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Most of this book is devoted to the physical principles of energy produc-
tion by fusion reactions in an inertially confined medium. To begin with,
in this chapter we briefly discuss fusion reactions.

We first define fusion cross section and reactivity, and then present and
justify qualitatively the standard parametrization of these two important
quantities. Next, we consider a few important fusion reactions, and pro-
vide expressions, data, and graphs for the evaluation of their cross sections
and reactivities. These results will be used in the following chapters to
derive the basic requirements for fusion energy production, as well as to
study fusion ignition and burn in suitable inertially confined fuels.

In the last part of this chapter, we also briefly discuss how high material
density and spin polarization affect fusion reactivities. Finally, we outline
the principles of muon-catalysed fusion.
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2 1.1 Exothermic nuclear reactions: fission and fusion

1.1 Exothermic nuclear reactions: fission and fusion

According to Einstein’s mass–energy relationship, a nuclear reaction in
which the total mass of the final products is smaller than that of the
reacting nuclei is exothermic, that is, releases an energy

Q =
(∑

i

mi −
∑
f

mf

)
c2 1.1

proportional to such a mass difference. Here the symbolm denotes mass,
the subscripts i and f indicate, respectively, the initial and the final
products, and c is the speed of light. We can identify exothermic reactions
by considering the masses and the binding energies of each of the involved
nuclei. The massm of a nucleus with atomic numberZ and mass number
A differs from the sum of the masses of theZ protons andA−Z neutrons,
which build up the nucleus by a quantity

�m = Zmp + (A− Z)mn −m. 1.2

Heremp andmn are the mass of the proton and of the neutron, respectively.
For stable nuclei �m is positive, and one has to provide an amount of
energy equal to the binding energy

B = �mc2 1.3

in order to dissociate the nucleus into its component neutrons and protons.

Reaction Q

Nucleus binding energy

Q and binding energy

TheQ value of a nuclear reaction can then be written as the difference
between the final and the initial binding energies of the interacting nuclei:

Q =
∑
f

Bf −
∑
i

Bi . 1.4

Accurate data on nuclear masses and binding energies have been pub-
lished by Audi and Wapstra (1995). A particularly useful quantity is the
average binding energy per nucleon B/A, which is plotted in Fig. 1.1 as
a function of the mass number A. We see that B/A, which is zero for
A = 1, that is, for the hydrogen nucleus, grows rapidly with A, reaches
a broad maximum of 8.7 MeV about A = 56 and then decreases slightly.
For the heaviest nuclei B/A ∼= 7.5 MeV. Notice the particularly high
value of B/A for 4He nucleus (the α-particle). The symbols D and T
indicate, as usual, deuterium and tritium, that is, the hydrogen isotopes
with mass two and three, respectively. According to the above discussion,
exothermic reactions occur when the final reaction products have larger
B/A than the reacting nuclei. As indicated in Fig. 1.1, this occurs for
fission reactions, in which a heavy nucleus is split into lighter fragments,
and for fusion reactions, in which two light nuclei merge to form a heavier
nucleus.

Fission vs fusion
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Fig. 1.1 Binding energy per nucleon
versus mass number A, for the most stable
isobars. For A = 3 also the unstable tritium
is included, in view of its importance for
controlled fusion. Notice that the mass
number scale is logarithmic in the range
1–50 and linear in the range 50–250.
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1.2 Fusion reaction physics

In most fusion reactions two nuclei (X1 and X2) merge to form a heavier
nucleus (X3) and a lighter particle (X4). To express this, we shall use
either of the equivalent standard notations

X1 +X2 → X3 +X4, 1.5

or

X1(x2, x4)X3. 1.6

Due to conservation of energy and momentum, the energy released by the
reaction is distributed among the two fusion products in quantity inversely
proportional to their masses.

We indicate the velocities of the reacting nuclei in the laboratory
system with v1 and v2, respectively, and their relative velocity with
v = v1 − v2. The center-of-mass energy of the system of the reacting
nuclei is then

ε = 1
2mrv

2, 1.7

where v = |v|, and

mr = m1m2

m1 +m2
1.8

is the reduced mass of the system.

Cross section

1.2.1 Cross section, reactivity, and reaction rate

A most important quantity for the analysis of nuclear reactions is the
cross section, which measures the probability per pair of particles for the
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occurrence of the reaction. To be more specific, let us consider a uniform
beam of particles of type ‘1’, with velocity v1, interacting with a target
containing particles of type ‘2’ at rest. The cross section σ12(v1) is defined
as the number of reactions per target nucleus per unit time when the target
is hit by a unit flux of projectile particles, that is, by one particle per unit
target area per unit time. Actually, the above definition applies in general
to particles with relative velocity v, and is therefore symmetric in the two
particles, since we have σ12(v) = σ21(v).

Cross sections can also be expressed in terms of the centre-of-mass
energy 1.7, and we have σ12(ε) = σ21(ε). In most cases, however, the
cross sections are measured in experiments in which a beam of particles
with energy ε1, measured in the laboratory frame, hits a target at rest.
The corresponding beam-target cross-section σ bt

12(ε1) is related to the
centre-of-mass cross-section σ12(ε) by

σ12(ε) = σ bt
12(ε1), 1.9

with ε1 = ε · (m1 + m2)/m2. From now on, we shall refer to centre-of-
mass cross-sections and omit the indices 1 and 2.

If the target nuclei have density n2 and are at rest or all move with
the same velocity, and the relative velocity is the same for all pairs of
projectile–target nuclei, then the probability of reaction of nucleus ‘1’
per unit path is given by the product n2σ(v). The probability of reaction
per unit time is obtained by multiplying the probability per unit path times
the distance v travelled in the unit time, which gives n2σ(v)v.

Beam-target and centre-of-mass
cross section

Another important quantity is the reactivity, defined as the probability
of reaction per unit time per unit density of target nuclei. In the present
simple case, it is just given by the product σv. In general, target nuclei
move, so that the relative velocity v is different for each pair of interacting
nuclei. In this case, we compute an averaged reactivity

〈σv〉 =
∫ ∞

0
σ(v)vf (v) dv, 1.10

where f (v) is the distribution function of the relative velocities, normal-
ized in such a way that

∫∞
0 f (v) dv = 1. It is to be observed that when

projectile and target particles are of the same species, each reaction is
counted twice.

Averaged reactivity

Volumetric reaction rate

Both controlled fusion fuels and stellar media are usually mixtures
of elements where species ‘1’ and ‘2’, have number densities n1 and n2,
respectively. The volumetric reaction rate, that is, the number of reactions
per unit time and per unit volume is then given by

R12 = n1n2

1 + δ12
〈σv〉 = f1f2

1 + δ12
n2〈σv〉. 1.11

Heren is the total nuclei number density andf1 andf2 are the atomic frac-
tions of species ‘1’ and ‘2’, respectively. The Kronecker symbol δij (with
δij = 1, if i = j and δij = 0 elsewhere) is introduced to properly take
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into account the case of reactions between like particles. Equation 1.11
shows a very important feature for fusion energy research: the volumetric
reaction rate is proportional to the square of the density of the mixture.
For future reference, it is also useful to recast it in terms of the mass
density ρ of the reacting fuel

R12 = f1f2

1 + δ12

ρ2

m̄2
〈σv〉, 1.12

where m̄ is the average nuclear mass. Here, the mass density is computed
as ρ = ∑

j njmj = nm̄, where the sum is over all species, and the very
small contribution due to the electrons is neglected. We also immediately
see that the specific reaction rate, that is, the reaction rate per unit mass, is
proportional to the mass density, again indicating the role of the density
of the fuel in achieving efficient release of fusion energy.

The reaction rate is proportional
to the square of the density

1.2.2 Fusion cross section parametrization

In order to fuse, two positively charged nuclei must come into contact,
winning the repulsive Coulomb force. Such a situation is made evident by
the graph of the radial behaviour of the potential energy of a two nucleon
system, shown in Fig. 1.2. The potential is essentially Coulombian and
repulsive,

Vc(r) = Z1Z2e
2

r
, 1.13

at distances greater than

rn ∼= 1.44 × 10−13(A
1/3
1 + A

1/3
2 ) cm, 1.14

which is about the sum of the radii of the two nuclei. In the above equations
Z1 and Z2 are the atomic numbers, A1 and A2 the mass numbers of the

Fig. 1.2 Potential energy versus distance
between two charged nuclei approaching
each other with center-of-mass energy ε.
The figure shows the nuclear well, the
Coulomb barrier, and the classical turning
point.
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interacting nuclei, and e is the electron charge. At distances r < rn the
two nuclei feel the attractive nuclear force, characterized by a potential
well of depth U0 = 30– 40 MeV.

Coulomb barrier

Using eqns 1.13 and 1.14 we find that the height of the Coulomb barrier

Vb  Vc(rn) = Z1Z2

A
1/3
1 + A

1/3
2

MeV 1.15

is of the order of one million electron-volts (1 MeV). According to clas-
sical mechanics, only nuclei with energy exceeding such a value can
overcome the barrier and come into contact. Instead, two nuclei with
relative energy ε < Vb can only approach each other up to the classical
turning point

rtp = Z1Z2e
2

ε
. 1.16

Quantum mechanics, however, allows for tunnelling a potential barrier of
finite extension, thus making fusion reactions between nuclei with energy
smaller than the height of the barrier possible.

Fusion reactions rely
on tunnelling

Barrier transparency

A widely used parametrization of fusion reaction cross-sections is

σ ≈ σgeom × T × R, 1.17

where σgeom is a geometrical cross-section, T is the barrier transparency,
and R is the probability that nuclei come into contact fuse. The first
quantity is of the order of the square of the de-Broglie wavelength of the
system:

σgeom ≈ λ2 =
(

h̄

mrv

)2

∝ 1

ε
, 1.18

where h̄ is the reduced Planck constant and mr is the reduced mass 1.8.
Concerning the barrier transparency, we shall see that it is often well
approximated by

T ≈ TG = exp(−√εG/ε), 1.19

which is known as the Gamow factor (after the scientist who first
computed it), where

εG = (παfZ1Z2)
22mrc

2 = 986.1Z2
1Z

2
2Ar keV 1.20

is the Gamow energy, αf = e2/h̄c = 1/137.04 is the fine-structure
constant commonly used in quantum mechanics, and Ar = mr/mp.
Equation 1.19 holds as far as ε � εG, which sets no limitations to the
problems we are interested in. Equations 1.19 and 1.20 show that the
chance of tunnelling decreases rapidly with the atomic number and mass,
thus providing a first simple explanation for the fact that fusion reactions
of interest for energy production on earth only involve the lightest nuclei.

Gamow energy
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The reaction characteristics R contains essentially all the nuclear
physics of the specific reaction. It takes substantially different values
depending on the nature of the interaction characterizing the reaction. It
is largest for reactions due to strong nuclear interactions; it is smaller by
several orders of magnitude for electromagnetic nuclear interactions; it is
still smaller by as many as 20 orders of magnitude for weak interactions.
For most reactions, the variation of R(ε) is small compared to the strong
variation due to the Gamow factor.

Astrophysical S factor

In conclusion, the cross section is often written as

σ(ε) = S(ε)

ε
exp(−√εG/ε), 1.21

where the function S(ε) is called the astrophysical S factor, which for
many important reactions is a weakly varying function of the energy.

An excellent introduction to the computation of fusion cross-sections
and thermonuclear reaction rates can be found in the classical textbook on
stellar nucleosynthesis by Clayton (1983). Classic references on nuclear
physics are Blatt and Weisskopf (1953), Segrè (1964), and Burcham
(1973). In the following portion of this section, we outline the evaluation
of the fusion cross-section for non-resonant reactions, which justifies
the parametrization 1.21. The treatment is simplified and qualitative, but
still rather technical. The reader not interested in such details can skip
Section 1.2.3 without loss of the comprehension of the rest of the chapter.

Partial wave expansion

1.2.3 Penetration factors for non-resonant reactions

The total cross-section can be obtained as a sum over partial waves, that
is over the contributions of the different terms of an expansion of the
particle wave-function in the components of the angular momentum l.
We then write

σ(v) =
∑
l

σl(v), 1.22

Far from resonances the partial cross-section can be put in the form:

σl(v) ≈ 2πλ2(2l + 1)βlTl , 1.23

where βl is a function taking into account nuclear interactions and Tl is
the barrier transmission coefficient. This last factor, defined as the ratio
of particles entering the nucleus per unit time to the number of particles
incident on the barrier per unit time, can be written as

Tl ≈ Pl

(
1 + λ2

λ2
0

)−1/2

= Pl

(
1 + U0

ε

)−1/2

≈
(
ε

U0

)1/2

Pl , 1.24

that is, the product of the barrier penetration factor Pl , measuring the
probability that nucleus ‘2’ reaches the surface of nucleus ‘1’, and of
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a potential discontinuity factor, due to the difference between the wave-
length of the free nucleus and that of the compound nucleus in the nuclear
well λ0 = h̄/(2mrU0)

1/2. According to quantum mechanics, the bar-
rier penetration factors Pl are computed by solving the time-independent
Schroedinger equation

h̄2

2mr
∇2ψ + (ε − Vc)ψ = 0 1.25

for the wavefunction ψ(r) describing the relative motion of the two
interacting nucleons in a Coulomb potential extending from r = 0 to
infinity. As usual for problems characterized by a central potential, we
separate radial and angular variables, that is, we write ψ(r , θ ,φ) =
Y (θ ,φ)χ(r)/r . We then expand the function χ(r) into angular mom-
entum components, χl(r), each satisfying the equation

d2

dr2
χl(r)+ 2mr

h̄2 [ε −Wl(r)]χl(r) = 0, 1.26

where

Wl(r) = Vc(r)+ h̄2l(l + 1)

2mrr2
1.27

takes the role of an effective potential for the lth component. This last
equation shows that each angular momentum component sees an effective
potential barrier of height increasing with l. We therefore expect the l = 0
component (S-wave) to dominate the cross section, in particular for light
elements. An exception will occur for reactions in which the compound
nucleus, formed when the two nuclei come into contact, has forbidden
l = 0 levels. This latter case, however, does not occur for any reaction of
relevance to controlled fusion.

Potential for l -th wave

Once the solution χl(r) of eqn 1.26 is known, the penetration factor
for particles with angular momentum l is given by

Pl = χ∗
l (rn)χl(rn)

χ∗
l (∞)χl(∞)

. 1.28

Penetration factors from
WKB method

Exact computations of the wavefunctions χl(r) are feasible, but
involved (Bloch et al. 1951). However, much simpler and yet accu-
rate evaluations of the penetration factors can be performed by means
of WKB method (after the initials of Wentzel, Kramers, and Brillouin),
discussed in detail in standard books on quantum mechanics (Landau
and Lifshitz 1965; Messiah 1999) or mathematical physics (Matthews
and Walker 1970). A pedagogical application to the computation of
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penetration factors is presented by Clayton (1983). Here it suffices to
say that application of the method leads to

Pl =
[
Wl(rn)− ε

ε

]1/2

exp(−Gl), 1.29

with the dominant exponential factor given by

Gl = 2
(2mr)

1/2

h̄

∫ rtp(ε)

rn

[Wl(r)− ε]1/2 dr , 1.30

where rtp is the turning point distance 1.16. For l = 0, using eqn 1.27 for
Wl(r), we get

G0 = 2

π

√
εG

ε

[
arccos

√
rn

rtp
−
√
rn

rtp

√
1 − rn

rtp

]
. 1.31

Since for eqns 1.15 and 1.16, rn/rtp(ε) = ε/Vb, and in the cases of interest
ε�Vb, we can expand the right-hand side of eqn 1.31 in powers of
(ε/Vb), thus obtaining

G0 =
√
εG

ε

[
1 − 4

π

(
ε

Vb

)1/2

+ 2

3π

(
ε

Vb

)3/2

+ · · ·
]

. 1.32

In the low energy limit, we have G0  (εG/ε)
1/2, and the S-wave

penetration factor becomes

P0 
(
Vb

ε

)1/2

exp

(
−
√
εG

ε

)
. 1.33

Penetration factors for l > 0 are approximately given by

Pl = P0 exp

[
−2l(l + 1)

(
Vl

Vb

)1/2
]

= P0 exp
[
−7.62l(l + 1)/(ArrnfZ1Z2)

1/2
]

, 1.34
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where rnf is the nuclear radius in units of 1 fermi = 10−15 cm.
Equation 1.34 confirms that angular momentum components with l > 0
have penetration factors much smaller than the l = 0 component. This
allows us to keep the S-wave term only in the cross-section expan-
sion 1.22, which leads us to evaluate the barrier transparency and the
cross section as

T  T0 =
(
Vb

U0

)1/2

exp

(
−
√
εG

ε

)
1.35

and

σ(ε)  σl=0(ε) 
[
π
h̄2

mr
βl=0

(
Vb

U0

)1/2
]

exp(−√
εG/ε)

ε
, 1.36

respectively. Equation 1.36 for the cross section has the same form as the
parametrization 1.21, with the term in square brackets corresponding to
the astrophysical S-factor.

S -wave cross section

Another form of eqn 1.35, which will turn useful later, is

T =
(
Vb

U0

)1/2

exp

[
−π

(
rtp

a∗
B

)1/2
]

, 1.37

where

a∗
B = h̄2/(2mrZ1Z2e

2) 1.38

may be looked at as a nuclear Bohr radius.

1.3 Some important fusion reactions

In Table 1.1 we list some fusion reactions of interest to controlled fusion
research and to astrophysics. For each reaction the table gives theQ-value,
the zero-energy astrophysical factor S(0) and the square root of the
Gamow energy εG. For the cases in which S(ε) is weakly varying these
data allow for relatively accurate evaluation of the cross section, using
eqn 1.21, with S = S(0).

For some of the main reactions, Table 1.2 gives the measured cross-
sections at ε = 10 keV and ε = 100 keV, as well as the maximum value
of the cross-section σmax, and the energy εmax at which the maximum
occurs. Also shown, in parentheses, are theoretical data for the pp and
CC reactions. In the tables and in the following discussion, the reactions
are grouped according to the field of interest.

A large and continuously updated database on fusion reactions, quot-
ing original references for all included data, has been produced and is
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Table 1.1 Some important fusion reactions and parameters of the cross-section factoriza-
tion 1.21.

Q

(MeV)
〈Qν〉
(MeV)

S(0)
(keV barn)

ε
1/2
G
(keV1/2)

Main controlled fusion fuels
D + T → α + n 17.59 1.2 × 104 34.38

D + D →



T + p
3He + n
α + γ

4.04
3.27

23.85

56
54
4.2 × 10−3

31.40
31.40
31.40

T + T → α + 2n 11.33 138 38.45

Advanced fusion fuels
D + 3He → α + p 18.35 5.9 × 103 68.75
p + 6Li → α + 3He 4.02 5.5 × 103 87.20
p + 7Li → 2α 17.35 80 88.11
p + 11B → 3α 8.68 2 × 105 150.3

The p–p cycle
p + p → D + e+ + ν 1.44 0.27 4.0 × 10−22 22.20
D + p →3 He + γ 5.49 2.5 × 10−4 25.64
3He + 3He → α + 2p 12.86 5.4 × 103 153.8

CNO cycle
p +12C → 13N + γ 1.94 1.34 181.0[

13N → 13C + e+ + ν + γ
]

2.22 0.71 — —
p +13C →14 N + γ 7.55 7.6 181.5
p +14N →15 O + γ 7.29 3.5 212.3[

15O →15 N + e+ + ν + γ
]

2.76 1.00 — —
p + 15N →12 C + α 4.97 6.75 × 104 212.8

Carbon burn

12C +12C →



23 Na + p
20 Na + α
24 Mg + γ

2.24
4.62

13.93
8.83 × 1019 2769

TheQ value includes both positron disintegration energy and neutrino energy, when relevant. The quantity 〈Qν〉 is
the average neutrino energy. As usual in nuclear physics, cross sections are expressed in barn; 1 barn = 10−24 cm2.

updated by the NACRE (Nuclear Astrophysics Compilation of REaction
rates) group (Angulo et al. 1999) and can also be accessed through the
internet.1 Standard references for fusion reaction rates are a compilation1 See the url address

http://pntpm.ulb.ac.be/nacre.htm of data by Fowler et al. (1967) and its subsequent updates (Fowler et al.
1975; Harris et al. 1983). Data on many fusion reactions of astrophysical
relevance have been recently reviewed by Adelberger et al. (1998). Data
on the DD, DT, and D 3He reactions have been critically reviewed by
Bosch and Hale (1992); the most recent reference on p 11B is Nevins and
Swain (2000). An interesting list of thermonuclear reactions has also been
published by Cox et al. (1990). Graphs of the cross section of reactions
of interest to fusion energy versus center-of-mass energy are shown in
Fig. 1.3.
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Table 1.2 Fusion reactions: cross sections at centre-of-mass energy of 10 keV and
100 keV, maximum cross-section σmax and location of the maximum εmax. Values
in parentheses are estimated theoretically; all others are measured data.

Reaction σ (10 keV)
(barn)

σ (100 keV)
(barn)

σmax

(barn)
εmax

(keV)

D + T → α + n 2.72 × 10−2 3.43 5.0 64
D + D → T + p 2.81 × 10−4 3.3 × 10−2 0.096 1250
D + D → 3He + n 2.78 × 10−4 3.7 × 10−2 0.11 1750
T + T → α + 2n 7.90 × 10−4 3.4 × 10−2 0.16 1000

D + 3He → α + p 2.2 × 10−7 0.1 0.9 250
p + 6Li → α + 3He 6 × 10−10 7 × 10−3 0.22 1500
p + 11B → 3α (4.6 × 10−17) 3 × 10−4 1.2 550

p + p → D + e+ + ν (3.6 × 10−26) (4.4 × 10−25)

p + 12C → 13N + γ (1.9 × 10−26) 2.0 × 10−10 1.0 × 10−4 400
12C + 12C (all branches) (5.0 × 10−103)

Fig. 1.3 Fusion cross sections versus
centre-of-mass energy for reactions of
interest to controlled fusion energy. The
curve labelled DD represents the sum of
the cross sections of the various branches
of the reaction. Centre-of-mass kinetic energy (keV)
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1.3.1 Main controlled fusion fuels

First, we consider the reactions between the hydrogen isotopes deuterium
and tritium, which are most important for controlled fusion research. Due
to Z = 1, these hydrogen reactions have relatively small values of εG

and hence relatively large tunnel penetrability. They also have a relatively
large S.
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The DT reaction

D + T → α (3.5 MeV)+ n (14.1 MeV) 1.39

has the largest cross-section, which reaches its maximum (about 5 barn)
at the relatively modest energy of 64 keV (see Fig. 1.3). Its QDT =
17.6 MeV is the largest of this family of reactions. It is to be observed
that the cross section of this reaction is characterized by a broad resonance
for the formation of the compound 5He nucleus at ε ∼= 64 keV. Therefore,
the astrophysical factor S exhibits a large variation in the energy interval
of interest.

DT reaction

DD reactions

The DD reactions

D + D → T (1.01 MeV)+ p (3.03 MeV), 1.40

D + D → 3He (0.82 MeV)+ n (2.45 MeV) 1.41

are nearly equiprobable. In the 10–100 keV energy interval, the cross
sections for each of them are about 100 times smaller than for DT. The
reaction D(d, γ )4He, instead has cross section about 10,000 times smaller
than that of 1.40 and 1.41.

The TT reaction

T + T → α + 2n + 11.3 MeV, 1.42

has cross section comparable to that of DD. Notice that since the reac-
tion has three products, the energies associated to each of them are not
uniquely determined by conservation laws.

TT reaction

p 11B reaction

1.3.2 Advanced fusion fuels

Next, we consider reactions between hydrogen isotopes and light nuclei
(Helium, Lithium, Boron). In the context of controlled fusion research
mixtures of hydrogen and such elements are called advanced fusion fuels
(Dawson 1981). For this group of reactions the Gamow energy is higher
than for the previous group, leading to smaller cross-sections at relatively
low energy. At high energy the cross sections are intermediate between
that of DD and that of DT.

The proton–boron reaction

p + 11B → 3α + 8.6 MeV, 1.43

is particularly interesting, because it does not involve any radioactive
fuel, and only releases charged particles. Its cross section exhibits
a very narrow resonance at ε = 148 keV, where the S factor peaks
at 3500 MeV·barn and a broader resonance at ε = 580 keV, where
S ≈ 380 MeV·barn.

The D 3He reaction also does not involve radioactive fuel and does
not release neutrons, but a D 3He fuel would anyhow produce tritium and
emit neutrons due to unavoidable DD reactions.



Atzeni: “chap01” — 2004/4/29 — page 14 — #14

14 1.4 Maxwell-averaged fusion reactivities

1.3.3 p–p cycle

Reactions involved in the p–p cycle, the main source of energy in the Sun,
are of fundamental importance in astrophysics. The first two reactions of
the cycle, the pp reaction and the pD reaction have the lowest Gamow
energy εG of all fusion reactions, but their cross sections are much smaller
than those of the previous reactions. Indeed, the pp reaction involves a low
probability beta-decay, resulting in a value of S about 25 orders of mag-
nitude smaller than that of the DT reaction. The pD reaction involves an
electromagnetic transition, which is much more probable than pp, but still
much less probable than reactions 1.39–1.43 based on strong interaction.

1.3.4 CNO cycle

Next, Table 1.1 considers the reactions of the CNO cycle, the other main
cycle responsible for energy production and hydrogen burning in stars.
Here the S factors are not very small, but the Gamow energy takes values
close to 40 MeV, thus resulting in cross sections smaller than those of
the p–p cycle at relatively low temperatures. Indeed the p–p chain dom-
inates in the Sun, which has central temperature of 1.3 keV (see Bahcall
et al. 2001). The CNO cycle, instead, prevails over the p–p cycle at
temperatures larger than about 1.5 keV.

1.3.5 CC reactions

Finally, Table 1.1 lists data for the reactions between 12C nuclei. Such
nuclei are the main constituents of some white dwarfs. It is seen that the
S factor is very large, but even at an energy of 100 keV the cross section is
below 10−100 cm2, due to the extremely high Coulomb barrier. We shall
see in Section 1.5.3 that CC reactions become in fact possible in white
dwarfs at densities above 109 g/cm3.

1.4 Maxwell-averaged fusion reactivities

As we have seen earlier, the effectiveness of a fusion fuel is character-
ized by its reactivity 〈σv〉. Both in controlled fusion and in astrophysics
we usually deal with mixtures of nuclei of different species, in thermal
equilibrium, characterized by Maxwellian velocity distributions

fj (vj ) =
(

mj

2πkBT

)3/2

exp

(
−mjv

2
j

2kBT

)
, 1.44

where the subscript j labels the species, T is the temperature and kB is
Boltzmann constant. The expression for the average reactivity 1.10 can
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now be written as

〈σv〉 =
∫∫

dv1 dv2 σ1,2(v)vf1(v1), 1.45

where v = |v1−v2| and the integrals are taken over the three-dimensional
velocity space. In order to put eqn 1.45 in a form suitable for integration,
we express the velocities v1 and v2 by means of the relative velocity and
of the center-of-mass velocity vc = (m1v1 +m2v2)/(m1 +m2):

v1 = vc + vm2/(m1 +m2); 1.46

v2 = vc − vm1/(m1 +m2). 1.47

Equation 1.45 then becomes

〈σv〉 = (m1m2)
3/2

(2πkBT )3

×
∫∫

dv1 dv2 exp

(
− (m1 +m2)v2

c

2kBT
− mrv

2

2kBT

)
σ(v)v, 1.48

wheremr is the reduced mass defined by eqn 1.8, and the subscripts ‘1,2’
have been omitted. It can be shown (see, for example, Clayton 1983) that
the integral over dv1 dv2 can be replaced by an integral over dvc dv, so
that we can write

〈σv〉 =
[(

m1 +m2

2πkBT

)3/2 ∫
dvc exp

(
− (m1 +m2)

2kBT
v2

c

)]

×
(

mr

2πkBT

)3/2 ∫
dv exp

(
− mr

2kBT
v2
)
σ(v)v. 1.49

The term in square brackets is unity, being the integral of a normalized
Maxwellian, and we are left with the integral over the relative velocity.
By writing the volume element in velocity space as dv = 4πv2 dv, and
using the definition 1.7 of center-of-mass energy ε, we finally get

〈σv〉 = 4π

(2πmr)1/2

1

(kBT )3/2

∫ ∞

0
σ(ε) ε exp(−ε/kBT )dε. 1.50

1.4.1 Gamow form for non-resonant reactions

Useful and enlightening analytical expressions of the reactivity can be
obtained by using the simple parametrization 1.21 of the cross-section.
In this case the integrand of eqn 1.50 becomes

y(ε) = S(ε) exp

[
−
(εG

ε

)1/2 − ε

kBT

]
= S(ε)g(ε, kBT ). 1.51

An interesting result is obtained for temperatures T � εG and stems from
the fact that the function g(ε, kBT ) is the product of a decreasing expon-
ential coming from the Maxwellian times an increasing one originating
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Fig. 1.4 Gamow peak for DD reactions
at T = 10 keV: most of the reactivity
comes from reaction between nuclei
with center-of-mass energy between
15 and 60 keV.
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from the barrier penetrability, as shown in Fig. 1.4. It has a maximum at
the Gamow peak energy

εGp =
(

εG

4kBT

)1/3

kBT = ξkBT , 1.52

where, for eqn 1.20,

ξ = 6.2696(Z1Z2)
2/3A

1/3
r T −1/3, 1.53

with the temperature in kiloelectron volt. To perform the integration we
use the saddle-point method, that is, we first expand y(ε) in Taylor series
around ε = εGp, thus writing

y(ε) ∼= S(ε) exp

[
−3ξ +

(
ε − εGp

�/2

)2
]

, 1.54

with

� = 4√
3
ξ1/2kBT . 1.55

Equation 1.54 shows that most of the contribution to the reactivity comes
from a relatively narrow energy region with width � centered around
ε = εGp, in the high energy portion of the velocity distribution function
(see Fig. 1.4)

Gamow peak

Gamow reactivity

Using eqns 1.51–1.55 and with the further assumption of non-
exponential behaviour of S(ε) we can integrate eqn 1.49 to get the
reaction rate in the so-called Gamow form

〈σv〉 = 8

π
√

3

h̄

mrZ1Z2e2
S̄ξ2 exp(−3ξ). 1.56

Here, we have used
∫∞

0 exp(−x2) dx = √
π/2, and indicated with S̄ an

appropriately averaged value ofS. In the cases in whichS depends weakly
on ε, one can simply set S̄ = S(0). In the following, when distinguishing



Atzeni: “chap01” — 2004/4/29 — page 17 — #17

1.4 Maxwell-averaged fusion reactivities 17

between S̄ and S(0) is not essential, we shall simply use the symbol S.
Improved approximations, taking into account the dependence of S on ε
are discussed by Clayton (1983) and Bahcall (1966). Inserting the values
of the numerical constants eqn 1.56 becomes

〈σv〉 = 6.4 × 10−18

ArZ1Z2
Sξ2 exp(−3ξ) cm3/s, 1.57

where S is in units of kiloelectron volt barn and ξ is given by eqn 1.53.
We remark that the Gamow form is appropriate for reactions which do
not exhibit resonances in the relevant energy range. In particular, it is a
good approximation for the DD reactivity, while it is not adequate for the
DT and D 3He reactions.

Equation 1.57 can be used to appreciate the low-temperature behaviour
of the reactivity. By differentiation we get

d〈σv〉
〈σv〉 = −2

3
+ ξ

dT

T
, 1.58

which leads to

〈σv〉 ∝ T ξ 1.59

when ξ � 1. A strong temperature dependence is then found when
T � 6.27Z2

1Z
2
2Ar, making apparent the existence of temperature thresh-

olds for fusion burn, which are increasing functions of the mass of the
participating nuclei.

Breit-Wigner cross section

1.4.2 Reactivity of resonant reactions

When a reaction exhibits a resonance in the energy interval of interest, the
astrophysical S factor appearing in the parametrization 1.21 is a strongly
varying factor of energy. As a consequence, the reactivity cannot be
expressed in the Gamow form 1.56. For a reaction with a single resonance
at energy εr we can instead use the Breit–Wigner form of the cross section
(see, for example, Segrè 1964, Chapter 11; Burcham 1973, Chapter 15;
Blatt and Weisskopf 1953, Chapter VIII)

σ ∝ λ2 6a6b

(ε − εr)2 + (6/2)2
, 1.60

where 6 is the width of the resonance and 6a and 6b are the so-called
partial widths for the input and the output reaction channels. When 6 is
sufficiently small, the cross section takes large values in a narrow energy
range centered around ε = εr. In this interval the channel widths can
be taken as constants. The relevant Maxwellian reactivity can then be
simply evaluated by assuming that only nuclei with energy falling in the
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resonance peak contribute to it. We thus have

〈σv〉  σ(εr)f (εr)vr
6

2
∝ T −3/2 exp

(
−εr

T

)
, 1.61

where f (v) is the relevant Maxwellian velocity distribution function and
vr = (2εr/mr)

1/2.

1.4.3 Reactivities for controlled fusion fuels

Curves of the reactivity as a function of the temperature, obtained by
numerical integration of eqn 1.49 with the best available cross-sections,
are shown in Fig. 1.5 for the reactions of interest to controlled fusion.
We see that the DT reaction has the largest reactivity in the whole temper-
ature interval below 400 keV. The DT reactivity has a broad maximum
at about 64 keV; it is 100 times larger than that of any other reaction
at 10–20 keV and 10 times larger at 50 keV. The second most prob-
able reaction is DD at temperatures T < 25 keV, while it is D 3He for
25 < T < 250 keV. The reactivity of p 11B equals that of D 3He at tem-
perature about 250 keV and that of DT at about 400 keV. At such very high
temperatures other reactions (such as T 3He, p 9Be, D 6Li) have reactivity
comparable to that of p 11B, but they are less interesting for controlled
fusion because the fuels involved either contain rare isotopes or generate
radioactivity (Dawson 1981).

DT has the largest reactivity

In the range of temperatures 1–100 keV the reactivity of the DT,
DD, and D 3He reactions are accurately fitted by the functional form

Fig. 1.5 Maxwell-averaged reaction
reactivity versus temperature for reactions
of interest to controlled fusion.
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(Bosch and Hale 1992)

〈σv〉 = C1ζ
−5/6ξ2 exp(−3ζ 1/3ξ) 1.62

where

ζ = 1 − C2T + C4T
2 + C6T

3

1 + C3T + C5T 2 + C7T 3
1.63

and ξ is given by eqn 8.97, which can be written as

ξ = C0/T
1/3. 1.64

It is seen that the Gamow form 1.57 is recovered as the temperature
T → 0, and then ζ → 1. At high temperatures the assumed functional
form allows for including reactions occurring in the wing of a resonance.
The values of the constant C0 and of the fit coefficients C1–C7 appearing
in eqns 1.62–1.64 are listed in Table 1.3. The table also gives estimated
errors of the fit.

Accurate reactivity fit

The reactivity of the p 11B reaction, instead, is well fitted by the
expression (Nevins and Swain 2000)

〈σv〉pB = C1ζ
−5/6ξ2 exp(−3ζ 1/3ξ)+ 5.41 × 10−15T −3/2

× exp(−148/T ) cm3/s, 1.65

with ζ still given by eqn 1.63, and the values of the coefficients C0–C7

listed in Table 1.3. The second term on the right-hand side of eqn 1.65
accounts for the previously mentioned narrow resonance at 148 keV, and
has the functional form 1.61. In eqn 1.65 and in the following eqns 1.66–
1.71 the temperature T is in units of kiloelectron volt.

Table 1.3 Parameters for the reactivity fit, eqns 1.62–1.65; here energies and temperatures are in
keV, and the reactivity in cm3/s. The compact notation A(b, c)D used here stands, as usual, for
A+ B → C +D.

Reaction T(d, n)α D(d, p)T D(d, n)3He 3He(d, p)α 11B(p,α)2α
Fit (eqn number) 1.62 1.62 1.62 1.62 1.65

C0 keV1/3 6.6610 6.2696 6.2696 10.572 17.708
C1 × 1016 cm3/s 643.41 3.7212 3.5741 151.16 6382
C2 × 103 keV−1 15.136 3.4127 5.8577 6.4192 −59.357
C3 × 103 keV−1 75.189 1.9917 7.6822 −2.0290 201.65
C4 × 103 keV−2 4.6064 0 0 −0.019108 1.0404
C5 × 103 keV−2 13.500 0.010506 −0.002964 0.13578 2.7621
C6 × 103 keV−3 −0.10675 0 0 0 −0.0091653
C7 × 103 keV−3 0.01366 0 0 0 0.00098305

T range keV 0.2–100 0.2–100 0.2–100 0.5–190 50–500
Error <0.25% <0.35% <0.3% <2.5% <1.5%
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Simpler formulas are useful for rapid evaluations. For the DT reaction,
which is by far the most important one for present fusion research, the
expression (Hively 1983)

〈σv〉DT = 9.10 × 10−16 exp

(
−0.572

∣∣∣∣ln T

64.2

∣∣∣∣
2.13
)

cm3/s, 1.66

is 10% accurate in the range 3–100 keV, and 20% accurate in the range
0.3–3 keV. Power law expressions can be useful in analytic studies.
In particular, in the temperature range 8–25 keV the DT reactivity is
approximated to within 15% by

〈σv〉DT = 1.1 × 10−18 T 2 cm3/s. 1.67

Useful reactivity expressions

For the two main branches of the DD reaction good approximations
are provided by slightly modified Gamow expressions (Hively 1977):

〈σv〉DDp = 2×10−14 1 + 0.00577T 0.949

T 2/3
exp

(
−19.31

T 1/3

)
cm3/s 1.68

and

〈σv〉DDn = 2.72 × 10−14 1 + 0.00539T 0.917

T 2/3
exp

(
−19.80

T 1/3

)
cm3/s.

1.69

Here the subscripts DDp and DDn indicate the reaction branches 1.40
and 1.41, releasing a proton and a neutron, respectively. Equations 1.68
and 1.69 are about 10% accurate in the temperature range 3–100 keV.

For the D 3He reactions one can use the expression (Hively 1983)

〈σv〉D3He = 4.98 × 10−16 exp

(
−0.152

∣∣∣∣ln T

802.6

∣∣∣∣
2.65
)

cm3/s,

1.70

which is 10% accurate for temperatures in the range 0.5–100 keV.
It is interesting to compare the above reactivities to that of the pp

reaction (Angulo et al. 1999)

〈σv〉pp =1.56 × 10−37T −2/3 exp

(
−14.94

T 1/3

)

× (1 + 0.044T + 2.03 × 10−4T 2 + 5 × 10−7T 3) cm3/s.
1.71

We immediately find that the pp reactivity is 24–25 orders of magnitude
smaller than that of DT at temperatures of 1–10 keV. It may be surprising
to observe that the specific power of fusion reactions at the center of the
Sun takes the very small value of 0.018 W/kg, that is, about 1/50 the
metabolic heat of the human body!
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1.5 Fusion reactivity in very high density matter

The previous evaluations of the reactivity assume free ions, with
Maxwellian velocity distribution function, and neglect any effect due to
the plasma electrons. The reactivities are then only functions of the
temperature, and the volumetric reaction rates are proportional to the
reactivity times the density squared. In practice this proves adequate for
laboratory plasmas. However, other situations occur in nature, or may
perhaps even be produced in the laboratory, where high density effects
should be taken into account. In this section we give a brief account of
the problem; the reader interested in a thorough treatment is referred to
specialized texts such as a recent book by Ichimaru (1994).

We have seen in the previous section that when the reacting nuclei have
Maxwell distribution with 0.1 ≥ T ≥ 100 keV, then most of the reac-
tivity comes from hot nuclei with energy ε ≈ εGp � kBT . This justifies
the usual name of thermonuclear reactions. In a low density plasma the
thermal energy kBT , in turn, exceeds by far the average potential energy,
a typical value for which can be Vc0 = Vc(a), that is, the potential at
a distance equal to the average interparticle distance a. In terms of the
so-called plasma parameter 6 = Ze2/akBT the results of the previous
section apply when

6 � 1 � εGp/kBT . 1.72

Thermonuclear reactions

Plasma parameter

Pycnonuclear reactions

At high densities or, more properly, as6 becomes comparable to unity,
nuclear charge screening by the electrons and ion correlation become
important. Anyhow, as far as εGp � Vc0, the reactivity will still be dom-
inated by the tail of the ion distribution (i.e. by the hottest ions), and we
can still speak of thermonuclear fusion. We show below that such pro-
cesses result in small corrections to the pp reactivity in the sun, and in
practically negligible effects for laboratory inertially confined fuels. In
some strongly correlated plasmas the corrections can be large, but apply
to vanishingly small reactivities, so that fusion will not occur anyhow.

A new situation, instead, occurs when the density is so large that not
only 6 � 1, but also the average potential energy exceeds the Gamow
peak energy: now the thermal motion is no more responsible for the
majority of the reactions, and the reactivity depends on the density only.
For such a regime Cameron (1959) coined the word pycnonuclear fusion
(from the Greek πυκνoσ meaning dense).

An extreme pycnonuclear regime is predicted to occur in crystalline
solids at very low temperature, where the ions, frozen in the lattice,
perform zero-point quantum mechanical oscillations around their equi-
librium position. Pycnonuclear regimes are held responsible for Carbon
combustion in highly compressed white-dwarf stars.
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In the next subsections, we summarize the main results of detailed
treatments concerning weakly electron screened plasma (6 < 1; εGp �
Vc0), strongly coupled plasma (1 < 6 < 170; εGp > Vc0), and crystalline
lattice (6 > 170), respectively. The regions in the density–temperature
plane, corresponding to the above cases are shown in Fig. 1.6 for hydrogen
and carbon plasmas. There, conditions representative of inertial con-
finement fusion (ICF) fuels, sun interior, white dwarfs, brown dwarfs,
and giant planets are also indicated. It is apparent that the interior of
the Sun and ICF plasmas are only marginally related to dense plasma
effects, which can instead be important for planetary interiors and white
dwarfs.

In this section, we deal with the so-called static screening, that is, the
screening computed considering test particles with energy equal to the
mean ion energy kBT . For completeness, we mention that some authors
have studied possible dynamic screening effects, that is, effects related to
a difference between the potential felt by a test particle with energy about
the Gamow energy, and the potential felt by a plasma ion, in statistical
equilibrium, with the same kinetic energy. The issue of the relevance of
dynamical effects is still debated; see, for example, the recent reviews by
Brown and Sawyer (1997) and Shaviv and Shaviv (1999).
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Fig. 1.6 Regions in the density–
temperature plane where strong coupling
and high density effects occur, for
(a) hydrogen and (b) carbon. Points
representing inertially confined burning
DT plasmas (ICF), the center of the Sun,
the centre of Jovian planets (JP), brown
dwarfs (BD), and white dwarfs (WD) are
also shown.

1.5.1 Electron screened, weakly coupled plasmas

According to the classical theory of plasmas, which applies for 6 � 1,
each particle only feels the effect of the particles at a distance smaller
than the Debye length λD (see Section 11.1), while on longer scales the
plasma is quasi-neutral. A good approximation to the potential energy of
a nucleus at distance r from another nucleus is given by

Veff(r) = Vc(r) exp(−r/λD), 1.73

where the factor exp (−r/λD) accounts for the screening effects of the
electrons. The effective potential barrier to be tunnelled in a fusion
reaction can then be approximated as

V (r) = Z1Z2e
2

r
exp(−r/λD) ≈ Z1Z2e

2

r
− Z1Z2e

2

λD
= Vc(r)− εs ,

1.74

where εs =Z1Z2e
2/λD. By using the WKB approximation (see

Section 1.2.3) we find that the barrier transparency takes the same form
as eqn 1.35, once the energy ε is replaced by ε′ = ε + εs . Consequently,
the energy of the Gamow peak shifts to a smaller value εGps = εGp − εs ;
the width of the Gamow peak is left unchanged, while the maximum of the
integrand in eqn 1.51 increases by a factor exp(εs/kBT )= exp(

√
363/2

e ),
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where 6e =Vc(ae)/kBT is the plasma parameter at the average inter-
electron distance. The reaction rate can then be written as

〈σv〉es ≈Ase〈σv〉 ∼= (1 + √
363/2

e )〈σv〉, 1.75

where 〈σv〉 is the value computed by neglecting any screening, and
Ase the reactivity amplification factor due to the electron screening
(Salpeter 1954). A comparable effect is also due to ion correlation
(Ichimaru 1994). We now use the above result to evaluate the electron
screening corrections in two interesting cases. At the center of the Sun
ρ ≈ 130 g/cm3, T = 1.5 keV, and then Ase = 1.014. In a deuterium–
tritium ICF plasma at ignition, ρ ≈ 100 g/cm3, T = 5 keV, and then
Ase = 1.002.

Screening marginal for Sun and ICF

1.5.2 Strongly coupled plasma

As 6 approaches unity or becomes even larger than unity, the screened
field observed by a nucleus is no more approximated by eqn 1.73; in addi-
tion, ion correlation becomes important. The accurate treatment requires
using advanced statistical plasma theory (Ichimaru 1994). On a simple
heuristic basis, confirmed by the appropriate calculations, we can still
approximate electron screening by an expression of the same form as
eqn 1.73, and replace the Debye length with the interparticle distance a.
Under the condition εGp > kBT , we get a correction Ase to the reactivity
due to electron screening, of the order of Ase ≈ exp6e. An analogous,
and usually numerically comparable, correction is due to ion screening.
Also ion correlation results in increased reactivities, by a factor roughly
estimated as Ai = exp (6i), where 6i is the plasma parameter at the
average inter-ion distance.

The corrections to the reactivities just discussed are large, but concern
plasmas at low temperature, sinceT (keV) 0.02Z1Z2[ρ(g/cm3)]1/3/6i.
Therefore they only affect reactivities, which are too small to be of
any practical interest both to fusion research and to astrophysics or
geophysics.

1.5.3 Crystalline solids: pycnonuclear limit

When 6i > 170, each ion is frozen in a crystalline lattice and oscillates
with frequency ω around its equilibrium position. A limiting case occurs
when the energy ε0 = (4πniZ

2e2/3mi)
1/2 of the ground state of such

quantum-mechanical oscillators exceeds considerably the ion thermal
energy (i.e. when Y = ε0/kBT > 20), here Z, mi , and ni are,
respectively, the ion charge, mass, and number density. In this case,
each nucleus only performs small amplitude oscillations proportional
to the interparticle distance a ∝ ρ−1/3, and can only interact with
the nuclei in the neighbouring lattice position; according to eqn 1.37,
the dominating exponential factor in the barrier transparency scales
as G ∝ r

1/2
tp ∝ a1/2 ∝ ρ−1/6. The transparency is then proportional
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to exp(−ρ1/6), without any dependence on temperature. Accurate
computations of the CC reactivity at 6i > 170 and Y > 20 confirm this
behaviour, giving the result 〈σv〉CC = 107ρ−0.6

8 exp (−258ρ−1/6
8 ) cm3/s,

where ρ8 is the density in units of 10−8 g/cm3 (Salpeter and Van Horn
1969; Ichimaru 1994). This expression can be improved to account for
the finite value of the temperature (Ichimaru 1994; sec. 5.3.D). This pyc-
nonuclear regime is held responsible for sudden power release by very
dense and relatively cold white dwarfs with a carbon core. When this
core is compressed to density about 109 g/cm3 the reactivity increases
rapidly approaching the value it would take at very high temperature and
low density, thus igniting carbon combustion.

Carbon burn in white dwarfs

DT cross section depends on nuclear
spin alignment

1.6 Spin polarization of reacting nuclei

In the previous section we have discussed how the fusion rate is affected
by condensed-matter effects which modify the Coulomb potential or alter
the motion of the interacting nuclei, but do not affect the intrinsic features
of the nuclear fusion process. For some reactions it is instead possible to
act on the nuclear factor S by using spin-polarized fuels. We refer, for
example, to the DT reaction for which the effect is better understood;
similar arguments also apply to D 3He.

The DT reaction occurs through formation of a compound 5He
nucleus; in about 99% of the cases the excited state has an energy of
64 keV, even parity@ and angular momentum J = 3/2 (in units of h̄). It is
found that a colliding DT system with even parity and J = 3/2 has a prob-
ability to react two orders of magnitude larger than a system with different
parity and/or angular momentum. Concerning angular momentum, this is
in general obtained by summing (according to the usual quantum mechan-
ics rules) the spins and the angular momenta of the interacting particles.
The different allowed configurations have statistical weight gJ = 2J +1.
In the present case, according to the discussion of Section 1.2.3, we can
restrict attention to systems with l = 0. Therefore J is simply the sum of
the spins of the D and T reacting nuclei. Since the spin of D is 1 and that
of T is 1/2, we then have either J = 1/2, with g1/2 = 2, or J = 3/2,
with g3/2 = 4. Consequently, if the nuclei are randomly polarized, vir-
tually all reactions are due to a fraction g3/2/(g3/2 + g1/2) = 2/3 of all
collisions. If, instead one could polarize the fuel, that is, align the spins of
both D and T along a given axis, so as to have J = 3/2 for all collisions,
the cross section would increase by 50%.

The use of spin polarization in controlled fusion experiments has
been proposed by Kulsrud et al. (1982, 1986). More (1983) discussed
its application to ICF. Although its practicability is to be demonstrated,
spin polarization should be kept in mind since it offers the potential for
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a non-negligible increase in the reactivity. It can also lead to relaxed
requirements for fusion ignition.

1.7 µ-catalysed fusion

The reactivities computed in Section 1.4 refer to nuclei which move freely.
Since each nucleus 1 can react with each nucleus 2, the volumetric reac-
tion rate is then proportional to the product of the densities of the reacting
species. The reactivity of nuclei bound in a diatomic molecule has to be
computed in a different way. In this case, the volumetric reaction rate R
is given by the product of the density n of the molecules, times the prob-
ability ν of reaction per molecule per unit time. The latter is proportional
to a characteristic constant As, only depending on the reacting nuclei,
times the square of the wave function for zero separation of the reaction
partners:

R = nν = nAs |ψ(0)|2 . 1.76

It can be shown that As is related to the astrophysical factor S by
As = S/παfcmr. The wavefunction ψ(0) is computed by solving
the Schroedinger equation for the appropriate potential; the dominant
exponential factor can be estimated by the WKB tunnelling integral.

Fusion reactions in a D2 molecule

The above reactivity applies, in particular to a molecule of hydro-
gen isotopes, at room temperature. The binding electrons generate
an attractive potential (see, for example, Schiff 1968), such that the
equilibrium distance of the nuclei is of the order of the Bohr radius

aB = h̄2

mee2
= 0.529 × 10−8 cm. 1.77

(More precisely, the distance of the hydrogen nuclei is 0.74 × 10−8 cm.)
As the nuclei approach at distance r � rc they just feel the repulsive
Coulomb potential 1.13. The fusion reaction rate of a deuterium molecule
has been computed by Van Sieclen and Jones (1986), using eqn 1.76. It
turns out that the reaction frequency is ν = w−1 ≈ 10−63s−1, so that
the reaction time τf is practically infinite even on cosmological scales.
Indeed, according to eqn 1.37 the corresponding barrier transparency can
be written as

T ≈ exp

[
−2
√

2Z1Z2

(
rtp

aB

mr

me

)1/2
]

, 1.78
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where mr is the reduced mass of the two-nuclei system, and we have
neglected the front factor (Vb/U0)

1/2 in eqn 1.37. For DD reactions in a
D2 molecule, and taking rtp = aB, we get the extremely small value T ≈
exp(−121) = 3 × 10−53.

According to eqn 1.78, the tunnelling factor and hence the reaction
rate, could be increased by reducing the equilibrium distance aB, and
eqn 1.77 shows that aB is inversely proportional to the mass of the neg-
atively charged particle binding the molecule. In 1947, Frank (1947)
and Sacharov (see Sacharov 1989) independently suggested that nuclear
fusion occurs with high probability in pseudo-molecules or pseudo-
ions bound by a µ meson or muon, which has the same charge −e
as the electron and mass mµ = 208me. It is unstable with a half-life
τµ = 2.2 µs. Fusion reactions catalysed by muons were experimentally
detected a few years later (Alvarez et al. 1957). According to eqn 1.78
the tunnelling factor for nuclei bound in a muonic molecule is about 50
orders of magnitude larger than in an ordinary molecule. In fact, accu-
rate computations show that the advantage is even larger, and one has
τf = 7 × 10−13 s for DT reactions in a DµT pseudo-molecule and
τf = 1.5 × 10−9 s for DD reactions in a DµD pseudo-molecule. After
the reaction most of the muons are freed and available to catalyse fur-
ther reactions. One is therefore led to studying the feasibility of energy
production byµ-catalysed fusion reactions (Ponomarev 1990; Bertin and
Vitale 1992).

µ-bound molecules and µ-catalysed
fusion

Energy production by µ-catalysed
fusion

DT µ-catalysis cycle

For energy production by µ-catalysed fusion, it is necessary that the
Nf reactions catalysed on average by one muon release a larger amount
of energy than that required to produce the muon itself. The muon is
obtained by the decay of the pion, with an estimated cost of 5 GeV.
Assuming that fusion energy is converted to electricity with efficiency of
40%, and recalling that a DT reaction releases 17.6 MeV, then reactor
self-sustainment demands Nf > 3000/(17.6 × 0.4) = 700. For practical
energy production, Nf > 3000 is required.

A simplified muon catalysis cycle in a DT mixture is illustrated in
Fig. 1.7 [for a detailed discussion, see Bertin and Vitale 1992]. The
muon can form either a Tµ or Dµ pseudo-atom; in this last case the
µ is transferred to tritium in a time τDT to form Tµ. A DµT molecule is
then formed in a time τDTµ ≈ 10−9 s; here, DT fusion occur in a time
τf ≈ 7×10−13 s. After the reaction, most muons are freed, and available
again to catalyse fusion reactions. The whole cycle just described occurs
in a time τc  5 × 10−9 s. A small fraction ws of muons is instead
captured by the α-particle and then lost to the cycle. The theoretically
predicted value for this sticking probability is ws  0.006. This leads
to estimating Nf = 1/(ws + τc/τµ) ≤ 120, which is not sufficient for
energy production. However, in experiments values of Nf up to 200 have
been measured, leaving room for improvement. Research in the field has
been reviewed by Bertin and Vitale (1992) and Ponomarev (1990). The
primary goals of current activities are the understanding of all the indi-
vidual steps of muon life-cycle, and finding possible ways to reducing
cycle time and muon sticking to α-particles.
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Fig. 1.7 DT µ-catalysis cycle; mean
reaction times are indicated for each
process (Bertin and Vitale 1992).
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1.8 Historical note

In 1920 Aston found that the mass of the helium nucleus is smaller
than four times the mass of the hydrogen atom. Immediately, Eddington
(1920a, 1926) observed that the transformation of hydrogen into helium
could provide enough power to sustain the sun and, more generally,
postulated nuclear reactions as the mechanism powering the stars. How-
ever, he was puzzled by the fact that the inferred star temperatures
are well below those thought necessary to allow particles to react
effectively.

Just at the dawn of wave-mechanics, Gurney and Condon (1929) and,
independently, Gamow (1928), computed the probability of tunnelling
a barrier. Gamow showed that quantum-mechanical tunnelling explains
observations on α-particle decay. In the following year, Atkinson and
Houtermans (1929a,b) used Gamow’s result to point out that tunnelling
opens the way to hydrogen fusion reactions, which could be responsible
for the energy production in the stars.

In 1932, Cockcroft and Walton at the Cavendish Laboratory,
Cambridge University, directed by Lord Rutherford, were able to pro-
duce and detect for the first time a fusion reaction, by bombarding
lithium samples with a 100 keV proton beam generated by an accelerator
they had designed and built (Cockroft and Walton 1932). In the follow-
ing 2 years, at the same laboratory, the team led by Lord Rutherford
and also including Oliphant, Lewis, Hartweck, Kempton, Shire and
Crouther, discovered many other fusion reactions between light elements
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and accelerated protons or deuterons (see Chadwick 1965; Oliphant et al.
1934a,b).

Deuterium, indeed, had been discovered in 1932 by Urey and cowork-
ers (Urey and Teal 1935), and pure samples were produced in appreciable
amounts. A small quantity was soon made available to Cavendish lab-
oratory, and deuterium induced reactions were evidenced. This also led
to the discovery, in 1934, of tritium, produced by one of the branches
of the DD reaction. Tritium instability, however, was only discovered by
Alvarez in 1939.

In 1937 von Weizsäcker proposed the pp reaction chain as the origin of
the sun power. Arguments about the insufficiency of the relevant cross-
section to account for astronomical observations were put to rest the
following year by Bethe and Critchfield (1938), who developed a theory
of that reaction, based on the work on β-decay by Fermi and by Gamow
and Teller.

Soon later, Bethe (1939) developed the theory of the CNO cycle
of energy production in stars. In a few years, with important con-
tributions by Bethe, von Weizsäcker, Gamow, Teller and others, the
basics of stellar nucleosynthesis were established. The main reactions
were identified, their cross sections approximately computed and the
results compared with available data on stellar composition. A classical
summary of the achievements of the pioneering stages of nucleosyn-
thesis studies can be found in a famous paper by Burbidge et al.
(1957).

During wartime, some of the scientist who were developing fission
weapons considered the possibility of weapons exploiting fusion reac-
tions. The basis for fusion energy research were also laid down in
discussions between Fermi, Teller, Konopinsky, and others. In the same
period, the cross sections for the DD reactions were measured rather
accurately. A group from Purdue university, probably following a sugges-
tion by Bethe, measured the DT cross-section. To everybody’s surprise,
it appeared that DT has much larger cross-section than DD in a wide
energy range (Diven et al. 1983). Such results were only released in
1948 (Hanson et al. 1949), after improved measurements had been
performed. The theory of the DT reaction was published by Flowers
(1950), while treatments of the DD reactions had already appeared in
the late 1930s, and were critically reviewed by Konopinski and Teller
(1948).

Cross sections for the D-based reactions were accurately measured
again in the early fifties (Arnold et al. 1954), and one can say that by
that time the basic physics of the nuclear fusion reactions of interest to
controlled energy production had been established.

Between 1949 and 1955, the cold war efforts led to the develop-
ment of thermonuclear weapons, the first man made devices to exploit
energy released by fusion reactions (see the literature cited in Section 3.5).
Research on controlled fusion was initiated in several countries between
1946 and 1950, under strict secret classification. Declassification of these
activities occurred about the mid-1950s, when the previous work was
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publicly reviewed (Post 1956; Longmire et al. 1959). Large fusion pro-
grams where set-up in the main industrial countries and basic books on
plasmas and controlled thermonuclear reactions, which have now become
classics, appeared (Spitzer 1962; Glasstone and Lovberg 1960; Rose and
Clarke 1961; Artsimovich 1964).
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