
Chapter 1

Introduction

A. Definition of a Plasma:

The Scope of Modern Plasma Physics

To the classic three states of matter—solid, liquid, and gas—there was added, in the 20th
Century, a new state, called “plasma,” a term coined by the distinguished and highly inven-
tive American experimental physicist, Irving Langmuir. It is a matter of common experience
that heating a material which is in the solid state, in general, transforms it into a liquid and
that heating the liquid will transform it into a gas, the phenomenological properties of these
states of matter being significantly different from one another. Heating (i.e., supplying en-
ergy to) the gas will dissociate it, if its molecules are polyatomic, but this does not result
in a qualitative change in behavior. With further heating, the molecules or atoms become
ionized, and we have a gas composed of electrons, positive ions, and neutral particles. The
forces between the neutral particles and the charged particles, or among the neutral particles,
have a short range (of order of atomic dimensions), just as in a neutral gas, so they do not
result in qualitatively different behavior of the system, although there will be ionization and
recombination. However, when the long range Coulomb forces between the electrons and the
ions dominate over the short range forces, as is the case, for instance, in a fully ionized gas
at high temperature and low density, the behavior of the system becomes so different that
it may properly be considered as a new state of matter.

Langmuir’s research on gaseous discharges was carried out in the 1930’s, and there had
been, even earlier, experimental and theoretical investigations of plasma in connection with
radio wave propagation in the ionosphere and with astrophysical problems. However, plasma
physics as a well-defined discipline began only in the 1950’s, spurred initially by attempts
to create controlled thermonuclear reactions in the laboratory and, subsequently, by the
burgeoning field of space physics and by modern developments in astrophysics (pulsars,
neutron stars, etc.). The relatively late blooming of this field is the more surprising when we
consider that the vast majority of the universe (99%, according to popular accounts) is in
the plasma state, the occurrence of the three other states of matter, as here on earth, being
a rarity, from a cosmic point of view.

In this book, we shall use the term “plasma” to mean a many body system whose dynam-
ical behavior, both equilibrium and non-equilibrium, is dominated by electromagnetic forces
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(i.e., Coulomb and, to a lesser extent, Lorentz forces) between charged particles rather than
nuclear, atomic, or molecular forces. In addition, collective or cooperative effects generally
dominate binary collisional phenomena. Most of the work in this field has been concerned
with gaseous plasmas, with densities ranging up to 1017 cm−3 and thermal energies of 0.1
to 105 eV; however some attention has been given to solid state plasmas, both classical and
quantum-mechanical. The plasma is usually assumed to be neutral (equal electron and ion
charge densities) but there is a considerable body of both theory and experiment dealing
with non-neutral or even single component plasmas. The majority of effort has been devoted
to non-relativistic plasmas; however, relativistic plasmas (electron kinetic energy comparable
to or even larger than the rest energy, mc2) are also of interest in view of applications to
pulsars, quasars, relativistic electron beam machines (with energies of order 1 to 10 MeV
and currents of order 10 to 1000 kA), and devices which use collective plasma effects to
accelerate baryons to relativistic energies.

The study of plasmas forms an exiting and challenging branch of classical physics, charac-
terized by an unusual richness of phenomena in which both non-linear and collective effects
play a major role. Important areas of application include controlled fusion, ionospheric
phenomena, space physics (the magnetosphere, solar wind, etc.), astrophysics, elementary
particle acceleration, and plasma processing of materials. In addition, it provides an excellent
vehicle for training students in modern classical physics, thanks to its combination of basic
and applied work; the close relation between theory and experiment; and the “relevance” of
some of its applications.

As a distinct field of physics, plasma physics is still relatively young, and many approaches
to an exposition of the theory have been used. Ours differs from most previous ones in two
respects:

(1) We emphasize first the collective effects, which are most easily explained for a plasma
without an external magnetic field (an “unmagnetized” plasma), rather than the phenomena
associated with single particle motion in a magnetic field (guiding center approximation,
drifts, etc.). The latter are, of course, essential, but we feel that it is the cooperative
phenomena which constitute the most important distinguishing characteristic of the physics
of plasmas.

(2) We follow a deductive approach, starting with the most fundamental, microscopic
formulation and deriving all others from it. While the inductive method, starting with the
simplest, single fluid formulation and going on to successively more sophisticated representa-
tions, culminating in kinetic theory and a microscopic formalism, has undeniable pedagogic
virtues, we believe this field has reached a state of maturity which justifies an exposition
which puts in clear view the logical basis of the theory, illustrated, but not obscured, by
specific applications.

Although no specific familiarity with plasma physics is assumed, many texts at the in-
troductory level now exist, and the reader should consult these, as needed. However, two
concepts in plasma physics are so fundamental that we shall briefly discuss the elementary
theory of these before proceeding to the deductive exposition.
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B. The Debye Length

The most important phenomenon in a plasma is Debye shielding; the most important param-
eter is the Debye length associated with this. We therefore begin with the simplest possible
description of Debye shielding.

If a point “test charge,” Q, is placed in a homogeneous plasma with density n and
temperature T , it follows from elementary statistical mechanics that the equilibrium density
will change from n to

ñ = ne−qφ/T , (1.1)

where φ is the self-consistent potential due to the charges (both test and plasma). (We shall
always measure temperature in energy units so the Boltzmann constant k will never appear.)
Poisson’s equation gives (assuming Q is at the origin)

∇2φ = −
(
4πQδ(r) + 4π

∑
ñq

)
(1.2)

where the summation is over the charge species of the plasma. If we can make the assumption,
to be justified a posteriori, that

|qφ/T | ¿ 1 (1.3)

then we have

∇2φ− 4π
∑ (

nq2

T

)
φ = −4π

(
Qδ(r) +

∑
nq

)
. (1.4)

For a neutral plasma, the last term on the right side vanishes and we have

∇2φ−K2
Dφ = −4πQδ(r) (1.5)

whose solution is
φ = (Q/r)e−KDr (1.6)

with K2
D =

∑
(4πnq2/T ).

In place of the Coulomb potential Q/r which the test charge Q would produce in vac-
uum, we have the Debye potential which drops off exponentially in a distance K−1

D . The
physics involved is clear. The test charge repels (attracts) plasma particles of like (unlike)
sign, resulting in a neutralizing charge “cloud,” called the Debye cloud,whose dimension
increases with T since thermal effects tend to keep the density uniform. Both ions and elec-
trons contribute equally to the effect if Te = Ti. In general, it is convenient to define the
Debye wavenumber on a single species basis:

kD ≡
√

4πnq2/T . (1.7)

Its inverse
LD = k−1

D (1.8)

is the Debye length for that species. (Both rD and λD are used by some authors in place
of LD, but the second of these is ambiguous, since λ connotes wavelength and so λD might
reasonably be assumed to denote 2π/kD rather than k−1

D ). When Te = Ti, we have, of course,
KD =

√
2kD.
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We must now consider the validity of the approximation (1.3). We see from (1.6) that
in a literal sense (1.3) cannot hold, since φ → ∞ as r → 0. However, the region in which
(1.3) fails can be expected to make a small contribution to the charge density provided that
region is small compared to the Debye cloud, i.e., provided |qφ/T | ¿ 1 for r ∼ LD. This
will be true provided

q2kD/T =
(
k3

D/4πn
)

=
(
4πnL3

D

)−1 ¿ 1. (1.9)

This condition has a simple and very reasonable physical significance: the whole Debye
shielding picture makes sense only if there are many particles in the Debye cloud, i.e., if
nL3

D À 1. In fact, the dimensionless quantity nL3
D is of transcendental importance in

plasma physics. As in any many-body problem, development of a coherent theory is possible
only if there is some small parameter in terms of which a perturbation expansion can be
made. The plasma parameter

εp ≡
(
nL3

D

)−1
(1.10)

plays this role, and modern plasma theory is based on the assumption εp ¿ 1. We note that
εp orders the three basic length scales in an unmagnetized plasma, namely LD; LT = e2/T ,
the “distance of closest approach”; and Ln = n−1/3, the mean interparticle spacing

LT : Ln : LD = εp/4π : ε1/3
p : 1. (1.11)

Before leaving the subject of Debye shielding, we note that it is, of course, not restricted
to the simplest case—point test charge, neutral plasma—discussed here. In fact, so long as
the basic condition, εp ¿ 1, which justifies (1.3), is satisfied, we can generalize (1.4) to

∇2φ−K2
Dφ = −S(r) (1.12)

where S is a general source term, i.e., a superposition of external test charges plus terms
due to possible lack of plasma neutrality. The particular solution of (1.12),

φ(r) =
∫

dr′
e−KDR

4πR
S(r′), (1.13)

R = |r− r′| , (1.14)

shows how Debye shielding manifests itself for an arbitrary source term.

C. Plasma Oscillations

Debye shielding nicely illustrates the collective character of plasma phenomena, i.e., the
simultaneous interaction of many particles, but it involves thermal effects in an essential
way. Plasma oscillations are the simplest example of a collective phenomenon which can
occur even when thermal effects are neglected, although, as we shall see later, their effect can
be very important here also. We treat electrons as a simple fluid characterized by density
n(x, t) and velocity v(x, t), and linearize the equations in v and n1 = n − n0, where n0
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is the uniform density of background ions, whose motion we shall neglect. Then the usual
continuity equation,

∂n/∂t +∇ · (nv) = 0, (1.15)

becomes
∂n1/∂t + n0∇ · v = 0, (1.16)

while the momentum equation is just

∂v/∂t = −(e/m)E = (e/m)∇φ. (1.17)

Finally, Poisson’s equation gives
∇2φ = 4πen1. (1.18)

By taking the divergence of (1.17) and the time derivative of (1.16), we can eliminate v,
leaving

∂2n1/∂t2 = − (n0e/m)∇2φ = −
(
4πn0e

2/m
)
n1 (1.19)

so that n1, v and φ all oscillate at the plasma frequency,

ωp =
√

4πn0e2/m ≈ 6× 104√n0 s−1, (1.20)

where n0 is measured in cm−3. Again, this is a collective effect, no hint of which can be
gleaned from a single particle description. If we define the thermal velocity by a:

ma2/2 = T (1.21)

then we see that ωp, kD and a are related by

ωp = kDa/
√

2. (1.22)

A simple physical description of plasma oscillations, also called Langmuir oscillations,
can be given. If charge neutrality is violated in some portion of the plasma, owing, say, to
a deficiency of electrons, then the resulting electric field accelerates electrons from adjacent
regions to fill the deficit. Once charge neutrality is achieved, the field and consequent accel-
eration disappear, but inertia keeps the previously accelerated electrons in motion and soon
there is an excess of electrons where formerly there was a deficiency. Again, fields arise, this
time accelerating the electrons out of the region; there is once more an overshoot; and so the
oscillations continue, the frequency being just ωp.

D. The Saha Equation

We shall concentrate on the physics of either fully ionized plasmas or those for which the
processes of interest occur on a time scale short compared to ionization and recombination
times, but it is useful to know what combination of density and temperature give a substan-
tial degree of ionization. Conventional equilibrium statistical mechanics leads to the Saha
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equation, which we quote without proof:1 The densities of electrons, ions, and neutral atoms
for a monatomic system in equilibrium are related by:

neni

n0

= ge−I/T λ−3
e (1.23)

where I is the first ionization potential and λe is the electron de Broglie wavelength

λe =
√

h2/2πmT. (1.24)

(We have assumed T large enough so that the molecule is dissociated if it is diatomic, like
H2, and small enough so that multiple ionization can be neglected for heavier atoms, like
the rare gases.) The statistical factor g, is defined by

g = 2ZI/Z0 (1.25)

where ZI is the partition function for the ion,

ZI =
∑

j

e−Ej/T , (1.26)

the Ej being the energy levels of the ions, and Z0 is the atomic partition function,

Z0 =
∑

j

e−Wj/T , (1.27)

the Wj being the excitation energy levels of the atom measured from its ground state. Since
g is typically of order 1, the principal dependence on temperature comes through the factors
λ−3

e and exp(−I/T ) in (1.23). While (1.23) can be written in many forms, one of the most
useful is in terms of the degree of ionization

α ≡ ne

ne + n0

=
ne

n
. (1.28)

for a neutral plasma we have

α =

√
η2 + 4η − η

2
=

{ √
η η ¿ 1

1− η−1 η À 1
(1.29)

where

η = g
e−I/T

nλ3
e

(1.30)

depends only on density and temperature. In particular, we note that the ionization can be
substantial at low densities (nλ3

e ¿ 1) even if T < I.

1A simple but rigorous derivation is given in Chapter 3 of “Plasma Physics in Theory and Application,”
by Burton D. Fried, ed. by Wulf B. Kunkel, 1966.
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E. Plasma Beta

This section is taken from Chapter 3 of “Plasma Physics in Theory and Application,” by B.
D. Fried, ed. by Wulf B. Kunkel, 1966.

In the case of a plasma confined by a magnetic field, we should clearly abandon the single-
particle picture when the magnetic field Bi due to current flow within the plasma becomes
comparable with the external field B0. If v is a typical particle velocity and L a characteristic
distance for changes in B, then

Bi ∼ 4πnevL

c
≥ 4π

nev

c

cvm

eB0

, (1.31)

if we assume that L cannot be much smaller than the cyclotron radius, mvc/eB. (Here, e is
the electron charge, m the electron mass, c the speed of light, and n the electron density.)
Thus, replacing mv2/2 by kT , we have

Bi

B0

≥ nmv2/2

B2
0/8π

=
nkT

B2
0/8π

≡ β. (1.32)

The ratio β of thermal-energy density to magnetic-energy density (or of kinetic pressure to
magnetic pressure) is among the most important of the several dimensionless parameters
used to characterize a plasma. As we see here, the single-particle description may be ap-
propriate for the low-β plasmas found in such laboratory devices as the mirror machine or
stellarator but is not adequate to deal with the high-β plasmas observed in a pinch or in an
electromagnetic shock tube.

In general, we may expect the single-particle picture to fail whenever the internal fields,
magnetic or electric, become comparable with those imposed externally. Of course, the
dynamics of the many-body problem can always, in a sense, be reduced to that of a (rep-
resentative) single particle moving under the influence of fields (which must eventually by
determined in a self-consistent fashion) so that single-particle concepts such as guiding cen-
ter, E×B drift, mirror action, and the like, continue to have heuristic2 value even for high-β
plasmas.

The simplest, most thoroughly studied, and best-understood aspects of the plasma are,
naturally, those associated with the equilibrium state, which we shall consider first. We
shall then study small deviations from equilibrium, i.e., the kinetic theory of the plasma.
Finally, we shall discuss some features of the lowest approximation to the kinetic equations
for a plasma, that which neglects correlations between particles. Our aim throughout will
be to develop the basic equations, from which the various properties of a plasma needed for
applications can (and in subsequent chapters will) be derived.

2heuristic — adj., encouraging the student to discover for himself or herself
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