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Magnetic Reconnection
Magnetic reconnection is a fundamental dynamical
process in highly conductive plasmas. It can be regarded
as the process that removes the following difficulty. On
typical dynamical time scales a sufficiently hot spatially
extended PLASMA behaves approximately as an ideal fluid
in the sense that resistive effects are ignorable. As
a consequence, the magnetic field is ‘frozen’ to the
plasma motion and magnetic topology is conserved.
This sets strong limitations on the accessible dynamical
states. Large-scale magnetic flux tubes, which are strongly
stretched out by the plasma pressure, as for instance
observed in PLANETARY MAGNETOSPHERES or in stellar CORONAs,
would be unable to release large amounts of their energy
and return to a correspondingly relaxed state, as long as
the plasma is trapped in the flux tubes. In other words,
efficient transformation of magnetic to kinetic energy
would largely be ruled out in ideal plasmas. There would
be no obvious process that could counteract the generation
of magnetic flux by dynamo processes and the magnetic
fields in many space and astrophysical situations would
grow secularly. Also, plasmas with magnetic fields of
different origin would not be able to mix. Beginning
in the late 1950s, several authors, including P A Sweet,
E N Parker, H E Petschek and J W Dungey, introduced
magnetic reconnection as the central process allowing
for efficient magnetic to kinetic energy conversion in
SOLAR FLARES and for interaction between the magnetized
interplanetary medium and the MAGNETOSPHERE OF EARTH.

How does reconnection circumvent the difficulty
associated with frozen-in magnetic fields? Resistive
dissipation is more effective the more the electric current is
localized to regions with a small spatial scale length. Thus,
in reconnection a small-scale structure is generated in some
region, such that there the constraint of ideal dynamics
is broken. The interesting aspect is that a local non-
ideality can have a global effect. Under such circumstances
highly conducting plasma structures are able to transform
magnetic to kinetic energy in an efficient way and the
magnetic topology can change. According to a major line
of present thinking, this is what happens in solar flares
or magnetospheric substorms, and possibly in many other
plasma processes in the universe.

Basic model
The formal description of reconnection requires the
choice of a dynamical model. Here we confine the
discussion to magnetohydrodynamics, where we allow
for a finite resistivity (resistive MHD or ‘RMHD’) as the
only non-ideal transport process. The corresponding basic
equations consist of a combination of fluid dynamics and
electrodynamics:

∂ρ

∂t
+ ∇ · (ρv) = 0 (1)

ρ
∂v

∂t
+ ρv · ∇v = −∇p + j × B (2)

E + v × B = j/σ (3)

∂e

∂t
+ ∇ · (ev) = −p∇ · v + j 2/σ (4)

∇ × E = −∂B

∂t
(5)

∇ × B = µ0j (6)

∇ · B = 0. (7)

Here, ρ, v, p, j, B, E, σ−1, e and µ0 denote
respectively mass density, velocity, pressure, current
density, magnetic field, electric field, resistivity, plasma
energy density and vacuum permeability (see the article
on MAGNETOHYDRODYNAMICS). Here we mention only the fact
that the equations (1)–(7) imply the conservation of energy.
The balance of mechanical and electromagnetic energy,
respectively, take the form

∂

∂t

(
ρv2

2
+ u

)
+ ∇ ·

((
ρv2

2
+ u + p

)
v

)
= j · E (8)

∂

∂t

(
B2

2µ0

)
+ ∇ ·

(
1
µ0

E × B

)
= −j · E. (9)

Adding these two equations gives conservation of energy

∂

∂t

(
ρv2

2
+ u +

B2

2µ0

)

+ ∇ ·
(
ρv2

2
v + (u + p)v +

1
µ0

E × B

)
= 0. (10)

For some purposes it has proved useful to impose the
condition of incompressibility on the flow velocity

∇ · v = 0 (11)

replacing (4). This simplifies the problem significantly.
It should, however, be kept in mind that for an
incompressible flow, an energy conservation law of the
form of (10) is not available. However, mass conservation
and momentum balance are still described appropriately.

In a resistive fluid the importance of resistivity is
measured by the Lundquist number

S = vAL

η
(12)

where vA = B/
√
µ0ρ is theAlfvén velocity, η = (µ0σ)

−1 the
magnetic diffusivity and L a typical (global) scale length.
Alternatively, one uses the magnetic reynolds number
Rm = vL/η, where the Alfvén velocity is replaced by a
typical plasma velocity v. (In the literature the expression
‘magnetic Reynolds number’ frequently is also used for
the quantity S.) Large values of S or Rm, which are typical
for space and astrophysical plasmas, correspond to small
resistive effects. In the limit of large S or Rm, the terms
involving resistivity can be neglected (unless singularities
form) and equations (1)–(7) reduce to the equations of ideal
magnetohydrodynamics (IMHD).
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Figure 1. Qualitative pattern of two-dimensional reconnection.

Importantly, IMHD implies conservation of magnetic
field line topology. In IMHD this fact can also be
expressed by the property that two plasma elements
that are connected by a magnetic field line at one time
are connected by a magnetic field line at any later time
(magnetic line conservation). Furthermore, the magnetic
flux through an arbitrary contour transported by the
plasma velocity field is also conserved. These properties
provide the quantitative background for the dynamical
constraints of IMHD mentioned above. In particular,
they imply that large-scale topological reconfigurations of
the magnetic field structure, as assumed to be associated
with stellar and magnetospheric activity, are ruled out.
In the following, we summarize in what sense magnetic
reconnection resolves that dilemma and what is known at
present about that process.

Two-dimensional reconnection
The simplest geometry in which reconnection may be
described has two spatial dimensions, requiring the
presence of an ignorable coordinate in three-dimensional
physical space. In this section Cartesian coordinates x, y, z
are used and it is assumed that the physical quantities are
independent of z. We will first consider steady states and
then introduce time dependence.

Steady-state reconnection
The basic configuration of two-dimensional steady-state
reconnection is shown in figure 1. All field quantities are
independent of time. Also, the magnetic field B and the
plasma velocity v are assumed to lie in the x, y-plane,
while for the electric field a non-vanishing z-component
is admitted. The plasma is highly ideal such that the
Lundquist number S (12) is much larger than 1.

To obtain an efficient conversion of magnetic to
kinetic energy (along the trajectories of fluid elements) it
is appropriate to assume a stagnation-type flow field v

and oppositely directed magnetic fields in the upper and
lower part of the inflow region (figure 1). The magnetic
field vanishes at the origin (neutral point); viewed three-
dimensionally a neutral line (line on whichB = 0) extends
along the z-axis.

Since S is large, for a smooth plasma flow
with maximum gradients associated with the global
length scale L the frozen-in condition would not allow
annihilation of magnetic flux to any significant extent.
This difficulty is avoided by the presence of a ‘diffusion
region’ near the neutral line, where the resistive term j/σ

in Ohm’s law is much larger than in the approximately
ideal environment (‘external region’), typically by an
enhancement of jz. The diffusion region has length scales
δ and � (figure 1) with L ≥ � ≥ δ. A locally defined
Lundquist number, where L is replaced by δ in (12)
can be considerably smaller than the global Lundquist
number, indicating that in the diffusion region resistive
diffusion can play an important role. There, the plasma
and magnetic fields may decouple effectively, so that field
annihilation along the fluid path becomes possible.

Under the present conditions (5) implies that Ez is a
positive constant, say E0. The presence of the diffusion
region allows for a non-vanishing value of E0, because
otherwise (i.e. under ideal conditions with j/σ negligible)
the z-component of equation (3) would require Ez = 0 at
the neutral point, such that E0 would have to vanish.

Another important property of the present geometry
(shown in figure 1) is that ∂By/∂x > ∂Bx/∂y or jz > 0.
Therefore, E · j = E0jz > 0 holds, which by (8) or
(9) implies that magnetic energy is converted to kinetic
energy. In fact, from (8) one finds

∂

∂s

(
v2

2
+
u + p

ρ

)
> 0 (13)

where (1) was used assuming that ρv �= 0, and s denotes
the arc length of the trajectory of the plasma element
(increasing in the direction of v). Note that the thermal part
on the left-hand side of (13) is enthalpy per unit mass rather
than internal energy per unit mass, because the work done
by the pressure force is included.

For a discussion of the consequences of mass and
momentum conservation we specialize the resistive MHD
equations (1)–(7) further, using the incompressibility
condition (11) with constant density ρ0 instead of (4). Then
the resistive RMHD equations for a steady state assume the
form

ρv · ∇v = −∇p + j × B (14)

E0 + v × B · ez = jz/σ (15)

∇ · v = 0 (16)

(∇ × B) · ez = µ0jz (17)

∇ · B = 0. (18)

Quantities in the outer inflow region will be
characterized by their magnitudes at the point (x0, 0)
where the positive x-axis crosses the boundary, and are
labeled by the subscript zero, in particular (in addition to
ρ0, E0)

p0 = p(x0, 0), B0 = By(x0, 0), v0 = −vx(x0, 0)
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(v0 and B0 are indicated in figure 1). Analogously, the
subscripts ‘1’ and ‘2’ refer to the center inflow and outflow
points on the boundary of the diffusion region (figure 1)
and the subscript ‘nl’ is used for quantities on the neutral
line.

Keeping the shape of the boundary fixed, except for
the global scale length L, it can be expected that under
the present conditions ρ0, p0, v0, B0, L and σ is a set of
control parameters. Note, however, that in view of the
nonlinearity of the problem a solution is not guaranteed
for arbitrary parameter choices.

To disregard configurations that are merely the result
of a similarity transformation, it is of interest to note that
from these parameters three independent dimensionless
quantities may be formed, which are conveniently chosen
as

M0 = v0

a0
, S0 = a0L

η
, β0 = 2µ0p0

B0
2 (19)

where a0 is the (inflow) Alfvén velocity B0/
√
µ0ρ0. The

earlier discussion of steady-state reconnection in the
literature largely ignores the parameter β0. This seems
justified if β0 is negligibly small or if pressure is constant
in the external region. (It is only the gradient of the
pressure that counts.) Then, reconnection is a two-
parameter process, for instance described by M0 and S0.
The parameter M0 is regarded as of particular interest and
is usually called reconnection rate. It measures the velocity
with which the plasma enters the region of consideration
(normalized by the local Alfvén velocity). The so-defined
reconnection rate should not be confused with the rate of
magnetic flux reconnection, which is defined by the rate
at which flux conservation is violated in the reconnection
process, which, in the present case, is given by the electric
field component Ez along the neutral line, which equals
E0 = v0B0.

There is no fully satisfactory analytical treatment
of the system of equations (14)–(18). There are
solutions for the external (ideal) region and solutions
for the diffusion region, based on singular asymptotic
expansions. However, a rigorous matching of such
solutions has not yet been achieved. In this situation one
introduces intuitive assumptions or simplifications. Much
of the discussion in the literature is based on the following
approximate picture.

Consistent with jz > 0, let us assume that the aspect
ratio κ = �/δ is large compared to 1, that derivatives
with respect to x are large compared with derivatives
with respect to y and that |Bx | 	 B0. Pressure is treated
as constant in the external region. Then approximate
relations are obtained in the following way:

Condition of incompressibility (11):

v1� = v2δ.

x-component of momentum balance (14) at y = 0:

p1 +
B1

2

2µ0
= pnl.

y-component of momentum balance at x = 0, ignoringBx :

ρ2v2
2

2
+ p2 = pnl.

Ohm’s law:

E0 = v1B1 = v2B2 = jnl/σ.

Ampère’s law (6) (replacing the derivative by a difference
quotient)

jnl = B1

µ0δ
.

Combining these equations and using that, in view of
the assumptions, ρ2 = ρ1 = ρ0, p1 = p2 = p0 one obtains

v2 = a1 (20)

M1 = 1
κ

= 1√
S1

(21)

M1

M0
=

(
B0

B1

)2

(22)

�

L
= S1B0

S0B1
. (23)

This system of equations has to be completed by
an equation for the ratio B0/B1 which requires a more
complete solution of equations (14)–(18). In the absence of
such a solution one introduces an additional condition as
an ad hoc assumption, or from the external solution alone,
or on the basis of numerical computations. We give three
examples.

(a) Sweet–Parker model. Here it is assumed that the
diffusion region is a thin extended structure such that
� becomes of the order of L. For simplicity, let us set
� = L. The external region is largely homogeneous
such that approximately B1 = B0 and S1 = S0. Under
these conditions, (21) gives the reconnection rate as

M0 = 1√
S0
.

This rate is generally regarded as too low to be
relevant for typical conditions in stellar atmospheres
and space plasmas because of their large Lundquist
numbers.

(b) Petschek’s model. In this model it is assumed that
� 	 L. In that case, it is necessary to consider the
presence of slow-mode shock waves (here in the limit
of incompressibility) which implies that B1 may be
considerably smaller than B0. Approximately, one
finds B1/B0 = 1 − 4M0/(π ln(Rm0)). The maximum
reconnection rate occurs near B1/B0 = 1/2, such that

M0 <
π

8
1

lnRm0

.

Typically this reconnection rate is considerably larger
than that of the Sweet–Parker process.
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Figure 2. Numerical solutions of equations (25) and (26) with
$ = Â and & = D̂ by Biskamp. In (b) and (c) the Lundquist
number of (a) is increased by factors of 2 and 4, respectively
(from Biskamp 1986).

(c) Further reconnection models. Several authors (e.g. W
IAxford, B U Ö Sonnerup, E R Priest, T G Forbes) have
generalized the models by Sweet and Parker and by
Petschek in various respects. The most general are the
fast reconnection models of Priest and Forbes. They
included electrical currents in the external region and
obtained a description that contains the Sweet–Parker
and Petschek models as particular cases.

For numerical studies (as for other purposes) it is
convenient to represent v and B by single flux functions
D(x, y) and A(x, y). This is possible because of the
vanishing divergence of both fields and the absence of z-
components,

B = ∇A× ez, v = ∇D × ez. (24)

Then, one eliminates the electric current density by using
(17), and the pressure by taking the curl of the momentum
equation. The remaining equations of the system (14)–(18)
are usually written in non-dimensional form (here non-
dimensional quantities carry the hat-label), such that A is
normalized by B0L, the velocity potential D by a0L and
coordinates by L

[�D̂, D̂] = [�Â, Â] (25)

M − [Â, D̂] = − 1
S0
�Â. (26)

For functions f (x, y), g(x, y) the symbol [f, g] is defined
by

[f, g] = ∂f

∂x

∂g

∂y
− ∂f

∂y

∂g

∂x
.

Equations (25) and (26) have been solved numerically for a
variety of boundary conditions by several groups. Figure 2
shows, for example, a result by Biskamp, demonstrating
that a Sweet–Parker current sheet rapidly develops for
increasing S0.
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Figure 3. Magnetic field lines of the unperturbed Harris sheet
(upper panel) and the linear tearing mode (lower panel).

Time-dependent reconnection
Although, historically, steady-state reconnection has been
given great deal of attention, it seems that in many
cases magnetic reconnection occurs as a time-dependent
process. Several features of steady-state reconnection are
also present in typical time-dependent (two-dimensional)
cases, such as a neutral line and an associated stagnation-
flow pattern. This analogy is particularly close for driven
reconnection, where—as in steady states—the plasma
inflow is determined by boundary conditions.

A qualitatively different case arises when reconnec-
tion occurs as an unstable process. The prototype of an in-
stability involving reconnection is the tearing mode (sug-
gested by H P Furth, J Killeen and M N Rosenbluth). A
plane current sheet located in an infinite domain under-
goes spontaneous formation of magnetic islands (figure 3).
Resistivity plays a similar role as in steady states: it is im-
portant only in regions of strong current concentration.
Assuming that the unperturbed configuration does not in-
volve such concentrations, it can be described in the limit
of S → ∞. The classical example is the Harris sheet, where
the unperturbed magnetic field B, the flux function A and
the plasma pressure p are given (in dimensionless form)
by

B = − tanh(x)ey, A = ln(cosh(x)), p = 1

cosh2
(x)

which is a static solution of (25) and (26) for infinite S.
The instability generates the required current concen-

tration spontaneously. The dynamical evolution is de-
scribed by equations (25) and (26), if generalized to in-
clude time dependence. In view of the time dependence,
it is appropriate to derive the electric field from the time
dependence of the flux function A, rather than from an
electric potential. In dimensionless form one obtains the
following linearized equations for the perturbations φ and
ψ of the velocity potential D and the flux function A

�
∂ψ

∂t
= [�a,A] + [�A, a] (27)
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∂a

∂t
= 1

S
�a − [A,ψ]. (28)

Choosing modes of the form

ψ(x, y, t) = ψ̂(y) eiαy+qt

with a corresponding expression for φ, (27) and (28)
give two ordinary differential equations for ψ̂ and φ̂.
These equations are solved analytically by a singular
perturbation method for the regime

1
S

	 |q| 	 1, |q2| 	 α2 < 1.

The essential aspect is the occurrence of a thin region
around y = 0 of width ε = (q/(α2S))1/4, where the
current density becomes large. Using appropriate scaling
in this region and in the external region, one finds explicit
solutions to lowest significant order in ε. The matching
condition determines the dispersion relation, i.e. q as a
function of α

q̂ =
√
λ

π

0
(
λ+1

4

)
0

(
λ+3

4

) (1 − α2)(1 − λ2)

where

λ = q̂3/2

α̂
, q̂ = qS1/2, α̂ = αS1/4.

The tearing mode develops a series of magnetic islands
with corresponding X-type and O-type neutral lines
(figure 3). The local structure near the X-line resembles
the steady-state reconnection pattern of figure 1.

For the reconnection processes associated with solar
flares and magnetospheric substorms (see MAGNETOSPHERE

OF EARTH: SUBSTORMS) more realistic two- and three-
dimensional models have been developed (pioneered by
J Birn, A Otto, T G Forbes, Z Mikic and others). Figure 3
gives a qualitative sketch of the magnetic field structure
as it develops with time. The original equilibrium
configuration becomes unstable by a process which is a
generalization of the tearing mode shown in figure 3.
During its nonlinear evolution a plasmoid forms, which
grows, becomes accelerated and eventually leaves the
system, carrying a substantial amount of energy that was
stored in the original equilibrium. Processes of this kind
have been suggested to be relevant for magnetospheric
substorms, solar flares and SOLAR CORONAL MASS EJECTIONS.
For the magnetosphere it is believed that the onset of the
non-ideal (e.g. resistive) process is related to the formation
of a thin current sheet late in phase (a) in figure 4.

In the case of three-dimensional modeling one
encounters new aspects, as compared with reconnection
in two dimensions, which are discussed in the following
section.

a b

dc

Figure 4. Plasmoid formation and ejection in a stretched
magnetic field configuration.

Three-dimensional reconnection
The two-dimensional models discussed so far seem to be
realistic for reconnection occurring in three-dimensional
space only if the z-dependence is small and if the extent of
the reconnection region along the perpendicular direction
(z-direction) is large enough that effects of the edges can
be neglected. Moreover, it requires that magnetic flux of
exactly opposite direction is convected along the x-axis
into the reconnection region. Each of these assumptions
is doubtful, and so a generalization with a component
of the magnetic field along the invariant direction is
required which allows for magnetic flux to approach the
reconnection region with a non-vanishing z-component.
This is most simply realized by adding a constant Bz-
component in the model given by equations (14)–(18). This
requires an additional (Ex,Ey) component of the electric
field, which has the form of a gradient (∇(BzD) for the
representation of v given in equation (24)). It therefore
does not destroy the stationarity of these models nor does
it modify the momentum equation.

Although the additional Bz-component seems to be a
minor modification, it gives rise to several fundamental
questions about the notion of reconnection. In two
dimensions (Bz = 0) reconnection is usually defined by
the existence of an X-type neutral point and a flow of
stagnation type which transports magnetic flux across
the separatrices, i.e. the field lines which end at the
neutral point and separate the magnetic flux of the inflow
and outflow regions (see figure 1). With the additional
Bz component, the former neutral line of the two-
dimensional models now becomes an ordinary magnetic
field line and the former separatrices, or separatrix
surfaces, respectively, do not exist anymore or, if the notion
of a separatrix is applied to the projection of the field
onto the plane perpendicular to the field line, they are
not unique. (The latter can be shown by the example
B = (y, x, 1), where every field line possesses separatrices
in this sense, i.e. has an X-type magnetic field in the plane
perpendicular to the field line.) These difficulties become
even more serious for fully three-dimensional magnetic
fields without translational invariance. Several methods
have been proposed to solve these difficulties of localizing
and defining reconnection.
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D

a) b)

R

Figure 5. (a) Sketch of a breakdown of magnetic line
conservation at a localized non-ideal region DR . Two plasma
elements (small spheres) which originally share a field line end
up on different field lines. (b) Topology of field lines in the
vicinity of an A-type generic null, showing the spine (γA) and
the fan (2A); B-type nulls have reversed field directions (from
Lau and Finn 1990).

First, it is tempting to use the plasma flow in
addition to the structure of the magnetic field to identify
reconnection. However, this quantity is not independent
of the frame of reference used, and for instance the location
of the stagnation point depends on the observer. In another
approach Hesse and Schindler therefore used the original
meaning of reconnection, i.e. a breakdown of magnetic
field line conservation (first suggested by Axford). They
introduced the notion of general magnetic reconnection to
occur if ∫

E · ds �= 0 (29)

where the integral is evaluated for field lines passing
through a localized non-ideal region DR embedded in an
otherwise ideal plasma (see figure 5). The criterion (29) is
sufficient for a breakdown of magnetic line conservation,
provided all magnetic field lines start and end in the ideal
region outside DR . This is a consequence of the general
form of magnetic field line conservation

∂B

∂t
− ∇ × (w × B) = λB (30)

where w is the transport velocity of the field lines, which
can be identified with the plasma velocity v in the ideal
region but may differ from it in non-ideal processes.
Equation (30) implies B · ∇λ = 0, and therefore λ is
constant on magnetic field lines. Moreover, in the ideal
region we have w = v and λ = 0 and hence λ = 0 across
DR as well. In this case equation (30) together with the
induction equation implies

E + w × B = ∇$ (31)

and therefore
∫

E · ds = 0 along all magnetic field lines,
because ∇$ vanishes in the ideal region so that $ is
constant outside DR . A non-vanishing integral (equation
(29)) therefore requires a breakdown of magnetic line
conservation. Vice versa, if

∫
E · ds = 0 holds for all

magnetic field lines crossing DR , the potential $ can be
integrated within DR from

E · eB = ∇$ · eB (32)

and the field line velocity, given by

w = (Ẽ × B)/B2 (33)

with Ẽ = E − ∇$, exists provided there is no magnetic
null within DR . In this case (29) is also necessary for a
breakdown of magnetic line conservation.

Magnetic null points
The existence of w given by (33) is critical if there are
magnetic nulls within DR . Using E = −∇ϕ − ∂A

∂t
for a

given evolution of an electromagnetic field, (32) can be
restated by the existence of a potential ϕ̃ = ϕ + $ with

B · ∇ϕ̃ = −B · ∂A
∂t

(34)

where A is a vector potential for B. Given the potential ϕ̃
on a surface crossed only by non-recurring field lines this
condition defines ϕ̃ along these field lines. This method,
called potential mapping, does not necessarily lead to a
smooth potential ϕ̃ if field lines from separated regions
join at magnetic nulls. For instance, smooth boundary
conditions on ϕ̃ given for all field lines entering a surface
enclosing the null, may lead to discontinuities of ϕ̃, and
if the boundary is part of the ideal region the condition
on ϕ̃ corresponds to boundary conditions on the plasma
velocity v. Therefore, Greene, followed by Lau and Finn,
argued that in an almost-ideal plasma magnetic nulls are
the site where non-ideal terms, especially the resistive term
in Ohm’s law, become important, and hence a breakdown
of magnetic field line conservation may take place.

Magnetic nulls can be classified in terms of the
eigenvalues of the tensor ∇B. They have either one real
and two complex conjugated eigenvalues or three real
eigenvalues. For the latter case they are called type A for
(+ − −) signs of the eigenvalues and type B for (− + +)
(see figure 5). The eigenvectors of the complex conjugated
eigenvalues, or of the real eigenvalues with the same sign,
span a magnetic surface called the fan surface by Priest and
Titov. The third eigenvector defines the spine as shown in
figure 5. In the the case of more than one magnetic null
the fan surfaces of an A-type and B-type null intersect at a
structurally stable magnetic field line called separator. It
can be shown that this field line is also a potential site of
reconnection due to discontinuities in ϕ̃ or singularities of
w for corresponding boundary conditions.

The topological structure of magnetic nulls led Priest
and Titov to propose two additional mechanisms of
reconnection called spine and fan reconnection. They
showed that certain prescribed motions of the field lines
on a surface enclosing the null produce singular field line
velocities according to equation (33), and hence require
a breakdown of field line conservation. In spine and fan
reconnection the current tends to concentrate along the the
spine and fan respectively.
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Reconnection without nulls
Magnetic nulls are not the only places where magnetic
reconnection may occur. For instance if equation (34) is
integrated over a closed field line with a non-vanishing
contribution of the right-hand side, one finds that the
potential ϕ̃ may not exist and therefore processes breaking
the magnetic line conservation have to be present. This
is also reflected by the criterion (29) which does not
require nulls. For a non-vanishing magnetic field the
method of potential mapping always leads to a smooth
potential ϕ̃ and transport velocity w. However, the
latter might be very large, much higher than the Alfvén
velocity, which excludes under realistic conditions an ideal
evolution. This may happen, as noted by Priest, Forbes
and Demoulin, in layer-like regions where the potential
mapping or mapping of foot points of field lines shows
strong gradients and which are therefore called magnetic
flipping layers or quasi-separatrix layers.

While the method of potential or field line mapping
aims at finding potential sites of reconnection and thus
adds to the general criterion (29) certain conditions
on the structure of the magnetic field, Hornig gave a
more restricted definition of reconnection by generalizing
the observation that in two dimension the field line
velocity w has a singularity at the X-point. A covariant
description shows that this singularity is a special type
of null of the corresponding four-vector field W 4. This
property is structurally stable in the transition from two
to three dimensions, where now the site of reconnection
is determined by a line of finite length along which W 4

vanishes. Within this definition it is in particular possible
to distinguish a simple local slippage of plasma relative to
the field lines, which also may satisfy (29) but which is not
usually called reconnection, from reconnection itself.

Another aspect of reconnection is the dynamics of
MAGNETIC HELICITY. While in two dimensions the source
of magnetic helicity (−2E · B) vanishes, this is not
necessarily the case in three dimensions. Hence magnetic
reconnection in three dimensions does not necessarily
conserve magnetic helicity.

Collisionless reconnection
Magnetic reconnection can also occur in the absence
of a collisional resistivity. Collisionless reconnection
processes are based on non-ideal terms that in a more
refined macroscopic picture appear on the right-hand
side of Ohm’s law (3) in addition to the resistive term.
For instance, a current-driven microinstability may lead
to fluctuations that on the macroscopic level have an
effect similar to resistivity based on particle collisions.
Also, resonant wave–particle interaction, off-diagonal
terms of the electron pressure tensor or electron inertia
have been suggested for magnetic reconnection. The
final assessment of the role that each of these processes
plays in reconnection requires a full three-dimensional
kinetic description. Although such a kinetic point of
view is crucial for the understanding of the small-scale
plasma physics of reconnection, it less crucial for the

overall dynamics, which in many of its features seems
to be largely independent of the type and details of
the non-ideal process. Thus, even highly collisionless
reconnection processes, as for instance occurring in the
Earth’s magnetosphere, have been successfully simulated
by using a simple resistive model of the form (3). Often, the
resistivity is empirically adapted, for instance by spatial
localization or by introducing an ad hoc dependence of η on
the electric current density. The formation of thin current
sheets in the pre-reconnection dynamics seems to play an
important role in the onset of collisionless reconnection
processes.
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