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Abstract

There are three types of special functions that we come across in elementary Quan-

tum Mechanics during our search for a solution to the Schrodinger equation. They are

all take the form of \orthogonal polynomials:" Hermite polynomials, Legendre polyno-

mials (and associated Legendre functions), and Laguerre polynomials (and associated

Laguerre polynomials). In this set of notes, I outline some of their properties (and how

to construct them) and indicate how they are related to each other. Of course, all of

this material can be found in textbooks and reference books on mathematical physics,

some of which are listed at the end.

1 Common Properties

All of these polynomials, and also most special functions (like Bessel functions, which are not
polynomials), satisfy and number of relations of the same general form. The polynomial in
question is denoted fn(x), which means that it is an nth order polynomial of x. Derivatives

with respect to x are denoted by a prime: f 0(x) = df=dx.

1. They, of course, must satisfy an orthogonality condition. Orthogonality, unlike for

vectors, means the following:

Z
b

a

w(x)fn(x)fm(x)dx = Ænm;

where Ænm is the Kronecker delta function, which is equal to 1 if n = m and is 0
otherwise. The interval [a; b] de�nes the domain of applicability for the polynomials.

The factor w(x) is the \weight function" for those particular polynomials.

2. They satisfy a second-order di�erential equation

g2(x)f
00

n
(x) + g1(x)f

0

n
(x) + anfn(x) = 0;

where g2(x) and g1(x) are independent of n and an is a constant depending only on n.
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3. They satisfy a recurrence relation

fn+1(x) = (an + xbn)fn(x)� cnfn�1(x)

4. They can be constructed from a Rodrigues formula

fn(x) =
1

enw(x)

 
d

dx

!
n

fw(x)[g(x)]ng ;

where if the functions w(x) and g(x) are known, it is a simple matter (although perhaps

painstaking) to di�erentiate n times to �nd the nth polynomial.

5. They can be de�ned throught a generating function

g(x; z) =
1X
n=0

anfn(x)z
n;

which means that they are the coeÆcients of a power series expansion of some function
g. That function is called the \generating function."

2 Hermite Polynomials

Let us take Hermite polynomials �rst. We encounter these while solving the one-dimensional

harmonic oscillator problem. You can rewrite the Schrodinger equation to �nd an equation
that these functions satisfy

H 00

n
(x) +�2xH 0

n
(x) + 2nHn(x) = 0:

The wave function is related to these polynomials

 n(x) = AnHn(�)e
��

2
=2

where

� =

r
m!

�h
x

And An is a normalization factor. The recurrence relation is

Hn+1(x) = 2xHn(x)� 2nHn�1(x)

The Rodrigues formula is

Hn(x) = (�1)nex
2

 
d

dx

!n

e�x
2

:

Finally, the generating function is

e�z
2+2zx =

1X
n=0

zn

n!
Hn(x)

The orthogonality condition is

Z
1

�1

e�x
2

p
�2nn!

Hn(x)Hm(x)dx = Ænm
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3 Laguerre Polynomials

Now we examine Laguerre polynomials. We encounter these while solving the radial part

of the Schrodinger equation for the Coulomb potential energy. After factoring out certain

asymptotic behaviors of the radial wave function, you can rewrite the Schrodinger equation
to �nd an equation whose solutions are the associated Laguerre polynomials. The (regular)

Laguerre polynomials satisfy

xL00
n
(x) + (1� x)L0

n
(x) + nLn(x) = 0:

The wave function R(r) is related to these polynomials. Because it is a radial wave function,

the argument of the polynomials is restricted to be positive, x � 0. The recurrence relation
is

(n+ 1)Ln+1(x) = (2n + 1� x)Ln(x)� nLn�1(x)

The Rodrigues formula is

Ln(x) = ex
 
d

dx

!n

e�xxn:

Finally, the generating function is

1

1 � z
ezx=(z�1) =

1X
n=0

znLn(x)

The orthogonality condition is

Z
1

0
e�xLn(x)Lm(x)dx = Ænm

4 Legendre Polynomials

Finally, we look at the Legendre polynomials. We encounter these while solving the angular

part of the Schrodinger equation for any central potential. As before, we must factor out

certain asymptotic behaviors of the wave function, and then we can rewrite the Schrodinger
equation to �nd an equation whose solutions are the associated Legendre functions. The

(regular) Legendre polynomials satisfy

(1� x2)P 00

n
(x) +�2xP 0

n
(x) + n(n + 1)Pn(x) = 0:

The wave function �(�) is related to these polynomials. Because the argument will be
replaced by cos �, the absolute value of the argument of these polynomials is restricted to be

less than or equal to unity, �1 � x � 1. The recurrence relation is

(n+ 1)Pn+1(x) = 2(n + 1)xPn(x)� nPn�1(x)

The Rodrigues formula is

Pn(x) =
1

2nn!

 
d

dx

!
n

(x2 � 1)n:
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Finally, the generating function is

�
1� 2xz + z2

�
�1=2

=
1X
n=0

znPn(x)

The orthogonality condition is

Z 1

�1

2n + 1

2
Pn(x)Pm(x)dx = Ænm

5 Afterword

You can work with each of these sets of polynomials in the same way. If you know the two

lowest, you can generate all of them with the recursion relations (You can, of course, obtain

them all directly with the Rodrigues formulas). The orthogonality criteria are useful when

making statements about certain physical properties. The generating function is useful in
determining other properties of the polynomials, but this topic is more advanced.
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