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A current sheet model for the Earth’s magnetic field
Daniel R. Stump and Gerald L. Pollack
Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824-1116

~Received 10 November 1997; accepted 10 March 1998!

As an example in magnetostatics we consider the main magnetic field of the Earth and its current
sources. The measured field on the surface is accurately given, in tables of the International
Geological Reference Field, in terms of Gaussian coefficients. By applying Maxwell’s equations to
these data we calculate the extended field, inside the Earth, and give graphical representations of it.
We also construct a simple theoretical model of the source of the field, in which the field is the result
of currents flowing on the surface of a sphere inside the Earth. The current sources which give the
observed field are calculated in terms of vector spherical harmonics. The stream function and
currents are displayed on a Mercator projection for a sphere whose radius is half the Earth’s radius.
Interesting properties of vector operations on the Mercator plane are analytically and graphically
described. ©1998 American Association of Physics Teachers.

I. INTRODUCTION

An interesting real magnetic phenomenon is the Earth’s
magnetic field. In this paper we consider this phenomenon as
an example in magnetostatics. We construct a simple theo-
retical model of the current that produces the field.

Earth’s magnetic field, as currently understood by
geologists,1,2 is produced by currents deep in the Earth’s in-
terior. Earth’s mean radiusa is about 6371 km. The currents
which are the sources of the geomagnetic field are thought to
flow in the Earth’s liquid outer core, a conducting liquid
consisting mostly of Fe with a few percent Ni and lighter
elements. The liquid outer core occupies the region 0.21a
<r<0.55a. The conducting liquid is under high pressure
~from 140 GPa at the top to 330 GPa at the bottom!, and at
high temperature~'400061000 °C at the top!. Its resistiv-
ity, which is not well known, is about 1.731026 Vm;1 for
comparison the resistivity of Cu at room temperature is 1.7
31028 Vm.3 From the center of the Earth out tor
50.21a, i.e., beneath the liquid outer core, is the inner core,
which is a conducting solid with the same composition but at
higher pressure and temperature. The region from the top of
the liquid outer core to the Earth’s surface, called the mantle
and crust, consists largely of oxides; it is solid and
nonconducting.4,5

The actual currents in the liquid outer core are compli-
cated because the driving forces and the fluid flow are com-
plicated. This system is usually treated with dynamo theory,
magnetohydrodynamics, and other sophisticated mathemati-
cal methods.6–9 To determine the sources from the observed
magnetic field is a difficult inverse problem. Two recent nu-
merical simulations of the geodynamo8,9 give very useful
information, but much remains to be done before we under-
stand it sufficiently.

In this paper we ask: Is there a simple current distribution
which would give the observed geomagnetic field? The
model we analyze is that the current resides on the surface of
a sphere in the Earth’s liquid outer core, i.e., it is a spherical
current sheet.

Our calculations illustrate basic principles of magnetostat-
ics, vector analysis, and spherical harmonic functions. These
are topics that would be included in an undergraduate course
on electromagnetism. We remark that problems in magnetic
dipole dynamics have pedagogical interest as well, but are
usually more advanced.10–13 One purpose of our paper is to
provide a pedagogical example with real physical signifi-
cance. Although the model is idealized, it does give an inter-
esting qualitative picture of geomagnetism.14

We will present our results for fields and currents on a
Mercator plane projection of the Earth. In many ways a Mer-
cator plane may be considered to be a Cartesian plane in
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which the coordinates are~longitude, latitude!, in our nota-
tion ~f,l!, instead of (x,y). In terms of the azimuthal angle
f and the polar angleu of spherical coordinates we have
~f,l!5~f,90°2u!. We show in this paper, as an instructional
tool, how vector operations in spherical coordinates behave
on a Mercator plane.

The plan of the paper is as follows. In Sec. II we describe
the observed magnetic field at the surface of the Earth, in
terms of an expansion in spherical harmonics. In Sec. III we
construct the current sheet model, and relate the surface cur-
rent density to the exterior field. There is a one-to-one cor-
respondence between the coefficients of the spherical har-
monic expansions of the field and the current. In Secs. IV
and V we discuss some implications of our model calcula-
tions.

In this paper we are concerned with what is called the
main field, i.e., the intrinsic field due to electric current in the
Earth’s core. We do not address the question of the origin of
the current, which is also a very interesting problem,2,15 but
we do calculate, and display, the current within the idealized
model of a current sheet.

II. MAGNETIC FIELD OF THE EARTH

The Earth’s magnetic field, at the surface of the Earth, has
been measured for centuries. The magnetic compass was in-
vented in China, probably over 2000 years ago, and came to
Europe in the 12th century. In 1546, Gerhard Mercator un-
derstood from his observations that the point that magnetic
needles seek is terrestrial and not in the stars. Ultimately, in
1600, William Gilbert inDe Magnetedescribed experiments
on spherical lodestones from which he concluded that the
Earth itself is a great magnet or, as he put it, ‘‘magnus
magnes ipse est globus terrestris.’’ This predates by almost
90 years Newton’s understanding of the terrestrial origin of
gravity.

The static magnetic fieldB, outside the region of its source
currents, satisfies the field equations

“–B50, “3B50. ~1!

In this source-free region we may expressB in terms of
either a vector potentialA or a scalar potentialFM . The
scalar potential is simpler, so we write

B52“FM . ~2!

By ~1! the potential must satisfy Laplace’s equation,
“

2FM50.
It is natural to expandFM(x) in spherical harmonics, an

analysis first carried out by Gauss in 1839. The conventional
choice of normalization16 is

FM~x!5a (
l 51

`

(
m50

l S a

r D l 11

3~gl
m cosmf1hl

m sin mf!Pl
m~cosu!, ~3!

wherea is the radius of the Earth; also,r ,u,f are the polar
coordinates ofx in a coordinate system in which the rotation
axis of the Earth is the positivez axis. For the exterior po-
tential the radial dependence of harmonicl is r 2l 21.
Gauss’s expression for the magnetic scalar potential was es-
sentially the same as~3!, except that he included terms only
up to l 54 and used a different normalization. The functions

Pl
m(x), wherex denotes cosu, are the associated Legendre

functions with the Schmidt normalization

E
21

1

@Pl
m~x!#2dx5

2

2l 11
~22d~m,0!!; ~4!

in terms of Legendre polynomialsPl (x),

Pl
0 ~x!5Pl ~x!, ~5!

Pl
m~x!5A2~ l 2m!!

~ l 1m!!
~12x2!m/2

dmPl

dxm ~6!

for m51,2,3...,l . Note that the spherical harmonic functions
used here, i.e., the functions (sinmf)Pl

m(cosu) and
(cosmf)Pl

m(cosu), are real. The sum begins withl 51 be-
cause there is no magnetic monopole, which would corre-
spond tol 50.

The expansion coefficientsgl
m and hl

m in ~3! are called
Gauss coefficients.17 For eachl there are 2l 11 real coeffi-
cients.~The coefficienthl

0 is identically 0.! In our calcula-
tions we use the values given in the International Geological
Reference Field~IGRF! table of Gauss coefficients.18 The
IGRF tabulation lists the coefficients forl from 1 to 10,
averaged over 5-year intervals from 1900 to 1995. The coef-
ficients vary somewhat on a time scale of 5 years, but in this
paper we are not concerned with the time dependence of the
field. The particular Gauss coefficients we use are those for
1990, called DGRF 1990.19 Table I gives the values of these
coefficients forl 51,2,3. In our full calculations we use the
Gauss coefficients forl from 1 to 8.

A. The dipole component of the field

It is often stated that the magnetic field of the Earth is
approximately a dipole field. Later we shall test this state-
ment, but as a first step toward understandingB we consider
its dipole component. That is, we truncate the sum in~3! at
l 51. In this approximationB is identical to the field of a
point dipolem located at the center of the Earth.

The three Gauss coefficients withl 51 are related tom as
follows. Let um ,fm be the polar angles of the dipole axis,
with respect to the rotation axis of the Earth; then the Carte-
sian components of the dipole moment are

m5m~sin um cosfm ,sin um sin fm ,cosum!. ~7!

The scalar potential of the dipolem is20,21

Fd5
m0

4p

m•r

r 3

5
m0m

4pr 2

3@cosum cosu1sin um sin u cos~f2fm!#. ~8!

Table I. Gauss coefficients, in nanoTeslas~nT!, for l 51–3, in the year
1990, from the DGRF.

l m gl
m hl

m l m gl
m hl

m

1 0 229 775 0 3 0 1314 0
1 1 21 848 5406 3 1 22239 2284
2 0 22 131 0 3 2 1248 293
2 1 3 059 22279 3 3 802 2352
2 2 1 686 2373
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Comparing~3! and~8! we deduce the Gauss coefficients for
a point dipole from

4pa3g1
05m0m cosum , ~9!

4pa3g1
15m0m sin um cosfm , ~10!

4pa3h1
15m0m sin um sin fm . ~11!

Or, we may invert these equations to determine from the
measured Gauss coefficients the equivalent point dipole pa-
rameters

m5
4pa3

m0
A~g1

0!21~g1
1!21~h1

1!2, ~12!

cosum5g1
0/A~g1

0!21~g1
1!21~h1

1!2, ~13!

tan fm5h1
1/g1

1. ~14!

Using the 1990 DGRF values, and 6371 km as the Earth’s
radius,~12!–~14! imply that the values of the dipole param-
eters are

m57.8431022 A m2, ~15!

um5169 deg, ~16!

fm5109 deg. ~17!

The dipole moment is tilted by 169 deg with respect to the
Earth’s rotation axis, and has azimuthal angle 109 deg.~The
zero for azimuthal angles is taken to be the prime meridian,
through Greenwich. Positive and negative values off are,
respectively, east and west of Greenwich.! Therefore the
points where the dipole component ofB is normal to the
Earth’s surface, which are called the geomagnetic north and
south poles,1 are the two antipodal points at~i! latitude 79,
longitude271 ~northern hemisphere!, and~ii ! latitude279,
longitude 109~southern hemisphere!.

Figure 1 shows the normal, i.e., radial component
Br(u,f) on the surface of the Earth, for the dipole compo-

nent of the Earth’s magnetic fieldB, in the form of a contour
plot on a Mercator projection. The abscissaf is the longi-
tude, which is the same as the azimuthal angle. The ordinate
l is the latitude in degrees, and the polar angleu is 902l.
The north geographic pole is atl590, the equator is atl50,
and the prime meridian is atf50. The quantity whose con-
tours are plotted isBr(u,f)sinu. The factor sinu is included
because it isBr sinu that must integrate to zero on the Mer-
cator plane as can be seen from Gauss’s law:

E “–BdV5E a2Br sin ududf50. ~18!

Notice in ~18! that a2dudf52a2dldf is an infinitesimal
area in the Mercator plane. The relation betweenl and u,
namely,l5902u, is linear with change of sign. As usual in
a Mercator projection, the entire upper boundary is the north
pole and the entire lower boundary is the south pole. Figure
1 shows how the magnetic field at the Earth’s surface points
outward near the south pole, and inward near the north pole.
The serpentine shape of the contours shows how the field of
a dipole tilted with respect to the axis of projection appears
on a Mercator map. Ifm were along the Earth’s axis, i.e.,
along the axis of projection, then we’d haveBr sinu
5(m0m0 sin 2u)/4pa3, which is independent off. In that
case the contours would simply be horizontal lines.

Figure 2 shows the dipole contribution of the tangential
vector field BMer5 ûBu1f̂Bf sinu, on the surface of the
Earth, in the Mercator plane. In Fig. 2 we have superimposed
contours of the Gauss potentialFM , which for the dipole
case is justFd of ~8!, and arrows whose direction and length
represent the fieldBMer . This field is not the same as the
magnetic fieldB52“FM because of the factor sinu in the
f component. We plotBMer because this field is perpendicu-
lar to the contours ofFM on a Mercator map. An equivalent
definition of BMer is

BMer52
1

a S û
]FM

]u
1f̂

]FM

]f D . ~19!

The right-hand side of~19! is the negative gradient in the
Mercator plane. It is formally similar to the negative gradient
in a Cartesian plane, but with coordinates~f,u!.

Fig. 1. Contour plot of the dipole component ofBr sinu in the Mercator
plane around the Earth’s axis of rotation. The abscissaf is the conventional
longitude; it is zero at Greenwich and taken positive or negative, respec-
tively, to the east and west. The ordinatel is the conventional latitude; it is
zero at the equator and taken positive or negative, respectively, to the north
and south. In the Mercator plane the net flux ofBr sinu is zero. Shaded and
unshaded regions are those in whichBr sinu is, respectively, negative and
positive. The s-shaped contour between the shaded and unshaded regions is
the intersection, with the Earth’s surface, of the plane which passes through
the center of the Earth and is perpendicular to the magnetic dipole moment.
Along that contour,Br sinu50. At the center of the roughly concentric
features in the northern and southern hemispheresBr sinu is maximum in
magnitude. At the geomagnetic poles, which are different points,Br for the
dipole field is maximum in magnitude.

Fig. 2. Contour plot of the dipole component ofFM and the tangential field
BMer . This is another representation of the Earth’s dipole field in the same
Mercator plane as Fig. 1. The solid lines are equipotentials of the magnetic
dipole scalar potential. That is, along these lines,Fd of ~8! is constant,
whereum andfm are given in~16! and~17!. The arrows show the directions
and magnitudes ofBMer , the dipolar magnetic field vector. The~l,f! coor-
dinates of the geomagnetic north and south poles, discussed in Sec. II A, are,
respectively,~79°, 271°! and ~279°, 109°!. At these pointsBMer50.
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B. The full field

Next we consider a more accurate description of the field,
based on the Gauss expansion~3! truncated atl 58. ~The
DGRF and IGRF tables also includel 59 and 10, but the
coefficients at these highl values are very small, and not so
precisely measured as for lowerl values, so we have ne-
glected the terms withl .8. For higher values ofl the
results are contaminated by contributions of crustal magnetic
sources. In Sec. IV we comment on the convergence of the
expansion inl .!

Figure 3 shows the full normal fieldBr~u,f!, analogous to
Fig. 1.

Figure 4 shows the full tangential fieldBMer5 ûBu

1f̂Bf sinu, analogous to Fig. 2.
These results show that the actual field on the surface dif-

fers measurably from a pure dipole field.

C. The field near the source

We may writeB52“FM for any points outside the re-
gion of the electric currents that are the source of the main
field. If we assume that the currents are inside a sphere of
radiusr 0 then we may use Gauss’s potential to calculateB
down to that depth. The contribution from multipolel is
proportional tor 2l 21, so the higher multipoles grow in im-

portance asr decreases. The field atr 0 is much different
from the surface field ata if r 0 is small compared toa.

We shall plot the magnetic field forr 05a/2, i.e., on a
spherical surface within the Earth’s liquid outer core, assum-
ing there are no source currents atr .r 0 . Figure 5 shows the
corresponding contours ofBr sinu, analogous to Fig. 3 for
the surface field. Figure 6 shows the corresponding coutours
of FM at r 5r 05a/2, and superimposed arrows for the tan-
gential vectorsBMer , analogous to Fig. 4. In Figs. 5 and 6 we
again truncate the Gauss expansion inl at l 58.

Figures 5 and 6 show that the Earth’s magnetic field near
its source is much different from a pure dipole field. The
surface field, which is nearly a dipole field, is only a pale
remnant of the complicated field near the source. In our
model, and probably for the real field as well, the dipole
character of the surface field is really not a defining feature
of the Earth’s magnetic field, even though it was essential for
early seafarers and other explorers. It is rather the result of
the rapid decrease with distance from the source, of contri-
butions from multipoles withl >2.

III. THE CURRENT SHEET MODEL

As an exercise in magnetostatics, we make a model of the
currents inside the Earth which produce the observed field.
The model postulates a surface current densityK ~u,f! on the
surface of a sphere of radiusr 0 inside the Earth. We will
characterize this surface current density by the coefficients in
an expansion ofK ~u,f! in spherical harmonics. Within the
current sheet model we can determine uniquely the connec-

Fig. 3. Contour plot ofBr sinu at r 5a for the full normal field. The details
are the same as in Fig. 1 except that for these contours all terms froml 51
through l 58 have been included. The contour values range from24
3104 to 43104 nT.

Fig. 4. Contour plot ofFM and the tangential fieldBMer at r 5a for the full
field. The details are the same as in Fig. 2 except that for these contours all
terms froml 51 throughl 58 have been included. The surveyed~;1990!
locations of the North and South Magnetic Poles~or dip poles! where the
observed magnetic field is perpendicular to Earth’s surface are, approxi-
mately, ~78.5°, 2103.4°! near Ellef Ringnes Island, Canada, and~265°,
139°! in Commonwealth Bay, Antarctica, given as~l,f! coordinates. At
those pointsBMer is essentially zero.

Fig. 5. Contour plot ofBr sinu at r 5a/2. The details are the same as in Fig.
3 except that in this case the field is shown at half the Earth’s radius, i.e.,
within the liquid outer core. The contour values range from27.23105 to
7.23105 nT.

Fig. 6. Contour plot ofFM and the tangential fieldBMer at r 5a/2. The
details are the same as in Fig. 4 except that in this case the field is shown at
half the Earth’s radius.
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tion between these surface current coefficients and the Gauss
coefficientsgl

m and hl
m ,18 which we used to describe the

Earth’s magnetic potential in~3!. There will be a one-to-one
correspondence between the Gauss coefficients and the cur-
rent coefficients.

It is important to keep in mind that this is an idealized,
naive, model of the actual currents, but it has the advantage
that one can examine its consequences in quantitative detail,
as we will see. The insights obtained may be useful in ex-
amining the effect on the Earth’s magnetic field of the real
currents as more is learned about them in the future.

A. Derivations

Consider a surface currentK on the surface of a sphere of
radius r 0 . A general surface current can be written in the
form

K ~u,f!5 (
l 51

`

(
m52l

l

K l mLYl m~u,f!, ~20!

whereYl m denotes the complex spherical harmonics. In~20!
the spherical harmonicsYl m(u,f) and coefficientsK l m are
complex. The functionK ~u,f! is real, so the complex coef-
ficientsK l m are chosen such that the imaginary part of~20!
is zero.@A purely real expansion forK ~u,f! is given in~35!.#
HereL is the differential operatorx3“; i.e.,

L5x3“5f̂
]

]u
2

û

sin u

]

]f
. ~21!

The functions LYl m are called vector spherical
harmonics.20,22 Vector spherical harmonics are discussed in
Sec. 16.2 of Ref. 20 and in Sec. 9.2 of Ref. 22. The repre-
sentation~20! is in terms of ascalar stream functionc: K is
x3“c where c5( l 51

` (m52l
l K l mYl m . Note that the di-

vergence ofK is 0 as it must be because the current is con-
served and does not vary with time

“–K5
1

r 0 sin u F ]

]u
~Ku sin u!1

]

]f
KfG

5
1

r 0 sin u F2
]

]u

]c

]f
1

]

]f

]c

]u G50. ~22!

Outside of the sphere of radiusr 0 the magnetic field may be
written asB52“FM . We now proceed to relate the Gauss
coefficients ofFM , defined in~3!, to the current coefficients
K l m .

The vector potential.We have, wherex is the field point
andx8 is the source point,20,21

A~x!5
m0

4p E Kda8

ux2x8u

5
m0

4p (
l 51

`

(
m52l

l

K l mE L 8Yl m~V8!r 0
2dV8

ux2x8u
.

~23!

Use theaddition theorem,23 for r .r 85r 0 ,

1

ux2x8u
5 (

l50

`

(
m52l

1l
4p

2l11

r 0
l

r l11 Ylm~V!Ylm* ~V8!

~24!

so A~x! has the expansion

A~x!5 (
l 51

`

(
m52l

l

K l m(
l50

`

(
m52l

1l m0r 0
l12

~2l11!r l11 Ylm~V!

3E Ylm* ~V8!L 8Yl m~V8!dV8. ~25!

Now, in ~25! the integral overdV8 is zero unlessl5l ;
therefore we may replacel by l in the factor r 0

l12/(2l
11)r l11, without changing the value of the right-hand side
of ~25!. After that replacement, that factor can be taken out-
side the sum overl, so

A~x!5 (
l 51

`

(
m52l

l

K l m

m0r 0
l 12

~2l 11!r l 11 (
l50

`

(
m52l

1l

Ylm~V!

3E Ylm* ~V8!L 8Yl m~V8!dV8. ~26!

Now insert thecompleteness relationof spherical harmonics,

(
l50

`

(
m52l

1l

Ylm~V!Ylm* ~V8!5d~f2f8!d~cosu2cosu8!,

~27!

and use the delta functions to evaluate the integral overdV8.
The result is

A~x!5 (
l 51

`

(
m52l

l

K l m

m0r 0
l 12

~2l 11!r l 11 LYl m~V!. ~28!

Equation~28! is, finally, the vector potential in terms of the
coefficientsK l m .

The scalar potential.The problem now is to connect the
current coefficientsK l m with the scalar potentialF such that
“3A52“F. To solve this problem we have the following
lemma.

Lemma.If A5LYl m /r l 11 then“3A52“F whereF
52l Yl m /r l 11.

To prove the lemma, first note that

A5
LYl m

r l 11 5
1

r l 11 F f̂
]Yl m

]u
2

û

sin u

]Yl m

]f G . ~29!

BecauseYl m}eimf we may replace]/]f by im. Now cal-
culate the curl ofA. It is straightforward, using the properties
of the spherical harmonics, to show that

“3A5l “S Yl m

r l 11D52“F, ~30!

whereF is as given in the lemma.
By applying the Lemma to each term in~28!, we have the

following expression for the scalar potential:

FM52 (
l 51

`

(
m52l

l

K l m

m0r 0
l 12

2l 11

l Yl m

r l 11 . ~31!

Relating the expansion coefficients.We have been using
the complex spherical harmonic functionsYl m . To make the
connection to the Gauss expansion, we must now rewrite the
result in terms of the associated Legendre functions with the
Schmidt normalization. The spherical harmonics are

Yl 05A2l 11

4p
Pl

0 ~cosu!, ~32!
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Yl m5A2l 11

8p
~21!mPl

m~cosu!eimf, ~33!

wherem51,2,...,l ; andYl ,2m5(21)mYl m* .
The next step is to write an expansion of the surface cur-

rentK in real form. We have, in terms of the complex spheri-
cal harmonics,

K5L (
l 51

` H K l 0Yl 01 (
m51

l

~K l mYl m1K l ,2mYl ,2m!J ,

~34!
which can be reexpressed in terms of real functions as

K5 (
l 51

`

(
m50

l

@kl m
~1! LPl

m cosmf1kl m
~2! LPl

m sin mf#

~35!

where

kl 0
~1!5K l 0A~2l 11!/4p, ~36!

kl 0
~2!50, ~37!

kl m
~1! 5~K l m~21!m1K l ,2m!A~2l 11!/8p, ~38!

kl m
~2! 5 i ~K l m~21!m2K l ,2m!A~2l 11!/8p. ~39!

Notice that in~35! the sum overm is from zero tol .
Finally, in a similar way, we rewrite the expansion ofFM

in ~31! in terms of real variables, and so relate the Gauss
coefficients to the current coefficientskl m

(1) andkl m
(2) ; the re-

sult is7,17

gl
m52

m0l

2l 11 S r 0

a D l 12

kl m
~1! , ~40!

hl
m52

m0l

2l 11 S r 0

a D l 12

kl m
~2! . ~41!

We use~40! and ~41! to calculate the current coefficients of
our model from the measured Gauss coefficients.

B. Result of the model

One use to which the above formalism can be put is to
make a picture of the surface currents which must flow on a
sphere of a given radius in order to produce theB field which
is observed at Earth’s surface. For the radius of this sphere
we chooser 05a/2.

The current is shown in Fig. 7 in the following way. Equa-
tion ~35!, together with~21!, shows thatK may be repre-
sented in terms of the scalar stream functionc~u,f! asK5x
3“c~u,f! where, in terms of real variables,

c~u,f!5 (
l 51

`

(
m50

l

@kl m
~1! cosmf

1kl m
~2! sin mf#Pl

m~cosu!. ~42!

In Fig. 7, the solid curves are contours ofc~u,f! shown in
the Mercator plane. Superimposed on these are arrows which
represent the vector field of the current flowKMer5 ûKMer,u

1f̂KMer,f5 ûKu sinu1f̂Kf . This tangential vector differs
from K , by the factor sinu in theu component. We construct
KMer to be tangent to the streamlines in the Mercator plane:
we require KMer•“Merc5KMer,u(]c/]u)1KMer,f(]c/]f)

50. But from Ku5(21/sinu)(]c/]f) and Kf5(]c/]u) it
follows that KMer,u5Ku sinu and KMer,f5Kf . We remark
that the gradient ofc in the Mercator plane,“Merc
5 û(]c/]u)1f̂(]c/]f)5l̂(]c/]l)1f̂(]c/]f), has the
same form with respect to angular coordinates as the gradient
in a Cartesian plane has with respect to linear coordinates. In
calculatingc and KMer for Fig. 7 we again used the 1990
DGRF Gauss coefficients forl from 1 to 8.18

C. The field for r<r 0 , and the discontinuity at the
current sheet

Taking the current sheet model seriously, we can also de-
termine the field inside the current sheet, i.e., forr ,r 0 . This
region is source free, so again we may writeB52“F i and
expand the interior potentialF i in spherical harmonics

F i5a (
l 51

`

(
m50

l S r

aD l

3@gi l
m cosmf1hi l

m sin mf#Pl
m~cosu!. ~43!

For the interior potential, the radial form of harmonicl is
r l . To determine the interior coefficientsgi l

m andhi l
m we use

the fact that the normal component ofB must be continuous
across the current sheet; here the normal direction is radial,
so the continuity condition is

]F i

]r
5

]FM

]r
~44!

at r 5r 0 . Comparing the coefficients of cosmfPl
m and

sinmfPl
m on the left and right sides of~44! we find that the

interior Gauss coefficients are

gi l
m 52S l 11

l
D S a

r 0
D 2l 11

gl
m , ~45!

hi l
m 52S l 11

l
D S a

r 0
D 2l 11

hl
m . ~46!

An interesting point about this result is thesign changefrom
gl

m and hl
m to gi l

m and hi l
m . The direction of the tangential

field inside the current sheet isoppositeto that outside.

Fig. 7. The model surface currents which flow on a spherical sheet atr
5a/2, displayed as a contour plot of the stream functionc~u,f! and the
tangential current field in a Mercator plane. The arrows represent the surface
current vectorKMer5 ûKu sinu1f̂Kf52û(]c/]f)1f̂(]c/]u). This is per-
pendicular to“Merc5 û(]c/]u)1f̂(]c/]f). Therefore, the arrows are
tangent to the contours ofc.
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The normal component ofB is continuous at the current
sheet, but the tangential components are discontinuous, with
the discontinuity proportional to the surface current20,21

lim
e→0

@B~r 01e!2B~r 02e!#5m0~K3r̂ !. ~47!

This relation provides another way to derive the surface cur-
rent K . As before, we may expressK in terms of the stream
function c, asK5x3“c. Then the components of~47! are

2
1

r 0
S ]FM

]u
2

]F i

]u D5m0

]c

]u
, ~48!

2
1

r 0 sin u S ]FM

]f
2

]F i

]f D5
m0

sin u

]c

]f
, ~49!

which are satisfied if

2
1

r 0
~FM2F i !5m0c. ~50!

It follows that the spherical harmonic expansion of the
stream function is given by~42! where

kl m
~1! 5

21

m0r 0
H al 12

r 0
l 11 gl

m2
r 0

l

al 21 gi l
m J , ~51!

kl m
~2! 5

21

m0r 0
H al 12

r 0
l 11 hl

m2
r 0

l

al 21 hi l
m J . ~52!

Finally, we may use~45! and ~46! to substitute for the inte-
rior coefficients. This substitution yields the relation between
the current coefficientskl m

(1) andkl m
(2) and the exterior Gauss

coefficientsgl
m and hl

m , and the result is identical to the
relations~40! and ~41! derived earlier.

IV. ENERGY CONSIDERATIONS

A. Field energy

As shown in Fig. 6 the field near the source is qualitatively
more complex than the field at the surface, which is predomi-
nantly a dipole field. To make this statement quantitative, it
is interesting to consider the energy density associated with
different harmonics as a function of depth.24

The volume energy density is

u~x!5
B2

2m0
5

~“FM !2

2m0
. ~53!

The radial energy density~energy per unit radius! is defined
as

ur~r !5E u~x!r 2dV. ~54!

We may expressur(r ) in terms of the Gauss coefficients.
Let U(R) be the total field energy in the regionr>R,

U~R!5E
r>R

u~x!d3x5E
R

`

ur~r !dr. ~55!

Then ur(R)52dU/dR. To calculateU(R) we can use a
trick. We have

U~R!5E
r>R

~“FM !2

2m0
d3x. ~56!

Now write (“FM)2 as“–(FM“FM)2FM“
2FM ; the sec-

ond term is 0 forr outside of the current, and the first term
can be integrated by Gauss’s law, with the result

U~R!5
2R2

2m0
E FM

]FM

]R
dV. ~57!

Substituting the Gauss expansion forFM , and using the or-
thogonality relations, we find17

U~R!5
4pa3

2m0
(

l 51

`
l 11

2l 11 S a

RD 2l 11

(
m50

l

@~gl
m!21~hl

m!2#.

~58!

Thus, finally, sinceur52dU/dR, the radial energy density
at radiusR is

ur~R!5
4pa2

2m0
(

l 51

`

~ l 11!S a

RD 2l 12

(
m50

l

@~gl
m!21~hl

m!2#.

~59!

In order to identify how much of the energy is in thel th
harmonic of the field we write

ur~r !5 (
l 51

`

ul ~r !, ~60!

whereul (r ) is the contribution to the radial energy density
from the l spherical harmonics. Table II showsul (a), the
l dependence of radial energy density at the Earth’s surface;
and ul (a/2), the l dependence at the current source, as-
sumed again to be at radiusr 05a/2. At the surface, the
dipole term~l 51! dominates; but near the source, the higher
multipoles are significant. Indeed, even multipoles withl .8
are presumably important, becauseu8(a/2) is larger than
u2(a/2).

Table II shows thatul (a/2) does not decrease signifi-
cantly with l as l increases from 1 to 8: Atr 5a/2 the
multipole expansion converges very slowly. For larger val-
ues ofr , e.g., forr 5a, the convergence is more rapid be-
cause of the factor (a/r )2l 12. ~For r .;0.6a the expansion
converges reasonably well withl <8.! We have truncated
the expansion atl 58 because the Gauss coefficients are
measured accurately forl <8; for higherl values the accu-
racy is less, because their contribution atr 5a is very small,
and contaminated by crustal magnetic sources. The fact that
large l values are important at the depth of the liquid core
implies that the source current varies significantly on small

Table II. Contributions to the radial energy density from different spherical
harmonics at the Earth’s surface (r 5a) and atr 5a/2, which is assumed to
be outside the source currents. We have takena56371.2 km. The units are
1010 J/m.

l ul (a) ul (a/2)

1 37.3 597
2 1.34 86
3 0.749 192
4 0.206 211
5 0.041 168
6 0.010 163
7 0.003 202
8 0.0004 114
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length scales, having even smaller scale features than the
current shown in Fig. 7 from unmeasured contributions with
l .8.

B. Power dissipated in resistance

As a final point of discussion, we estimate the power dis-
sipated in electrical resistance, based on the results of our
simple current sheet model.

Figure 8 shows the magnitudeK of the current densityK
for points along the equator,l50, at depthr 05a/2. The
graph shows that the order of magnitude ofK is 103 A/m in
this model. We may use this value ofK to estimate the order
of magnitude of the power that must be supplied to maintain
the magnetic field.

In our idealized model the current is confined to the sur-
face of a sphere of radiusr 05a/2, with current per unit
lengthK . More realistically, the current is spread out over a
shell of thicknessdr within the Earth’s core. LetJ be the
volume current density in that shell, which we may estimate
as J;K /dr . If the current really is limited to a thin shell,
with dr !r 0 , then the current sheet model should be an ac-
curate approximation. Even ifdr is not very small, the cur-
rent sheet model should provide a reasonable order-of-
magnitude estimate of the power dissipated in Joule heating.

The power of Joule heating isI 2R where we estimate the
current asI;JA and the resistance asR;rl /A wherer is
the resistivity. HereA andl are the area and length, respec-
tively, over which the current is spread. We estimateAl as
the volume 4pr 0

2dr of the shell of current. Thus the power is

P;J2rAl ;K2r
4pr 0

2

dr
. ~61!

The resistivity in the Earth’s core is not known with accu-
racy, but geophysicists estimate that it is approximately 1.7
31026 Vm. Using this value, as well asr 05a/2;3
3106 m anddr;105 m, we estimate that the power dissi-
pated in resistance is

P;23109 W. ~62!

This calculation is only meant to be an order-of-magnitude
estimate. There are other estimates, based on more sophisti-
cated models, of the power required to sustain the geody-
namo. These fall in the range 1011– 1012 W but, because of
unknowns in their underlying assumptions, the power is un-

certain by one or two orders of magnitude. The source of this
energy is another interesting question in geomagnetism.25

V. CONCLUDING REMARKS

One of the challenges of this work is how to visualize the
results so that they are useful for instructional purposes.
What makes this difficult is that the actual magnetic field and
source currents are three dimensional and complicated. We
have therefore shown these quantities on Mercator planes,
which have the advantages of~a! two-dimensional represen-
tation, and~b! vector operations that are related to familiar
ones. We suggest also that the adaptation of vectors in
spherical coordinates, natural to the Earth, to the planar co-
ordinates which are natural to Mercator projections, is itself
pedagogically interesting.

We emphasize that the results for Earth’s magnetic field,
which are shown in Figs. 1–6, follow directly from the mea-
sured field18,19 and Maxwell’s equations for magnetostatics,
~1!. Figures 1–4 give the field over the surface and Figs. 5
and 6 give the internal field at half the Earth’s radius,r 0

5a/2, which we have chosen for convenience. In calculating
the results on Figs. 5 and 6 we assumed as an approximation
that the current sources are withina/2. This is reasonable
because the liquid outer core extends only to 0.55a.

One of the unexpected results of this analysis is that the
dipole character of the magnetic field at the surface of the
Earth does not signify that the source of the field is itself
characteristically dipolar. Rather, as Figs. 5 and 6 and Table
II show, when one considers the field close to the source,
there are large contributions from higher multipoles. In other
words the surface field is dipolar because the surface is rela-
tively remote from the sources.

The results for the current sources of Earth’s magnetic
field, which are shown in Figs. 7 and 8, are obtained by
combining the observed field with our model of the sources.
That model, which takes the currents to be confined to the
surface of a sphere inside the Earth, is the simplest model of
currents that can give the observed field. The actual source is
a three-dimensional current densityJ(r ,u,f), which is not
yet known well although there are recent interesting com-
puter models of it,8,9 rather than the two-dimensional current
K ~u,f! of our model. But we should like to emphasize that
the shape and magnitude ofK , as shown in Figs. 7 and 8, are
related to the actual sources in that both give the observed
field. The streamlines and currents in Figs. 7 and 8 are com-
plicated because the actual currents are complicated. Accord-
ing to modern geophysical theory the source currents in the
Earth are a self-exciting, self-maintaining dynamo. Cowl-
ing’s theorem and other antidynamo theorems26 show that
these currents cannot be simple or symmetric.
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