337

4 4 35 63 94 124 155 185 216 247 277 308 338

5 5 36 64 95 125 156 186 217 248 278 309 339

6 6 37 65 96 126 157 187 218 249 279 310 340

7 7 38 66 97 127 158 188 219 250 280 311 341

8 8 39 67 98 128 159 189 220 251 281 312 342

9 9 40 68 99 129 160 190 221 252 282 313 343

10 10 41 69 100 130 161 191 222 253 283 314 344

11 11 42 70 101 131 162 192 223 254 284 315 345

12 12 43 71 102 132 163 193 224 255 285 316 346

13 13 44 72 103 133 164 194 225 256 286 317 347

14 14 45 73 104 134 165 195 226 257 285 318 348

15 15 46 74 105 135 166 196 227 258 288 319 349

16 16 47 75 106 136 167 197 228 259 289 320 350

17 17 48 76 107 137 168 198 229 260 290 321 351

18 18 49 77 108 138 169 199 230 261 291 322 352

19 19 50 78 109 139 170 200 231 262 292 323 353

20 20 51 79 110 140 171 201 232 263 293 324 354

21 21 52 80 111 141 172 202 233 264 294 325 355

22 22 53 81 112 142 173 203 234 265 295 326 356

23 23 54 82 113 143 174 204 235 266 296 327 357

24 24 55 83 114 144 175 205 236 267 297 328 358

25 25 56 84 115 145 176 206 237 268 298 329 359

26 26 57 85 116 146 177 207 238 269 299 330 360

27 27 58 86 117 147 178 208 239 270 300 331 361

28 28 59 87 118 148 179 209 240 271 301 332 362

29 29 * 88 119 149 180 210 241 272 302 333 363

30 30 89 120 150 181 211 242 273 303 334 364

31 31 90 151 212 243 304 365

*In leap years, after February 28, add 1 to the tabulated value.
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has been increased by 1 because 1948 was a leap year and the date fell after
February 28.

Second Example: February 9, A.0. 1584 (Gregorian calendar), 10:30 A.M. Green-
wich mean time:

1. 1500' {Gregorian) 226 8923
2. 84 30681 —1= 3 0680
3. February ¢ 40
Julian day number 229 9643

1 1/2 hours before noon of the gth: 2,299,64222"30"

Note that although 1584 was a leap year, the tabular value in step 3 is not
changed because the date fell before the end of February.

Dates before the Beginning of the Christian Era  Express the date astronomi-
cally; add the smallest multiple (%) of 1,000 years that will convert the date
into an A.D. date; determine the Julian day number of the A.p. date; then
subtract the same multiple (1) of 365250. The result is the Julian day number

desired.

Example: March 12, 3284 B.c. Greenwich mean noon:

March 12, B.C. 3284 = — 3283 March 12
4 X 1000 = 4000

sum= 717 March 12
I. 700 197 6732
2.17 6210
3. March 12 71
Julian day number, March 12, A.D. 717 noon 198 3013
Less 4 X 365250 —146 1000
Julian day number, March 12, B.C. 3284, noon 52 2013

4.4 EXERCISE: USING JULIAN DAY NUMBERS

1. Work out the Julian day numbers for the following dates. The time is
Greenwich noon unless otherwise noted.

A. June 13, 1952 (answer: 243 4177).
B. June 10, 323 B.C. (death of Alexander).
C. November 12, 1594, 6 A.M. Greenwich (Gregorian calendar).

2. Days of the week: The Julian day number provides a handy method of
determining the day of the week on which any calendar date falls.
Divide the Julian day number by 7, discard the quotient, but rerain the
remainder. The remainder determines the day of the week:

Remainder ~ Day of week

0 Monday
Tuesday
Wednesday
Thursday
Friday
Saturday
Sunday

NN N~
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A. Columbus, on his first voyage of discovery, first sighted land on
October 12, 1492. What day of the week was this? (Answer: Friday.)
B. July 4, 1776 (Gregorian) fell on what day of the week?

3. Length of the tropical year: The vernal equinox of 1973 fell on March
20 at 6 p.M. Greenwich time. Copernicus observed the vernal equinox
of the year 1516, “4 1/3 hours after midnight on the sth day before the
Ides of March™' That is, the vernal equinox fell at 4:20 a.m. March 11,
A.D. 1516. (Is this the Julian or the Gregorian calendar?) Copernicus’s
time of day is referred to his own locality, that is, to the meridian
through Frauenberg, on the Baltic coast of Poland. Frauenberg lies about
19° east of Greenwich, which amounts to about 1 1/4 hour of time.
Expressed in terms of Greenwich time, then, Copernicus’s vernal equinox
fell at abour 3 a.M. (We ignore the small fraction of an hour.)

Use these two equinoxes (1516 and 1973) to determine the length of
the tropical year. To do this, compute the Julian day number of each
observation, subtract to find the time elapsed, then divide by the number
of years that passed. Compare your result with the modern figure for
the tropical year, 365.2422 days.

4.5 THE EGYPTIAN CALENDAR

An understanding of the ancient Egyptian calendar is essential for every student
of the history of astronomy. Because of its great regularity, the Egyptian
calendar was adopted by Ptolemy as the most convenient for astronomical
work, and it continued to be used by astronomers of all nations down to the
beginning of the modern age. In the sixteenth century, Copernicus, for exam-
ple, constructed his tables for the motion of the planets, not on the basis of
the Julian year, but on the basis of the Egyptian year. When Copernicus
wanted to calculate the time elapsed between one of Prolemy’s observations
and one of his own, he converted his own Julian calendar date into a date in
the Egyptian calendar.”

Structure

The Egyptian calendar from a very early date consisted of a year of twelve
months, of thirty days each, followed by five additional days. The length of
the year was therefore 365 days. Every year was the same: there were no leap
years or intercalations. The names of the months are

1. Thoth 7. Phamenoth
2. Phaophi 8. Pharmuthi
3. Athyr 9. Pachon
4. Choiak 10. Payni
5. Tybi 11. Epiphi
6. Mecheir 12. Mesore
Plus 5 additional days.

The names transcribed here, as commonly written by scholars today, repre-
sent their Greek forms. (Greeks of the Hellenistic period, living in Egypt,
spelled the old Egyptian month names as well as they could in the Greek
alphabet.) The additional days at the end of the year are sometimes called
“epagomenal”: the Greeks called them epagomenai, “added on.”

The Egyptian year, being only 365 days, will after an interval of four years
begin about one day too early with respect to the solar year. As a result, the
Egyptian months retrogress through the seasons, making a complete cycle in
about 1460 years (1461 Egyptian years = 1460 Julian years).” It therefore came
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Virginis). The recent observation, made by Ptolemy himself, involved
an opposition of Saturn to the mean Sun. The date (as given in Almagest
X1, 5) was Mesore 24, in the 20th year of Hadrian. Compute the number
of days between these two observations. .

3. Conversion of dates, Egyptian to Julian: Ptolemy records the time .of
the middle of a partial lunar eclipse, which he observed at Alexandria,
as follows: in year 20 of Hadrian, four equinoctial hours after midnight
on the night between the 19th and 20th of Pharmouthi (Egyptian
calendar). Convert this date into its equivalent in the Julian calendar.
(Answer: March 6, A.D. 136, 4 A.M., Alexandria local time.)

4. Another conversion problem: In Almagest IV, 9, Ptolemy reports .the
beginning of a partial eclipse observed by him: in the 9th year of Hadna.n,
in the evening between the 17th and 18th of Pachon, 3 3/5 equinoctial
hours before midnight. Express this date in terms of its Julian equivalent.

4.7 LUNI-SOLAR CALENDARS AND CYCLES

All luni-solar calendars contain two features. First, the months alternate be-
tween 29 and 30 days long. In this way, the calendar months closely match
the synodic month (the time from new Moon to new Moon). (But because
the synodic month is a little longer than 29 1/2 days, there must be a fiew
more 30-day months than 29-day months.) Second, the calendar year contains
sometimes twelve months and sometimes thirteen. Twelve synodic months
amount to 354 days, which is shorter than the tropical year (365 1/4 days).
Thus, if every calendar year had only twelve months, the calcnda.r would
progressively get out of step with the seasons. The occasional insertion of a
thirteenth month restores the calendar to its desired relation to the seasons.
In a well-regulated luni-solar calendar, the calendar months slosh back and
forth a bit with respect to the seasons, but they do not continually gain or
lose ground. For example, in the Jewish calendar, the month of Nisan comes
always in the spring, but it does not always begin on the same date of the
Gregorian calendar.

The Greek Civil Calendars
The Months of four Greek calendars®

Acthens Delos Thessaly Boeotia

1. Hekatombaion ~ Hekatombaion Phyllikos Hippodromios
Metageitnion Metageitnion 1. Itonios Panamos
Boedromion Bouphonion Panemos Pamboiotios
Pyanepsion Aparourion Themistios Damatrios
Maimakterion Aresion Agagylios Alalkomenios*
Poseideon* Poseideon Hermaios 1. Boukatios
Gamelion I. Lenaion Apollonios* Hermaios
Anthesterion Hieros Leschanopios Prostaterios
Elaphebolion Galaxion Aphrios Agrionios
Mounychion Artemision Thuios Thiouios
Thargelion Thargelion Homoloios Homoloios
Skirophorion Panamos* Hippodromios Theilouthios

In the calendars of ancient Greece, the month began with the new Moon.
Generally, months of 30 days, called “full” (pleres), alternated with months
of 29 days, called “hollow” (koiloi). Ordinarily, the civil year consisted of
twelve months, but occasionally a thirteenth month was intercalated.

Despite the simplicity of the basic calendrical scheme, Greek chronology
is a difficult, even obscure, field. Most cities had their own calendars, which
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differed in the names of the months, the starting point of the year, and the
place in the calendar where intercalary months were inserted. The list above
gives the names of the months in four Greek calendars, starting from summer
solstice. The first month of the year is marked 1. In the Athenian calendar,
the year began with Hekatombaion, around the time of summer solstice. But
in Delos the year began with Lenaion, around winter solstice. The months
that were customarily doubled in leap years are marked with asterisks. For
many cities, for example, for Argos and Sparta, the complete list of month
names is not even known.

The most vexing complication is not, however, that each city followed its
own practice, but that even in a single city the practice was not uniform. No
regular pattern determined the intercalation of months. Moreover, individual
days were sometimes intercalated or suppressed at will. For example, the
Athenians held a theatrical presentation in connection with the cult of Dio-
nysos on Elaphebolion 10. In 270 B.c., for some reason, the performance was
postponed. Accordingly, the day following Elaphebolion 9 was counted as
Elaphebolion 9 embolimos (“inserted”), and the next three days were counted
as the second, third, and fourth “inserted” Elaphebolian 9.” Religious practice
did not permit tampering with the zames of days on which feasts were held,
but the archons were free to intercalate days as needed, to place the feasts at
a more convenient time. In a famous passage of 7he Clouds (lines 615—626),
Aristophanes ridicules Athenian calendrical practice. The Moon complains
that although she renders the Athenians many benefits—saving them a drachma
each month in lighting costs through moonlight—nevertheless they do not
reckon the days correctly, but jumble them all around. Consequently, the
gods threaten her whenever they are cheated of their dinner because the
sacrifices have not been held on the right days. As Samuel® points out, this
illustrates that the festival calendar was out of step with the Moon, and that
the Athenians were aware of ir. Consequently, it is not surprising to see Athenian
writers distinguish between “the new Moon according to the goddess” (Selene,
the Moon) and “the new Moon according to the archon” (the head magistrate
of the city).”’ We migh call these the actual new Moon and the calendrical
new Moon.

Because no fixed system was used to regulate the intercalation of either
months or days, it is usually impossible to convert a date given in terms of
the Athenian calendar into its exact Julian equivalent. Such a conversion
would be possible only if we had a more or less complete record of the
intercalations actually ordered by the authorities at Athens. No such record
has come down to us. The same uncertainty attaches to most ancient calendars,
with the notable exceptions of the Egyptian calendar and the Roman calendar
after the Julian and Augustan reforms. The superiority of these two calendars
derives from their regularity. In the Egyptian calendar there were no intercala-
tions at all, while in the Julian calendar the only intercalation is the regular
insertion of one day every four years.

Years were designated by the Greeks in several different manners. One
practice involved the counting of Olympiads and the years (numbered one
through four) within the Olympiad. The particular Olympiad was singled
out both by number and by the name of the athlete who had won one of
the important competitions, usually the foot race called the sidion.

More common was the use of the eponymous year, that is, the year named
after a ruler then in power. The expression of eponymous years in terms of
equivalent years of the Christian era requires a list of the rulers, and the
lengths of their reigns, for the city or nation in question. We have fairly good
king lists for Babylon, Persia, Egypt, Sparta, and so on, and lists of the archons
of Athens and the consuls of Rome, so it usually is possible to determine at
least the year to which an ancient writer refers.” As a rule, the farther back
we go into the past, the less reliable the lists become.
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A good example of these ancient manners of designating the year is provided
by Diodorus of Sicily (Diodorus Siculus), a Greek historical writer who lived
in Rome during the reigns of Caesar and Augustus. Diodorus completed an
enormous work, of which less than half has come down to us, that treated
the history of the whole known world from the time before the Trojan War
down to Caesar’s conquest of Gaul. Diodorus’s arrangement is chronological.
Each year’s events are introduced by two or three equivalent designations of
the year in question. For example, Diodorus begins his account of the year
corresponding to 420/419 B.c. in the following way:

When Astyphilos was archon at Athens, the Romans designated as consuls
Lucius Quinctius and Aulus Sempronius, and the Greeks celebrated the
goth Olympiad, in which Hyperbios of Syracuse won the stadion. In this
year, the Athenians, to abide by an oracle, restored to the Delians their
island; and the Delians, who had been living at Adramyttium, returned to

their homeland. . .. %

Luni-Solar Cycles

All ancient luni-solar calendars were originally regulated by observation, with-
out the aid of any astronomical system. In most cultures, the month began
with the first visibility of the crescent Moon—in the west, just after sunset.
For this reason, in Babylonian as well as Jewish practice, the day began at
sunset. A few generations of experience would suffice to show that the month
varied between 29 and 30 days. Therefore, if because of unfavorable weather
the new crescent could not be sighted on the 31st evening, a new month could
be declared anyway.

The intercalation of months arose as a method of maintaining a roughly
fixed relation between the seasons of the year and the months of the calendars.
The ancient Jews inserted a thirteenth month to delay the beginning of the
spring month if the lambs were still young and weak, if the winter rains had
not stopped, if the roads for Passover pilgrims had not dried, if the barley
had not yet ripened, and so on. Similar considerations must have governed
the intercalation of months in all cultures that used a luni-solar calendar.
Only later did observations of the heliacal risings and settings of the fixed
stars play any part. It was much later still before any use was made of
observations of solstices and equinoxes.

The Eight-Year Cycle The lengths of the two fundamental periods are

Synodic month: 29.5306 days,
Tropical year: 365.242 days.

Their ratio is 365.242/29.5306 = 12.3683. Thus, on the average, a calendar year
ought to contain 12.3683 months.

A real calendar year, however, contains a whole number of months. Suppose
we let every year contain twelve months. After the first year, the calendar will
be deficient by 0.3683 months. The calendrical deficit after 7 years will be #
X 0.3683 months. We simply wait until this deficit amounts to a whole month;
then it will be time to intercalate 2 month. For example, after three years the
deficit will be 3 X 0.3683 months = 1.1 months. If we insert a thirteenth month
in the third calendar year, then at the end of that year the deficit will be
nearly (although not exactly) eliminated. Unfortunately, 3 X 0.3683 is not very
near a whole number. The central problem, then, is to find an integer # such
that 7 X 0.3683 is as close to a whole number as possible. One possible solution
is n =8, for then we have

8 X 0.3683 = 2.946, which is pretty nearly 3.
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This near-equality allows us to construct a luni-solar cycle. In eight calendar
years, we insert three additional months. Of the eight calendar years, five will
consist of twelve months, and three will consist of thirteen months:

Eight-year cycle
5 years of 12 months = 6o months
3 years of 13 months = 39 months
So, 8 calendar years = 99 months

The average length of the calendar year in this system is 99 months/8 = 12.3750
months, which is close to the figure we were trying to match (12.3683 months
per year). The correspondence is not perfect, however. Indeed, the calendar
year is 0.0067 months too long (12.3750 — 12.3683 = 0.0067). In about 149
years, this surplus will amount to a whole month. Thus, the eight-year cycle
will operate satisfactorily for about 149 years, but then one month will have
to be omitted to restore the balance.

The Nineteen-Year Cycle The eight-year cycle is tolerably accurate, but let
us search for a better one. Again, the tropical year is longer than twelve synodic
months by 0.3683 month. We search for an integer 7 such that 7 x 0.3683 is
a whole number. A very satisfactory solution is 7z = 19:

19 X 0.3683 = 6.9977, which is very nearly 7.
Thus, we may construct a nineteen-year luni-solar cycle. In nineteen calendar
years, we insert seven additional months. Of the nineteen years, then, twelve

will consist of twelve months and seven will consist of thirteen months:

Nineteen-year cycle

12 years of 12 months = 144 months
7 years of 13 months = 91 months
So, 19 calendar years = 235 months

The average length of the calendar year in this system is 235 months/19 =
123684 months, which agrees very well with the length of the solar year
(12.3683 months).

Ninereen tropical years therefore contain 235 synodic months, almost ex-
actly. The astronomical meaning of this statement is that after nineteen tropical
years, both the Sun and the Moon return to the same positions on the ecliptic.
The Sun returns to the same longitude after any interval containing a whole
number of tropical years. The special feature of the nineteen-year period is
that it also contains a whole number of synodic months. Thus, the Moon
will be in the same phase on two dates that are nineteen years apart.

The explanation of the eight- and nineteen-year cycles given above is not
meant to reflect the actual process of discovery: the ancient Greeks and
Babylonians did not begin with a knowledge of the lengths of the year and the
month. Rather, a knowledge of these cycles emerged after several generations of
keeping track of the Moon.

The nineteen-year cycle was introduced at Athens in 432 B.c. by the
astronomer Meton, for which reason it is also known as the Meronic cycle.
The Greeks simply called it the nineteen-year period. Unfortunately, the Atheni-
ans never adopted it as the regulatory device of their calendar, although the
archons may have taken it into account while pondering the need for an
intercalation. Whether the Greeks discovered this cycle independently or
learned it from the Babylonians, it is not possible to say. Borrowing may be
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considered likely in view of other demonstrated debts of Greek astronomy to
Babylonian practice. On the other hand, the fundamental relation (235 months
= 19 years) is very simple, and independent discovery cannot be ruled out.

Geminus on the Structure of the Nineteen-Year Cycle In chapter VIII of the
Introduction to the Phenomena, Geminus gives a detailed account of the nine-
teen-year cycle as used by the Greeks. According to Geminus, this cycle was
based on the identity

19 years = 235 months = 6,940 days.

In one nineteen-year cycle there were, of course, twelve years of twelve months
and seven years of thirteen months. Geminus adds that there were 125 full
months (30 days each) and 110 hollow months (29 days). Thus, 125 X 30 +
110 X 29 = 6,940 days.

Geminus asserts that the arrangement of full and hollow months should
be as uniform as possible. There are 6,940 days in the nineteen-year period
and 1o hollow months. If all the months were temporarily considered full,
it would therefore be necessary to remove a day after every run of 63 days
(6,940/110 == 63). That is, every 64th day number would be-removed. Accord-
ing to Geminus, the thirtieth day of the month is not always the one scheduled
for removal. Rather, the hollow month is produced by removing whichever day
falls after the running 63-day count. Such a procedure would have enormously
complicated the construction of a calendar. Neugebauer™ therefore doubts
that this rule was ever followed. However, Geminus is unambiguous on this
point, and both recent efforts at a reconstruction of the Metonic cycle have
taken him at his word.”

The Callippic Cycle and the Callippic Calendar ~ The length of the year implied

by Meton’s nineteen-year cycle is
6,940 days/19 = 365 —159— days.

As Geminus points out, this is too long by

5 I 1
65 — — 365 — = — day.
3519 354 76 y

Therefore, after 76 years (which is four consecutive Metonic cycles), we will
have counted one day too many in comparison with the solar year.

In the late fourth century B.c., Callippus proposed a new luni-solar cycle,
the seventy-six-year or Callippic cycle, as it is often called. The Callippic cycle
is formed from four consecutive nineteen-year cycles, but one day is dropped.
The average length of the year in Callippus’s cycle is therefore exactly 365
1/4 days. The cycle also preserves the good agreement with the length of the
month that had already been achieved in Meton’s nineteen-year cycle.

Callippus’s seventy-six year cycle served as the basis of an artificial calendar
used by some of the Greek astronomers. The best evidence for this comes
from Ptolemy’s citations of older observations in the A/magest. For example,
Ptolemy cites an occultation of the Pleiades observed by Timocharis in the
third century B.C.:

Timocharis, who observed at Alexandria, records the following. In the 47th
year of the First Callippic 76-year period, on the eighth of Anthesterion,
... towards the end of the third hour [of the night], the southern half of
the Moon was seen to cover exactly the rearmost third or half of the
Pleiades.”
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In this artificial calendar, the years were counted by their place in the
seventy-six-year cycle. The month names were borrowed from the Athenian
calendar. But it is important to stress that Callippus’s calendar had no relation
to the calendar of Athens. It was a scientific calendar used by astronomers
for their own purposes. This extreme step was taken because the civil calendars
of the Greeks were completely unsuitable for accurate counting of the days—for
all the reasons mentioned above. Year one of the first Callippic cycle began
with the summer solstice of 330 B.c. Timocharis’s occultation of the Pleiades,
quoted above, was observed in 283 B.c.

Prolemy provides Egyptian calendar equivalents for the Callippic dates he
cites. Thus, Prolemy says that Anthesterion 8, year 47 of the first Callippic
cycle, was equivalent to Athyr 29, year 465 of Nabonassar. All attempts to
reconstruct Callippus’s calendar have been based on the handful of equivalences
provided by Ptolemy and the short description of the Metonic-Callippic cycle
by Geminus. However, Geminus’s discussion should be viewed as a pedagogical
effort to explain the luni-solar cycle, rather than a serious historical account,
and Prolemy provides us very few hard facts. Thus, we cannot reconstruct
the Callippic calendar with any certainty.

In the second century B.c., Hipparchus used the Callippic cycle only for
specifying the year and preferred to name the day in terms of the Egyptian
calendar. For example, in Almagest 111, 1, Prolemy cites a list of equinoxes
observed by Hipparchus. According to Hipparchus, the autumnal equinox of
162 B.C. occurred in the 17th year of the third Callippic cycle, on Mesore 30,
about sunset. This mixed reckoning, involving the use of a solar (Egyptian)
calendar for the month and day, and a luni-solar (Callippic) calendar for the
year, did not last long. In his own work, Ptolemy used the Egyptian calendar,
which was the simplest, most rational option of all.

The Babylonian Calendar

The Babylonian year began with the new Moon of the spring month. Years
contained either twelve or thirteen months. The thirteenth month was interca-
lated either by adding a second month VI or a second month XII.

Babylonian month names”

I BAR Nisannu VII DU Tedritu
I GU, Ajjaru VIII APIN Arahsamnu
11 SIG Simanu IX GAN Kislimu
v SuU Du’tizu X AB Tebetu
vV 1ZI Abu X1 ziz Sabatu
VI KIN Ulalu Xl SE Addaru
VI, KIN.A X1, DIRIG, A

In this list, the Babylonian month name is preceded by the Sumerian ideogram
often used in Babylonian astronomical texts. Thus, the name of the spring
month, Nisannu (which would require several cuneiform signs), is usually
replaced by a single ideogram, BAR. (Subscripts and accent marks on some
ideograms are the Assyriologists’ way of distinguishing among several cunei-
form signs with the same sound.)

Originally, the intercalations were performed irregularly. Notices were sent
in the king’s name to the priestly officials at temples throughout Babylonia.
This practice was still followed in the Chaldaean period. Later, during the
Persian period, the announcements of intercalations came from the scribes at
the temple Esangila, who sent notices to the officials at other temples through-
out Babylonia.” Thus, it appears that the regulation of the calendar passed
into the hands of the bureaucracy. This is what made possible the eventual
adoption of a regular system of intercalation.
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The few official announcements of intercalary months that have survived
prove that no regular system of intercalation was in place at the beginning of
the Persian period. As discussed in section 1.1, already in MUL.APIN (650
B.C.) there was an attempt at formulating some guidelines for intercalation
of months, based on the heliacal risings of the stars. But the appearance of a
fixed luni-solar cycle was a later development. There is some evidence that
an eight-year cycle was used for the brief period from 529 to 503 B.C. (three
intercalary months inserted every eight years). From 499, the nineteen-year
cycle was probably in use (seven intercalary months inserted every nineteen
years). However, there are some gaps in our knowledge, since we do not have
records of some intercalations. Also, the scribes had not yet finalized the rules
for deciding when the intercalary month should follow month VI and when
it should follow month XII. A definite glitch in the pattern occurred in 385,
when that year (rather than the following year) was made a leap year. But
from 383 B.C. down to the first century A.D. (when the cuneiform texts cease),
a regular pattern of intercalations was followed.”

After Alexander’s conquest and the establishment of the Seleucid dynasty,
the Babylonian texts use the Seleucid era, which we shall abbreviate SE. That
is, the old luni-solar calendar based on the nineteen-year cycle continued to
function without interruption. But the years were counted from the year that
Seleukos I decided to count as the official beginning of his reign. (1 Nisannu,
year 1 of Seleucid era = 3 April 311 B.C.)*

In terms of the Seleucid era, the leap years are those marked with asterisks
in the following sequence:

1* 23 4% § 6 7% 8 9% 10 11 12* 13 14 15* 16 17 18** 1
7 9

Thus, years 1, 4, and so on, of the Seleucid era were leap years. In years
marked with a single asterisk, month XII was doubled. In years marked with
a double asterisk (i.e., year 18), month VI was doubled. To determine whether
any year of the Seleucid era was a leap year or not, divide the year number
by 19, discard the quotient, but retain the remainder and compare it with the
sequence above.

Features of the Babylonian calendar persist in two luni-solar calendars still
in use today—the Jewish calendar and the Christian ecclesiastical calendar.
After Israel and Judah were conquered by the Babylonians, in the sixth century
B.C., the Babylonian calendar was adopted by the Jews. The nineteen-year
cycle remains the basic operating principle of the modern Jewish calendar,
which is the official calendar of Israel, and which is used worldwide for Jewish
religious practice. The month names in the modern Jewish calendar clearly
reflect their Babylonian origins: Nisan corresponds to Nisannu, lyyar to Ajjaru,
and so on. The Christian church, drawing on both the Jewish calendar and
the Greek astronomical tradition, adopted the nineteen-year cycle as the basis
of the ecclesiastical calendar that governs the date of Easter. Thus, in the
twentieth century, the celebration of religious festivals such as Passover and
Easter is in part regulated by decisions made by anonymous Babylonian scribes
2,500 years ago. This is another striking example of the continuity of the
Western astronomical tradition.

48 EXERCISE: USING THE NINETEEN-YEAR CYCLE

As discussed in section 4.7, nineteen tropical years contain a whole number
of synodic months. This is the basis of the Metonic cycle: 19 years = 235
months. It follows that the dates of the new Moons in the Gregorian calendar
should repeat the same pattern, almost exactly, after an interval of nineteen
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years. The list below gives the dates of the first new Moons for the years
1960-1979. (The dates refer to Greenwich time.)

Date of first Date of first
Year new Moon Year new Moon
1961 January 16 1971 January 26
62 January 6 72 January 16
63 January 25 73 January 4
64 January 14 74 January 23
65 January 2 75 January 12
66 January 21 76 January 1
67 January 10 77 January 19
68 January 29 78 January 9
69 January 18 79 January 28
70 January 7

During this nineteen-year period, the date of the first new Moon moved
back and forth all over the month of January. However, after nineteen years,
we find the pattern repeating, very nearly. The dates of the first new Moons
for the next few years are

Date of first
Year new Moon
1980 January 17
1981 January 6
1982 January 25

We can predict the dates of all the new Moons in any desired year, by use
of this list of new Moons. Suppose we want the new Moons for a year that
is contained in the list, say 1963. Then, beginning with the date of the first
new Moon, we add increments of 30 days and 29 days alternately (i.c., we
alternate full and hollow months):

1963 First new Moon January 25

+30 days
Second new Moon  February 24

+29
Third new Moon ~ March 25

+30
Fourth new Moon  April 24

+29

Fifth new Moon May 23, etc.

The dates obtained by this approximate scheme will rarely differ from the
date of true new Moon by more than a day.

Suppose we want the new Moons for a year not in the list, say 1948. We
then simply determine which year of the list occupies the same position in
the nineteen-year cycle as does 1948. The answer is 1967, since 1948 + 19 =
1967. The new Moons for 1948 may therefore be written out, exactly as
explained above, by use of the date of the first new Moon of 1967 as starting
point:

1948 First new Moon January 10
+30 days
Second new Moon  February 9
+29
Third new Moon ~ March 9, etc.
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Problems

1. Use the nineteen-year cycle and a pattern of alternating full and hollow
months to write out the dates of the new Moons for the current year.
Compare your results with the dates given by a calendar or almanac.

2. Do you see any evidence for an eight-year cycle in the list of new Moons
given above?

3. The technical name for the position of a year in the nineteen-year cycle
is the golden number. (This term originated in the Middle Ages.) The
golden number may be obtained by dividing the year by 19, discarding
the quotient, and adding 1 to the remainder. Thus, the golden number
of 1961 is 5. (1961/19 = 103, with remainder 4. Golden number = 4 +
1.) The golden number for 1962 is 6; for 1963 it is 7, and so on. Golden
numbers are usually written as Roman numerals.

Construct a table of two columns. The first column should contain
the golden numbers I through XIX. The second column should contain
the date of the first new Moon of the year corresponding to each golden
number.

4.9 THE THEORY OF STAR PHASES

The cycle of appearances and disappearances of the fixed stars was an important
part of both early Greek and early Babylonian astronomy. As an example,
take the case of the Pleiades. During the spring, the Pleiades disappeared for
a month and a half when the Sun moved near them on the ecliptic. Then
(in late May), the Pleiades emerged from their period of invisibilicy. They
could be seen, for the first time in the year, rising in the east, a few minutes
before dawn. This event was the morning rising of the Pleiades. It signaled
the wheat harvest and the beginning of summer weather. In the same way,
the morning rising of Arcturus was recognized everywhere in the Greek world
as the beginning of autumn. The risings and settings of stars that occur just
before sunrise, or just after sunset, are called heliacal risings and settings (because
they occur in connection with the Sun). They are also called fixed star phases.

By the fifth century B.cC., this lore was systematized into the parapegma,
or star calendar. (The star calendar was a bit older among the Babylonians.
As we have seen, the seventh-century B.c. compilation, MUL.APIN, included
a star calendar.) A parapegma listed the heliacal risings and settings of the
stars in chronological order. The user of the parapegma could tell the time
of year by noting which stars were rising in the early morning. The parapegma
served as a supplement to the chaotic civil calendars of the Greeks. Usually,
but not always, the star phases were accompanied in the parapegma by weather
predictions.

One could compile a list of the heliacal risings and settings of the constella-
tions, simply by observations made at dawn and dusk over the course of a
year. There is no need for any sort of theory. In this sense, the parapegma
may be considered prescientific. But understanding the annual cycle of star
phases was an important early goal of Greek scientific astronomy. Indeed,
one of the oldest surviving works of Greeck mathematical astronomy is devoted
to this subject. This is the book (or really two books) written by Autolycus
of Pitane around 320 B.C. and called Or Risings and Settings. Autolycus de-
fines the various kinds of heliacal risings and settings, then states and proves
theorems concerning their sequence in time and the way the sequence depends
on the star’s position with respect to the ecliptic. No individual star is men-
tioned by name. Autolycus’s goal is to provide a theory for understanding the
phenomena. His style is that of Euclid.

True Star Phases

Autolycus and all the Greek scientific writers who followed him distinguished
between true and wisible star phases. An example of a true star phase is the
true morning rising (TMR), which occurs when the star rises at the same
moment as the Sun. At such a time the star would be invisible, owing to the
brightness of the sky. The visible morning rising (VMR) would occur some
weeks later, after the Sun had moved away from the star. The visible phases
are the observable events of interest to farmers, sailors, poets, and astrologers.
However, the true phases are more easily analyzed. Accordingly, Autolycus
begins his treatise with a discussion of the true risings and settings. There are
four true phases:

TMR  True morning rising (Star rises at sunrise.)
TMS  True morning setting  (Star sets at sunrise.)
TER  True evening rising

TES  True evening setting

(Star rises at sunset.)
(Star sets at sunset.)

Properties of True Star Phases For any star, the TMR and the TER occur
half a year aparr.

For any star, the TMS and the TES occur half a year apart.

These propositions are easily proved. Let star S be rising in the east, as in
figure 4.3. Let the Sun be rising at A. The star is making its TMR. The TER
will occur when the star is rising at S and the Sun is setting at B. The ecliptic
is bisected by the horizon; thus there are six zodiac signs between 4 and B.
If we suppose the Sun moves uniformly on the ecliptic, it will take the Sun
half a year to go from A4 to B. Thus, the TMR and the TER occur six signs
(about six months) apart in the year. The same sort of proof is easily made
for the TMS and the TES.

The stars have their true phases in different orders according to whether
they are south of the ecliptic, on the ecliptic, or north of the ecliptic.

Ecliptic Stars: If a star is exactly on the ecliptic, its TMR and TES will

~occur on the same day. Let star S be at ecliptic point 4, as in figure 4.4.

When the Sun is also at 4, S and A rise together, thus producing the star’s
TMR. In the evening, S and A will set together in the west, thus producing
the star’s TES. (We assume that the Sun stays at the same ecliptic point for
the whole day.) In the same way, one may show that for ecliptic stars, the
TER and TMS occur on the same day.

Northern Stars: 1f a star is north of the ecliptic, the TMR will precede the
TES. Let the northern star § be making its TMR, rising simultaneously with
ecliptic point 4, as in figure 4.3. Now, of any two points on the celestial
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sphere that rise simultaneously, the one that is farther north will stay up
longer and set later. (We assume the observer is in the northern hemisphere.)
S and A rise together. But 4 will set first. Thus, when S sets, the situation
will resemble figure 4.5. S is on the western horizon. A, located farther south
on the sphere, will already have set and will be below the horizon. The TES
of star § occurs when the Sun is at C. Thus, we must wait a few weeks for
the Sun to advance eastward on the ecliptic from A to C. The TES therefore
follows the TMR.

Southern Stars: 1f a star is south of the ecliptic, the TMR will follow the
TES. The proof may be made in the same way.

The proofs given above are more concise than Autolycus’s proofs of the
same propositions, but follow his basic method.

Example: Betelgeuse, a Southern Star Let us examine the annual cycle of a
particular star, Betelgeuse, which lies in Orion’s right shoulder. We will assume
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