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1 Introduction

This second project will allow you to become further acquainted with the Matlab program-
ming environment, learn about solving coupled differential equations, and modify previously
written code. You will again write a report, fixing any mistakes that you made in your
previous report.

2 Project Requirements

Step 1 — cyclotron motion Download the file ParticlePush.m from the course web
page and run it. This main program solves Newton’s second law for a charged particle
in a uniform magnetic field and plots the results. You will compare the numerical
solution for pure cyclotron motion with the solution derived in class.

(a) The analytical solution for velocity derived in class for pure cyclotron motion was:

~v(t) = v⊥ sin(ωct)x̂+ v⊥ cos(ωct)ŷ + v‖ẑ.

Integrate this solution to produce an expression for the position vector ~r as a function
of time.

(b) Alter ParticlePush.m to plot the analytical solution alongside the one obtained
using the Runge-Kutta integration technique. Make sure to use the same magnetic
field value as in the program and include a plot legend with distinguishable line types
for the numerical and analytical solutions. Verify that both solutions are in reasonable
agreement. For this exercise they should be almost identical.

(c) Alter the charge and mass variables in ParticlePush.m so that you can simulate
an electron for the same initial conditions. Run the program, and plot the results
alongside the analytical expression, using values for electrons this time. Demonstrate
again that the numerical and analytical results are consistent.

NOTE: Your results should be summarized in two plots (one for the proton and one
for electrons and the overplotted analytical solutions). These plots must be included
in your report (i.e., integrated — with captions — into the pdf file). Your derivation
for the position as a function of time should also be included in your report.
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Step 2 — ∇B motion Here, you will simulate gradient-B drift motion for a proton.

(a) Modify the magnetic field subroutine in ParticlePush.m to include a magnetic
field with a gradient.1 The simplest way to do this is to keep the magnetic field purely
in the z-direction (as in the previous section) but to include a linear variation (e.g.,
with respect to x) so that a constant gradient exists (in the x-direction in this case).

~B(x, y, z) = B0

(
1 +

x

L

)
ẑ,

where L = 2 m. As in Step 1, use a reference magnetic field of B0 = 45000 nT.
Modify the initial conditions so that there is no parallel-to-B component of velocity
(to simplify the visualization of results) and assume that the particle starts at the
origin with velocity vy = 4000 m/s. Plot the results and verify that the particle drifts
in the correct direction while also undergoing cyclotron motion. Note that since the
particle remains in the z = 0 plane, a 2D plot of y vs. x is sufficient.

(b) Construct an approximate analytical solution for the particle position vector vs.
time by adding together the cyclotron motion solution with an average grad-B drift.
Use the magnetic field above to compute the gradient. For computing other quantities
(e.g., magnetic fields and moments) in the gradient-B drift formula, use average values
of the magnetic field. These can be calculated by using the average position. Plot your
analytical solutions alongside the numerical solution that you have calculated in part
(a) and verify that the two solutions are approximately equal.

(c) Run the program for two more different initial velocities — half and double the
values used before. Make plots of the particle paths from these two simulations. Discuss
the dependence of your results on initial velocity and interpret the results in terms of
Larmor radii and gradient-B drift speeds. Discuss the consistency of your simulation
with the basic gradient-B drift formula.

NOTE: Your results should be summarized in two plots (one comparing numerical and
analytical results and another showing the results of halving and doubling the energy).
Your derivation for the position as a function of time for a proton undergoing grad-B
drift should also be included in your report.

Step 3 — magnetic mirror motion (a) Modify the magnetic field subroutine in Parti-
clePush.m to describe a magnetic field with a “bottle” configuration, i.e., a region of
weak field surrounded by a strong-field region. One simple way to do this is to specify
the z component of the magnetic field as a quadratic function of z

Bz = B0

(
1 +

z2

a2

)
,

where a = 300 m and B0 = 10 µT.

1There are two places in the RK2 routine where the magnetic field structure must be inserted. First,
at the very beginning of the loop, and here B depends on the previous values of r and v, which are called
“rprev” and “vprev”. Second, after new values of the position and velocity are computed, the electric and
magnetic field values must be evaluated there, as functions of ‘r’ and ‘v’.
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(b) Use the divergence-free constraint of Gauss’s law for magnetism (∇ · ~B = 0) to
determine the radial component of the magnetic field Bρ, as we did in class. You can
assume that the magnetic field has azimuthal symmetry. You will need to convert
the cylindrical components of the magnetic field vector into Cartesian components
Bx(x, y, z) and By(x, y, z), as needed by the program.

(c) Choose the initial position of your proton to be the origin, as before, but have
the initial velocity components be vy0 = vz0 = 10, 000 m/s. You will need to modify
the total runtime (variable ‘lt’) to be more than 10 cyclotron periods (50-80 should
be sufficient). Plot the particle path and verify that it mirrors correctly. Estimate
the period (in seconds) of the mirror motion by producing an additional plot of the
particle velocity vs. time along the z-direction (the axis of the bottle) and reading the
period of the oscillation from the graph. You may need to adjust the runtime so that
the particle mirrors a few times so you can easily estimate frequency and period. Take
care to avoid division by zero when computing the x and y components of the magnetic
field.

(d) The parallel equation of motion can actually be solved analytically for the special
form of the magnetic field we have chosen. Set up an equation of motion for the
z-component of the velocity by including the mirror force

Fz = −µ∂Bz

∂z

in Newton’s second law. Solve your differential equation (remember that the magnetic
moment is constant of motion!) and use the results to calculate the what the frequency
and period of motion along the axis of the bottle should be. Compare this prediction
of the oscillation period with that obtained from the simulation results.

NOTE: Your results should be summarized in two plots (one showing the simulated
mirror motion and another showing the z-component of velocity vs. time). Your
derivation for the radial and Cartesian components of the magnetic field should be
included along with your analysis of the parallel equation of motion.

Step 4 — motion in a dipole magnetic field (a) Modify the magnetic field subroutine
in ParticlePush.m to describe a dipole magnetic field. Convert the form for dipole
magnetic field, as discussed in class, into Cartesian coordinates. i.e., obtain the follow-
ing functions, Bx(x, y, z), By(x, y, z), and Bz(x, y, z). Perhaps the best way to do this

is to use the Cartesian form of the unit vectors r̂ and λ̂ plug in values for r, sinλ, and
cosλ, in terms of x, y, and z. Be sure to include this derivation in your report.

(b) Modify the magnetic field subroutine in ParticlePush.m so that it calculates the
dipole magnetic field. The magnetic moment of the Earth2 is M = 7.94× 1022 A m2.
Set the initial position of the particle to be in the equatorial plane (z = 0) at a distance
of r = 2RE from the center of the earth (which is at the origin). Adjust the initial
velocity so that the proton has equal velocity components vx0 = vy0 = vz0 and a total

2Or, if you prefer, you can set the field strength at the Earth’s surface at the equator to be B0 = 3× 105

T.
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kinetic energy of 400 keV. Note the special initial conditions you use in your report.
Alter the runtime of the program so that the particle can be seen to mirror and drift
azimuthally (due to grad-B and curvature drift). I have found that 1250 cyclotron
periods is sufficient. Plot the results for the particle path. Estimate the mirror bounce
period from the plot (be sure to explain how you obtained your estimate in the report).

(c) Adjust the runtime of the program so that you can see the particle execute one full
orbit around the Earth. Plot the path and estimate the orbit time. Due to the large
number of outputs for the path, it may be faster to plot only one out of every 1000
points along the path to see the drift motion. This is controlled by the variable ‘itout.’
I have found that about 250,000 cyclotron periods are required to get a full orbit and
that the program takes several minutes to run under these circumstances. Estimate
the time the particle takes to orbit the Earth.

(d) Compute analytically the gradient-curvature drift velocity for a particle with the
parameters used in your simulation. Remember that the radius of curvature of a field
line that crosses the equatorial plane at r = r0 is r0/3. Assume that the particle
describes a circular path around the Earth and compute the time it takes to complete
one orbit. Compare this estimate against the simulation results. This calculation
involves several significant approximations, but you should still be able to get within
a factor of 2-10 of the true result given by the simulation.

NOTE: Your results should be summarized in two plots (one showing the particle
mirroring in the dipole field and another showing drift motion around the earth. Your
derivation for the Cartesian components of the dipole sfield and your calculations
involving gradient-curvature drift should also be included.

3 References

You don’t need to use the “bibliography” environment for your references, but you can type
them out by hand.
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