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research; the focus of this text is on the fundamental processes governing the
environment and on the phenomena they produce.

The presentation here assumes no previous knowledge of plasma physics
and Chapter 2 is intended to provide an introduction to the topic at the min-
imum level necessary for later discussions. Following that chapter, Chapters
3-?? trace the flow of mass and energy from the Sun to Earth, through
it’s magnetosphere and atmosphere, and ends with a discussion of auroral
physics. All of this subject matter then leads into Chapter ?? which discusses
some outstanding questions and areas of current research. Z: do we want
to do this?
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Chapter 1

Introduction and Overview

1.1 Introduction

It is good to begin with a definition. The term Space Physics, as we use
it here, is meant to be synonymous with the phrase Physics of the Solar-
Terrestrial Environment, where by Solar-Terrestrial Environment we mean
that part of Earth’s environment that begins at Earth’s surface and extends
out to several tens of Earth radii. Given this definition, it may seem odd
to retain the word “solar” because the environment as we define it does not
extend to the Sun itself. Perhaps it is odd, but we will see many times
throughout the text that the Sun is the main source of mass, energy and
momentum that drives almost all of the exciting and important physics and
engineering considerations in this environment. To borrow a phrase, the Sun
is the “elephant in the room” of the near-Earth space environment, even
though it is not there physically. And so, although we will principally be
concerned with the near-Earth space environment, we will be ever mindful
that the Sun’s presence, if not the Sun itself, is never far away. Part of
Chapter 3 addresses solar physics.

The solar-terrestrial environment is filled with plasmas and radiations
of different types, with electric and magnetic fields, with highly energetic
charged particles that interact with and modify these fields, with neutral
particles and, it must not be omitted, with Earth’s satellite fleet and ground-
based technologies that can be, and indeed continually are, impacted by all
these things. This environment is complex and important, not only due to its
effects on the untold worth of human technologies but also due to the funda-
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2 CHAPTER 1. INTRODUCTION AND OVERVIEW

mental and compelling physics involved in understanding the observed and
expected interactions, boundaries, and phenomena. It is this environment
with which our study of space physics is concerned.

It could be argued that the field of space physics had its genesis in early
theories and considerations related to the northern lights, or aurora borealis1.
As one of nature’s most spectacular phenomena, the aurora has captivated
the human mind for eons, probably, we may suppose, ever since it was first
observed2. Yet even with this ancient history, the field of space physics must
be considered relatively young. Its scientific investigation as we understand
it in the modern sense began less than 100 years ago when technology pro-
gressed to a point where humans began to have significant interactions with
the solar-terrestrial environment. In particular, the development of radio,
radars and satellites have provided, and continue to provide, major impe-
tuses to the study of this environment.

We will begin our investigation of this environment in Chapter 3 with
an introduction to the Sun and proceed away from it, chapter by chapter,
through the interplanetry medium in the direction of Earth. In Chapter 4
we will first encounter a region known as Earth’s magnetosphere and we will
spend two chapters there considering its formation, structure and dynamics.
We then continue towards Earth’s surface and in Chapters 6-7 encounter
Earth’s neutral and ionoized atmospheres. An introduction to and overview
of auroral physics is given in Chapter ??. Finally, our investigation concludes
in Chapter ?? with a summary disucssion leading to outstanding questions
and areas of current research (Z: do we want to do this?)

1The phrase aurora borealis is composed of the names for the Roman goddess of the
dawn, Aurora and the latinized Greek name for the north wind, Boreas. The same phenom-
ena occurs in the southern hemisphere where it is called the aurora australis or southern
lights.

2The arctic peoples have a rich folklore surrounding the aurora. Interestingly, in most
of this folklore the aurora is taken as a bad omen or as respresentative of evil spirits. Those
who have observed the aurora’s sometimes violent undulations under the deep darkness
and silence of an arctic night may empathize with these associations. For an overview of
auroral folklore, the interested reader is referred to any of the excellent popular books on
the subject (for example, Aurora: The Northern Lights in Mythology, History, and Science
by Harlald Falck-Ytter.)
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1.2 Overview

1.2.1 The Sun and the Solar Wind

The Sun is a star and, as astronomers tell us, a rather unremarkable one at
that. Perhaps the Sun is unremarkable when compared to other stars, but
no one would disagree that it is most certainly remarkable in its relation to
Earth. It has rightly been called our “engine of life” and we may think of
it as one of the few constants in our ever-changing world3. From day to day
and decade to decade, it appears the same to our naked eye. More sensitive
instruments and the space environment itself reveal, however, that the Sun
is by no means constant. It not infrequently exhibits violent storms that
emit photon and particle radiations capable of seriously impacting and even
destroying Earth-based technologies. Even during its relatively calm periods,
its temperatures are so extreme that its outer atmosphere is continuously
“boiling off” into space, bathing Earth (and the other planets as well as
everything else in the solar system’s space environment) in a continuous flow
of charged particles and magnetic fields. This continuous flow of charged
particles is known as the solar wind and it, with the interplanetary magnetic
field, or IMF, it carries forms a vital connection between the Sun and Earth.
The solar wind and the IMF do not penetrate to Earth’s surface but, as
illustrated in Figure 1.1, instead interact with Earth’s own magnetic field to
form what is known as the magnetosphere.

1.2.2 The Magnetosphere

Earth’s main magnetic field is generated by electric currents flowing at great
depths beneath its surface and to a first approximation may be fictitiously
conceptualized as the field due to an exceedingly strong bar magnet located
at the center of our planet. This geomagnetic field extends out into space
where it encounters the solar wind and IMF, against which it forms a sort
of barrier not entirely unlike a rock in a stream’s flow of water. As the solar
wind flows around this barrier, it confines Earth’s magnetic field inside a
boundary known as the magnetopause that identifies the outer reaches of
our magnetosphere. The magnetosphere protects both life on the surface
and most satellites in orbit from continuous bombardment by the solar wind

3The quoted phrase and essence of this sentence is taken from the excellent IMAX
movie Solar Max, 2002.
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Figure 1.1: A schematic illustration (not to scale) of the Sun, the interplan-
etary medium filled by the solar wind and IMF, and Earth’s magnetosphere.

and IMF. Although under ordinary condititions the magnetosphere is large
enough to provide protection to even those satellites orbiting at the large
altitudes required by geostationary orbits4, solar storms may push, and in
the past have pushed, the boundary of the magnetosphere so near Earth that
these satellites are exposed to the full force of the solar wind. In such cases,
system failures and even destruction are unfortunate likelihoods.

The magnetosphere is not a static object and the electric fields, magnetic
fields, and plasmas inside it are continually evolving. Among many other im-
portant effects, the dynamics of this evolution are responsible for producing
the aurora mentioned earlier.

1.2.3 The Neutral Atmosphere

We live in a region known as the troposphere, the lowest layer of Earth’s
neutral atmosphere, and we are all familiar with the fact that, as one ascends
in altitude from the surface, the temperature decreases rather rapidly, as do
the atmospheric density and pressure. As it turns out, approximately two
thirds of the atmosphere’s mass lies below 8 km (∼5 miles or ∼26,000 ft)

4Geostationary orbits are those for which a satellite always remains above a fixed
point on Earth’s surface. To achive this, the orbit must be circular with zero inclination
(orbiting above the equator) and have a period equal to one sidereal day (the time it takes
Earth to complete one rotation relative to inertial space). Such orbits have an orbital
radius of 6.6RE where RE is Earth’s radius.



1.2. OVERVIEW 5

and over 99% lies below 50 km. We live and breathe within a very thin shell
of suitable atmosphere!

While the density and pressure essentially fall off monotonically, the tem-
perature profile of the atmosphere is not so simple. In the troposphere,
temperature decreases with increasing altitude but, at some point, the trend
reverses so that it begins to increase with increasing altitude. Amazingly,
the trend reverses itself two more times within the span of several hundred
kilometers so that the profile of temperature as a function of altitude is
a complicated set of curves with both positive and negative slopes. This
temperature profile and several other considerations make the upper neu-
tral atmosphere a very complicated part of the solar-terrestrial environment.
Among these complications is the fact that, embedded within the neutral at-
mosphere, there is another atmosphere that consists of ionized constituents.

1.2.4 The Ionosphere

Photon radiation and, most importantly, extreme ultra-violet radiation from
the Sun is undeflected by Earth’s magnetosphere and penetrates to the upper
regions of Earth’s neutral atmosphere. These photons have energy sufficient
to ionize a portion of the neutral atmosphere so that electrons and ions are
continually produced. At certain altitudes the density of the electrons and
ions and the types of ions produced are such that their recombination into
neutral constituents is relatively slow and a net concentration of ions and
free electrons result. This ionized part of the atmosphere is known as the
ionosphere. It is conductive, can interact strongly with radio transmissions
and supports the flow of strong electric currents. For these and other reasons,
the ionosphere plays a very important role in the overall solar-terrestrial
environment.

1.2.5 Summary

The reader may now appreciate that the solar-terrestrial environment is com-
plex, highly coupled, significant to our technologies, and compelling as a field
of study. In the remainder of this text, we aim to introduce the student to
the field primarily through a first-principles approach. It must be noted that
this text is not intended to be a treatment of current research or of outstand-
ing problems in the field. We aim instead to provide the student with both
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qualitative and quantitative understandings of basic phenomena and interac-
tions. The text is intended to be foundational and to provide students with a
competent overview in preparation for future careers as engineers, physicists,
and space scientists.

Before we begin our study of the solar-terrestrial environment, a signif-
icant point must be made. Of all the regions mentioned above (the Sun,
the interplanetary medium containing the solar wind and IMF, the magne-
tosphere, the ionosphere and the neutral atmosphere), all but the neutral
atmosphere are plasmas. Consequently, the field of space physics is exten-
sively grounded in both the physics and the nomenclature of plasmas. And so
we begin in the next chapter by discussing some important and fundamental
topics from plasma physics.

Exercises
1.1: Research the other planets in our solar system to determine which

have magnetospheres. Briefly discuss ways in which these other magneto-
spheres are similar and/or different than Earth’s magnetosphere.



Chapter 2

Plasma Physics Fundamentals

2.1 Plasma Definition

2.1.1 General Plasma Properties

Before proceeding to study plasmas in some detail, we must first answer the
basic question: What is a plasma? That is, before diving into details, let us
as before first define the thing that we will be investigating.

There are four states of matter: solid, liquid, gas, and plasma. In gen-
eral terms1, a material is in the solid state when chemical bonding provides
for a rigid structure wherein each molecule (or atom - here the single term
molecule will be used for convenience) is held in a fixed position relative to
the rest of the material. A solid cannot, therefore, easily change its shape or
volume. As a solid is heated, the added thermal energy increases the random
motion2 of these molecules until, at some point, a phase transition occurs
and the random thermal motion overcomes the chemical bonding holding
each molecule rigidly in place. The material has melted and is now a liquid
wherein its molecules maintain approximate physical positions relative to the
bulk of the material but are in no definite, fixed positions. The liquid may
therefore, for example, change shape to assume that of its container.

As a liquid is heated, the added thermal energy continues to increase the
random motion of the material’s molecules until, at some point, molecules

1By this I mean to caution you: Don’t take the two following paragraphs as strictly
and universally accurate!

2Here and below, this random motion should be thought of as a measure of the mate-
rial’s temperature.

7



8 CHAPTER 2. PLASMA PHYSICS FUNDAMENTALS

have sufficient kinetic energy to break free of the bulk material and, so to
say, burst freely into space. Another phase transition has taken place and
the material evaporates into a gas. In the gasseous state, each molecule is,
to some order of approximation, independent of all others and the material
is now free to change both its shape and its volume. As we continue to add
energy to the material, it now becomes possible that, in addition to increasing
the temperature, we may provide enough energy to strip electrons from some
of the otherwise neutral molecules, resulting in a mixture of neutrals, ions
and electrons. The material has undergone yet another phase transition and
is now a plasma. In general, everyday terms then, we can describe a plasma
as an ionized gas.

“A plasma is an ionized gas” is a fine definition when speaking with the
man or woman on the street or with colleagues who are non-specialists. But
we seek a more precise and accurate definition. To aid us in efforts towards
obtaining such a definition, let us first note a few interesting properties of
plasmas.

Suppose a substance that may properly be called a plasma is created
in some container. Each electron that was freed in the phase transition
was liberated when a neutral was ionized, so it must be the case that there
are equal numbers of electrons and ions, regardless of what fraction of the
neutrals were ionized3. A plasma created in this way is therefore electrically
neutral. That is, the sum of all charges equals zero and, at least over large-
and long-enough spatial and temporal averages, there should be same number
of electrons in any given volume as there are ions. Let us denote the ion
density as ni and the electron density as ne. It should be that ni = ne. Now
it must be admitted that on some spatial and time scales, there may be slight
departures from neutrality (more on this later), but we can with confidence
ammend our definition and say that a plasma is a quasineutral gas of charged
particles.

Another striking and vastly important property of plasmas is that they
exhibit collective behaviour. Consider first a group of 10 billiard balls scat-
tered randomly on a pool table. I may move one or two of those ball without
affecting the positions of any others, so long as I cause no collision (as is too
often the case when I play pool!). But not so with plasmas. If instead of 10
billiard balls, the pool table was populated with 4 “neutrals”, 3 “ions” and

3Unless otherwise noted, we will assume throughout this text that ions are singly
ionized.
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3 “electrons”, moving one or two of the ions or electrons will result, through
the actions of the Coulomb force, in the movement of all other charged balls
and, quite possibly, motion of the neutrals due to collisions. We therefore
say that plasmas exhibit collective behaviour.

A useful, if not precise, definition: “A plasma is a quasineutral
gas of charged and neutral particles which exhibits collective
behavior.” [Chen, 1983, p.3]

So far we have seen that plasmas are quasineutral and that they exhibit
collective behavior. A third property of plasmas is that the charges must be
mobile. Suppose, as an extreme example, the temperature of a plasma was
reduced to zero. That is, suppose all random thermal motion was eliminated.
What would happen to the ions and electrons in the plasma? The Coulomb
force would as always be effective and would cause ion/electron pairs to
come, and to stick, together. They would neutralize each other and the
plasma would, after a very short time, no longer be ionized - it would return
to the neutral gas from whence it came. Of course, the temperature need not
be zero for this neutralization to occur. It will substantially occur whenever
and wherever the electric potential energy exceeds the thermal energy. It
must be then that, to have a plasma, the following condition is required:
kT >> qφ where k is Boltzman’s constant4, φ is the electric potential, and
q is the ion charge.

Plasmas must contain random thermal motion sufficient
to overcome the attractive Coulomb potential energy gra-
dient between ions and electrons.

2.1.2 Debye Length and Plasma Parameter

Let us take a further step in the direction of a proper definition by considering
the effects of introducing a test ion into an otherwise neutral plasma. The
excess positive charge provided by the test ion will set up an electric field
that imparts a force on all other charged particles. They will be accelerated
and will move in response. But ions with their heavy nuclei are much more
massive and consequently accelerate much less than electrons and it is a

4k = 1.3806488 × 10−23 m2 · kg/s2/K, named the Boltzmann constant after the Aus-
trian physicist Ludwig Boltzmann (1844-1906).
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useful assumption to take the ions as stationary while the electrons alone
move in response to the field. The electrons are attracted to the test charge
but recall that their thermal energy greatly exceeds their electric potential
energy. They therefore move towards the test charge but do so in a very
random manner. In effect, they will swarm around the test charge as a cloud
of hungry mosquitoes on the Alaskan tundra would swarm around an intrepid
backpacker wearing mosquito repellent. They are attracted to the test ion,
but not strongly enough to overcome their random thermal motion and so a
swarming cloud of electrons gathers around the imposed test charge.

The “size” of this cloud is an important and fundamental plasma param-
eter and will form the basis for the first of what will become three quantative
conditions that serve as an acceptable technical definition of a plasma. Be-
fore we derive the size of this cloud, let us imagine the result at two insightful
limits: when the electron temperature goes to zero and to infinity. At zero
temperature, electrons have no thermal energy and we have already assumed
that the ions are stationary. The electron/ion pairs will stick together as
described before and the size of the cloud will therefore be zero in this case.
In the case of infinite electron temperature, the random motion will be in-
finitely more dominant than electrical attraction and the size of the cloud
will be infinite. Clearly then, the size of the cloud will depend on the elec-
tron temperature such that as temperature decreases, the size of the cloud
decreases.

We can appreciate another parameter that impacts the size of this electron
cloud by thinking a little more carefully about it. When the test charge
is initially placed in the plasma, many electrons cloud around it because
no single electron with its dominant thermal energy is able to completely
neutralize the created electric field. But it does seem reasonable that, as the
density of electrons (before introducing the test charge) is increased, the size
of the cloud should decrease as more electrons per unit volume are available
to assist in neutralizing the electric field. So we suppose that the size of our
electron cloud should grow with increasing temperature and decrease with
increasing electron density.

To obtain an expression for the size of the cloud, let us begin with Pois-
son’s equation:

∇ · E = ρ/ε0

where E is the electric field and ρ is the charge density in the plasma5. Note

5ε0 = 8.854187817... × 10−12 N ·m2/C2 is the permittivity of free space. Its value is
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that in the same average sense described before, both of these quantities
would be zero in the absence of the imposed test charge. The electric po-
tential6 is given by E = −∇φ so that we may rewrite the above equation as
∇ · (−∇φ) = ρ/ε0 or ∇2φ = −ρ/ε07. The charge density results from the
presence of ions and electrons and we may write ρ = eni− ene where e is the
electron charge8 and it is assumed as before that each ion is singly ionized.
The potential is then

∇2φ = − e

ε0
(ni − ne). (2.1)

To solve Equation 2.1, which involves partial derivatives in space, we
must identify how ni and ne vary in space. We have assumed that the
massive ions are stationary and it is reasonable to further assume that their
density is constant throughout the plasma. Let us call that constant n0, the
average density of charged particles (of a given sign) in the plasma. That is,
we assume ni = n0 which states that the density of ions is equal to the overall
average density of charged particles and that it is independent of position9.
The density of electrons, on the other hand, will not be constant over space.
There will be more electrons per unit volume near the test charge and fewer as
distance increases from the test charge. Further, assuming thermodynamic
equilibrium, we can state without proof that the distribution of electrons
follows the Boltzman distribution10 so that

ne(φ) = n0e
( eφ
kTe

)

where Te is the electron temperature. Here, the gradient in the electric
potential energy creates an attraction between an electron and the test ion

defined as ε0 = 1
µ0c2

where c = 2.99792458× 108 m/s (by definition) is the speed of light

in vacuum and µ0 = 4π × 10−7 T ·m/A (also by definition).
6Notice that the electric potential we are about to write down assumes we are dealing

with an electrostatic situation. That is, we will assume that whatever adjustments the
plasma makes in response to the test charge have already happened and, on average, the
electron density, and thus the electric field, is static.

7If A is the magnetic vector potential (so that B = ∇ × A) and one chooses the
Coulomb gauge so that ∇ · A = 0, this relation holds even without the electrostatic
assumption.

8e = 1.602176565(35)× 10−19 C is the measured value of the electron charge.
9That is, the ions are homogeneous.

10If you are uncomfortable with this result stated without proof (and you should be!),
see [Chen, 1983, p.9] for a few more steps.
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but this attraction is, in some sense, countered by the random thermal motion
in such a way that a Boltzman distribution results.

We may substitute these results for ni and ne into Equation 2.1 to get

∇2φ = − e

ε0
n0

(
1− e eφ

kTe

)
.

Now this is still a difficult equation to solve! A further simplification
can be achieved by recalling that, in a plasma, the thermal energy greatly
exceeds the electric potential energy. Because eφ << kTe, we may Taylor

expand about eφ = 0 to find that e(
eφ
kTe

) ≈ 1 + eφ
kTe

which yields

∇2φ =
n0e

2

ε0kTe
φ. (2.2)

Solving Equation 2.2 assuming spherical symmetry and applying a boundary
condition requring the potential to go to zero as the radial coordinate r
approaches infinity, we arrive at the solution for the potential as a function
of distance from the test charge:

φ(r) = C exp

(
−r
(
n0e

2

ε0kTe

) 1
2

)
= Ce−r/λD . (2.3)

where λD is known as the Debye length.
For our purposes here, it is not important to evaluate the constant C

in Equation 2.3. What is important is that we have found how the electric
potential, and thus the electron density, varies with distance from the test
charge. The electric potential and electron density fall off exponentially with
a scale length of

λD =

(
ε0kTe
n0e2

) 1
2

. (2.4)

As we initially supposed, the cloud size characterized by λD increases with
increasing temperature and decreases with increasing electron density. These
are in fact the only two variables on which it depends.

Some numbers may be instructive here. Combining the constants in
Equation 2.4 yields the useful approximation that

λD ≈ 69 (Te/n0)1/2
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where Te is in Kelvins and n0 is in electrons per cubic meter.11 Table 2.1
shows representative temperatures, densities and Debye lengths for several
plasmas.

Plasma Electron Electron Debye
Temperature (K) Density (m−3) Length

Earth’s
Ionosphere 1000 1012 2 mm
Interstellar Gas 6000 105 20 m
VanAllen
Radiation Belts 106 109 2 m
Fusion Reactor 2× 108 1020 0.1 mm
Sun’s Core 107 1032 10−11 m
Solar Wind 105 106 20 m

Table 2.1: Typical Debye lenghts for selected plasmas.

The Debye length is of fundamental importance becuase it determines
the scale over which a plasma is able to neutralize the effects of any imposed
charge disturbances or electric fields. Moving to a distance of λD away from
a charge disturbance, the potential (or electric effect of that charge) has
decreased to approximately 37% of its maximum value. Moving a distance of
2λD away, the potential has decreased to approximately 14% of it maximum,
and moving to a distance of 5λD, the potential is less than 1% of its maximum
value. That is, at distances of ∼ 5λD and farther, it is as if the disturbance
was not there at all; any effects have been “screened” by the intervening
cloud of swarming electrons.

As a brief aside, it may be worthwhile to point out one important impli-
cation of this screening effect. When a rocket or satellite passes through the
plasma of Earth’s ionosphere or magnetosphere, the vehicle often acquires a
net charge and, as a result, essentially flies around carrying with it a Debye
cloud of the opposite polarity to the charge acquired by the vehicle. Should
an instrument on the vehicle be intended to measure the ambient plasma
density, it is essential that the sensor be physically separated from the vehi-
cle by at least several Debye lengths in order to avoid sampling the density
inside the cloud rather than the ambient density. As shown in Table 2.1,

11This approximation is accurate to about 1 part in 104.
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Debye lengths in the near-Earth space environment vary over several orders
of magnitude so that this problem requires careful engineering and science
considerations.

This ability to screen potentials (or, in essence, short out electric fields)
is a key defining feature of plasmas and we make it the first of our three
conditions a plasma is required to satisfy: The physical size of a plasma
must be much larger than the Debye length. Furthermore, we can impose a
second condition and require that, before the introduction of any test charges,
a sphere with radius λD (a so-called Debye sphere) contains many electrons.
The number of electrons contained in a Debye sphere is called the plasma
parameter and is given by Λ =

(
4
3
πλ3

D

)
n0. The factor of 4

3
π is often dropped

in practice in which case the plasma parameter gives the number of electrons
in a Debye cube.

So we are now in a position to state the first two of three conditions that
must be satisfied by a plasma:

1. λD << L

2. Λ >> 1

where L is a parameter characterizing the physical extent of the plasma.
That is, a plasma must be many times larger than the Debye length (so
that screening of imposed potentials will be effective) and there must be
many electrons in a Debye sphere (or cube). The remaining one of our three
conditions can be stated after considering another fundamental property of
plasmas.

2.1.3 Plasma frequency

Figure 2.1a shows, as we considered before, an equilibrium state in which
a uniform background of ions (the black dots) is surrounded by a swarm of
mobile electrons (the gray rectangle). Suppose we somehow stopped time for
a moment, grabbed every electron in the plasma and displaced them all to
right as indicated in Figure 2.1b. If we then let go of those electrons and
restarted time, what motion do you suppose would result (stop and think
before reading on!)?

First, we again realize that no matter what the electron motion is, a
good first approximation would be that the much more massive ions remain
essentially stationary. So we turn our attention to the electrons. Will they
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Figure 2.1: a) An plasma in equilibrium indicated by stationary ions (the
dots) and mobile electrons (the rectangle). b) A perturbed plasma where all
electrons have been shifted to the right while holding the ions stationary.

move or will they also remain stationary? If they are to move, what force
causes them to accelerate from rest?

Consider the electric field that would be present in Figure 2.1b. It will be
directed from regions of positive charge (the left side of the figure) to regions
of negative charge (the right side of the figure). Electrons from the right will
then accelerate to the left in response to this field and, by the time they have
returned to their equilibrium positions at which point the electric field and
force has vanished, they will have gained some momentum and will overshoot
until the mirror image of the initial perturbed condition is present. At this
point they will be accelerated to the right, will overshoot the equilibrium
again and the situation will return to that of Figure 2.1b. The process will
repeat and it should be clear that a periodic motion will result.

The frequency of this oscillation is known as the plasma frequency and
it is another fundamental plasma characteristic. It will, in fact, form the
basis for our third and final condition that a plasma must satisfy. This
plasma frequency can be derived in a variety of ways and here we take the
opportunity to introduce a very useful technique known as linear perturbation
analysis.
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As the electrons are oscillating, we can expect three quantities to vary in
space and/or time: the electric field, the electron density, and the electron
velocity. Treating the problem in one dimension, we therefore have three un-
knowns and require three independent equations to define the motion. Our
three equations will be Newton’s second law (in essence), conservation of
charge, and Poisson’s equation. We will also make five simplifying assump-
tions:

1. B = 0 (there is no background magnetic field so the plasma is unmag-
netized)

2. kTe = 0 (we are interested in the bulk motion of the electrons, not their
random motion)

3. ions are stationary (they are much more massive than electrons)

4. the plasma is infinite in extent (we perturb only a part of it)

5. the problem is one-dimensional (as stated above).

Newton’s second law applied to an electron is
∑

F = me
dve
dt

where me

and ve are the electron mass and velocity, respectively. The only force acting
on an electron is the Coulomb force so that

me
dve
dt

= −eE.

The time derivative in the above equation implicitely contains terms due to
variations in time and variations in space. To separate these dependences,
we can expand the derivative using the chain rule as

dve
dt
i =

∂ve
∂t

+
∂ve
∂x

dx

dt
+
∂ve
∂y

dy

dt
+
∂ve
∂z

dz

dt

=
∂ve
∂t

+ (ve · ∇) ve

to obtain 12

12Here we are considering variations in the electron’s velocity. Suppose, for simplicity,
we were instead considering variations in temperature. The total time derivative of tem-
perature T is dT

dt = ∂T
∂t + (v · ∇)T . The first term on the RHS results from a time change

in temperature at a fixed point in space (perhaps there is heater near the thermometer’s
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mene

[
∂ve
∂t

+ (ve · ∇) ve

]
= −eneE. (2.5)

This, the first of our three needed equations, is generally known as a momen-
tum equation. If the notation (ve · ∇) ve is unfamiliar to you, it will be worth
pointing out that the parentheses contain a scalar operator that acts from
the left on the remaining vector velocity. That is, you should not violate the
parentheses when evaluating the expression13.

To obtain the second of our required equations, we need to derive an
expression of charge conservation. To this end, consider a closed surface
S (of any shape you like - a rectangular box may be convenient) with an
electron current density J = −eneve leaving it. The stationary ions do not
contribute to the current density. The integral of J·dS over the surface yields
the current leaving the enclosed volume so that

Iout = −
{

eneve · dS = −dQenc

dt
(2.6)

where Iout is the current leaving the volume and Qenc is the charge enclosed
in it. But the charge enclosed is just the integral of the charge density over
the enclosed volume, to wit Qenc =

t
(−ene + eni)dV . Upon making this

substitution, we may pull the time derivative inside the integrals on the right
hand side (RHS) of Equation 2.6, realize that the time derivative of the ion
charge density is zero (because they are assumed stationary), and employ
the divergence theorem on the left hand side (LHS) to obtain

y
∇ · (neve)dV = −

y ∂ne
∂t

dV.

Now, because this result must hold true for any volume (we did not specify
any particular volume in the derivation), the integrands must be equal and

∂ne
∂t

+∇ · (neve) = 0 (2.7)

location). The second term on the RHS results from moving the thermometer in a di-
rection along which there is a gradient to the temperature at some fixed time (perhaps
by moving the thermometer from inside to outside on a hot day in Florida.) Particularly
with satellite observations, it is often difficult in practice to separate these two types of
contributions to the time derivative.

13Note that this order of operation is not necessary, only convenient. It can be shown
that (v · ∇)v = v · (∇v). The expression on the RHS involves the tensor ∇v which it is
convenient here to avoid.
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which is the required expression of conservation of charge known as the con-
tinuity equation. This equation states that, if the electron density at a given
location is changing in time, then that change is given by the divergence of
current density from the location. Charge is not allowed to simply appear or
disappear, it can only move from one place to another.

We have already met with Poisson’s equation, the third of the three we
require. Again, Poisson’s equation is

∇ · E =
eni − ene

ε0
. (2.8)

Equations 2.5, 2.7 and 2.8 completely specify the motion of our plasma
but, in order to determine the oscillation frequency, they must be solved si-
multaneously and it is here that linear perturbation analysis comes in handy.
We begin by assuming a “perturbed” situation. That is, we assume that our
three quantities of interest (electric field, electron density and electron ve-
locity) can be written as the sum of two parts: an equilibrium part and a
perturbed part. The perturbed part is what we are interested in because, in
equilibrium, no oscillations occur. We therefore take

E = E0 + δE, ne = ne0 + δne, ve = ve0 + δve

where quantities with a subscript of 0 are the equilibrium parts (the val-
ues before things were perturbed) and the quantities preceeded by a δ are
the perturbed parts. Before the situation was perturbed by moving all the
electrons to the right, there was no electric field and there was no electron
motion so that E0 = 0 and ve0 = 0. Furthermore, in equilibrium, the elec-
tron density equals the ion density which both equal, as we have labelled it,
the average charged particle density n0. We have therefore a significantly
simplified system that can be substituted into our three equations.

The continuity equation becomes

∂

∂t
(n0 + δne) +∇ · [(n0 + δne)δve] = 0

and can be linearized by assuming that any product of perturbed quantities is
negligible compared to terms involving no more than one perturbed quantity.
Linearizing and realizing that the time derivative of equilibrium quantities is
zero yields

∂δne
∂t

+∇ · (n0δve) = 0. (2.9)
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Applying the same procedure to the momentum and Poisson’s equations
respectively give

men0
∂δve
∂t

= −en0δE (2.10)

and

∇ · δE = −eδne
ε0

. (2.11)

Now, based on our intuition and physical understanding of the situation,
let us assume a set of oscillating solutions given by

δve = δve exp (i(kx− ωt)) x̂

δne = δne exp (i(kx− ωt))
δE = δE exp (i(kx− ωt)) x̂

where we hope the reader will excuse the redundant notation in the second
equation that we retain for convenience. In these equations, i =

√
−1, k

is the wavenumber given by 2π over the oscillation wavelength and ω is
the oscillation angular frequency. One advantage of assuming solutions of
this form is that time and spatial derivatives simplify nicely into algebraic
operations by making the following substitutions14:

∂

∂t
→ −iω

∇ → ikx̂.

Applying these substitutions to Equations 2.9, 2.10 and 2.11 yields the
following set of algebraic equations:

−iωmen0δve = −en0δE

−iωδne = −ikn0δve

ikδEε0 = −eδne
that the student may solve in the usual way of dealing with three equations
with three unknowns. The result is an oscillation frequency given by

ω =

(
n0e

2

ε0me

) 1
2

≡ ωpe (2.12)

14The student should verify that these substitutions are valid.
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where we have introduced a new variable, ωpe, the electron plasma frequency.
This plasma frequency is the frequency at which a perturbed, unmagne-

tized plasma naturally tends to oscillate and it is remarkable that it depends
on only a single variable: the background (unperturbed) electron density.
The more dense the plasma, the faster it tends to oscillate. The linear fre-
quency given by fpe = ωpe/2π can be nicely approximated by

fpe ≈ 9
√
ne

where ne is the density of electrons per cubic meter.15 Table 2.2 shows values
of the plasma frequency typical for several plasmas.

Plasma Electron Density Plasma Frequency
(m−3) (Hz)

Earth’s
Ionosphere 1012 9× 106

Interstellar Gas 105 3× 103

VanAllen
Radiation Belts 109 3× 105

Fusion Reactor 1020 9× 1010

Sun’s Core 1032 9× 1016

Solar Wind 106 9× 103

Table 2.2: Linear plasma frequencies for selected plasmas

So far we have made only passing mention of the fact that plasmas are not
usually fully ionized. Instead, they are usually a mixture of neutrals, ions and
electrons. When a plasma is perturbed and attempts to execute oscillations
at the plasma frequency, the electrons will be impeded in their motion as
they collide with neutrals. As the density of neutrals increases, the time
between electron/neutral collisions decreases and at some point, the collision
frequency exceeds the plasma frequency. The “plasma” is therefore not able
to oscillate at its natural frequency. In such a case, we are loath to call the
substance a plasma. In fact, taking τ to be the electron/neutral collision
time, we can formulate the third and last requirement that a plasma must
satisfy: ωpeτ >> 1. That is, the natural oscillation frequency must greatly

15This approximation is valid to about 1 part in 300.
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exceed the impeding collision frequency so that the plasma executes many
oscillations between electron/neutral collisions.

We can then formally say that a plasma must meet the following three
conditions:

1. λD << L

2. Λ >> 1

3. ωpeτ >> 1.

To put our definition of a plasma into words, the Debye length must be much
smaller than the physical extent of the plasma so that effective screening of
imposed charges or electric fields can be accomplished, there must be many
electrons in a Debye sphere, and the plasma must be able to execute its
natural oscillation at the plasma frequency.

2.2 Single-Particle Motions

Figure 1.1 shows a sketch of the Sun-Earth system and we may imagine some
of the magnetic field geometries encountered by plasmas in that environment.
Near the Earth, the magnetic field lines are curved and, following a particular
field line from the equator to the polar regions, we notice that the field
strength increases as indicated by converging field lines. If we remain on the
equator and cross field lines moving toward the Earth, we notice that, again,
the field strength increases. Plasmas in the solar-terrestrial environment
often encounter magnetic fields that, as we noticed here, are curved and have
gradients in directions parallel and/or perpendicular to the field lines. It is a
complicated system, made even more complicated by the sometimes present
electric fields that are not shown in Figure 1.1. If we are to understand the
flow of plasma through this environment, we must understand how these
various field geometries affect the motion of plasma particles. This is the
subject we now take up.

Sometimes it is appropriate to model plasmas as a fluid (or a set of
fluids), and sometimes it is appropriate to model them as a collection of single
particles. Here, let us treat the plasma as a collection of single particles and
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investigate the motion that results from the action of the Lorentz force on
each particle.

2.2.1 Cyclotron Motion

To begin, let us first investigate the motion of charged particles in the pres-
ence of a magnetic field B with no electric field present. We will make the
simplifying assumption that B is constant and is therefore not affected by
any currents resulting from the particle motions.16 The Lorentz force on a
particle is

F = q (E + v ×B) (2.13)

where q is the particle charge and, in this case, E = 0. Without loss of
generality we may take B = Bẑ 17 so that

v ×B =

∣∣∣∣∣∣
x̂ ŷ ẑ
vx vy vz
0 0 B

∣∣∣∣∣∣ = vyBx̂− vxBŷ

and, from Newton’s second law,

mv̇x = qvyB , mv̇y = −qvxB , mv̇z = 0 (2.14)

where the particle mass is m and we employ the usual dot notation to indicate
time derivatives.

Equations 2.14 already reveal some interesting features. Notice that there
is no acceleration in the direction of the magnetic field. This is because the
Lorentz force is perpendicular to B and the component of velocity along the
field vector is therefore constant. Motion in the plane perpendicular to the
magnetic field is apparently more complicated. The acceleration along the
x−axis is dependent on the velocity along the y−axis and the acceleration
along the y−axis is dependent on the velocity along the x−axis. These
equations of motion are coupled and to find the resulting motion, we must

16Under this assumption, our solution to the single-particle motions will not be self-
consistent but they will be be useful and insightful.

17A constant magnetic field has some fixed direction. It greatly simplifies the solution to
take the direction of B as one of the x̂, ŷ, or ẑ directions so that B has only one component.
For whatever reason, it is traditional to take B along the ẑ axis. This assumption does not
restrict the physics of the solution in any way, so we say the assumption is made without
loss of generality.
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decouple them. This can be done by taking the time derivative of the first
two equations:

v̈x =
qB

m
v̇y = −

(
qB

m

)2

vx (2.15)

and

v̈y = −qB
m
v̇x = −

(
qB

m

)2

vy. (2.16)

These equations should be familiar and, in particular, it should be obvious
that the solutions are oscillatory with a frequency ω = qB/m. However,
there is a bit of awkwardness here that we wish to avoid. The charge q can
be either positive (for ions) or negative (for electrons) and so the frequency
can be either positive or negative. Seeking a frequency that is always greater
than or equal to zero, we introduce the quantity

ωc =
|q|B
m

(2.17)

known as the cyclotron frequency or gyrofrequency that is the absolute value
of the oscillation frequency such that ω = ±ωc where the top and bottom
signs correspond to positive and negative charges, respectively.

A general solution to the equations of motion is then

vx = v⊥ exp (±iωct+ iδx)

and
vy = v⊥ exp (±iωct+ iδy)

where δx and δy are phase constants to be determined and v⊥ is the magnitude
of velocity in the plane perpendicular to the magnetic field (the xy−plane
in our case). The physically significant part of the above equations is the
real part so, for example, what we really mean (no pun intended) is that the
general solution for the x−component is given by

vx = < (v⊥ exp (±iωct+ iδx)) = v⊥ cos(±ωct+ δx).

We retain the complex notation for algebraic simplicity18 and understand
that each expression contains an assumed < operator.19

18The exponential function is normally easier to deal with the trigonometric functions.
19These manipulations require the often-handy Euler’s formula: eix = cosx+ i sinx.
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Now, we are free to choose either δx or δy which amounts to choosing the
instant at which we set t = 0 and, for convenience, we choose δx such that

vx = ẋ = v⊥ exp(iωct). (2.18)

Note carefully that we have not simply chosen δx = 0, but rather have made
a choice that depends on the sign of the charge such that the x−component
of the velocity takes its maximum positive value at t = 0. With this choice,

vy = ẏ =
m

qB
v̇x = ± 1

ωc
v̇x = ±iv⊥ exp(iωct) (2.19)

and we may solve Equations 2.18 and 2.19 to find the positions as a function
of time. Carrying out the integrations and letting x0 and y0 be the locations
of the particle at t = 0 yields

x− x0 = −iv⊥
ωc

exp(iωct)

and
y − y0 = ±v⊥

ωc
exp(iωct).

The form of these solutions is perhaps move apparent after taking the
real part:

x− x0 = rL sinωct (2.20)

and
y − y0 = ±rL cosωct. (2.21)

A charged particle moving in the presence of a constant magnetic field will
execute uniform circular motion known as cyclotron motion with radius

rL =
v⊥
ωc

=
mv⊥
|q|B (2.22)

where rL is known as the Larmour radius or gyroradius. The radius of the
“gyration” will increase with the particle mass and with the component of
velocity perpendicular to the field. It will decrease with an increase in the
magnitude of the charge or with the field strength. Also note that the sense of
rotation is different for positive (the top sign) and negative (the bottom sign)
charges. Positive charges gyrate in one direction and negative charges gyrate
in the other. Use of the right-hand-rule for currents shows that the magnetic
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field generated by this cyclotron motion is always opposite to the magnetic
field that causes the motion. That is, a magnetized plasma is inherently
diamagnetic.

Figures 2.2a) and b) show the motion of an ion and electron moving in the
presence of a constant magnetic field directed into the page as indicated by
the circled crosses. Each particle of charge equal to one electron charge (either
positive or negative) is shown with the same gyroradius, which requires that
the electron’s perpendicular velocity is a factor of mi/me larger than the
ion’s. This would be unexpected in reality and one typically finds that the
electron gyroradius is very much smaller than the ion gyroradius.

a) b)

Figure 2.2: a) The motion of an ion in the plane perpendicular to a back-
ground magnetic field (directed into the page). b) The motion of an electron
in the plane perpendicular to the same magnetic field.

Note from Figure 2.2 that the acceleration is in the ±(v × B) direction
for the ion and electron respectively and that the direction points toward
the center of the circle. The circulating charges constitute a current that
flows counter-clockwise for both particles. The magnetic field produced by
these currents within the circular paths points out of the page and so the
background field is weakened by the gyromotion. Thus, as was stated above,
the plasma is inherently diamagnetic.

If a particle of either charge has a component of velocity in the direction
parallel to the background magnetic field, this motion will be unaffected by
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the field because the force is in the perpendicular plane. The resulting motion
will be a helix.

2.2.2 The E×B Drift

Suppose we now allow for the existence of a finite constant electric field E in
addition to the constant magnetic field B. These two fields may be oriented in
any directions relative to each other. Now, to establish a convenient coordiate
system, let us as before take the z−axis to be parallel to the magnetic field
so that B = Bẑ. Further, without loss of generality, we are free to rotate our
coordinate system about the z−axis and it is helpful to rotate such that the
electric field lies in the xz−plane so that Ey = 0.

The force on a charged particle is, as before, given by Equation 2.13. Inte-
grating the z-component to find the velocity in the direction of the magnetic
field as a function of time yields

vz = vz0 +
qEz
m

t (2.23)

where vz0 is the z−component of the velocity at t = 0. The charged particle
experiences constant acceleration in the parallel20 direction with a magnitude
that scales with the parallel component of the electric force (qEz). The ac-
celeration in the parallel direction is completely independent of the magnetic
field. This is expected because the magnetic force term is perpendicular to
both the particle’s velocity and the magnetic field through the v ×B term.

Before deriving the equations of motion in the perpendicular (xy) plane,
let us think through the situation to gain some physical understanding. For
simplicity, take E and B to be perpendicular to each other with E directed
up the page and B into the page. Let the particle have a positive charge
and be held at rest until its release at t = 0. As soon as it is released, it will
accelerate in the direction of the electric field under the action of the electric
force qE but it will initially feel no magnetic force q(v ×B) becuase it was
released from rest. It will therefore begin to move up the page. Once the
particle gains some speed, it will feel the magnetic force that attempts to turn
it to the left in a circular path, but the intended circle will be distored by the
continued action of qE that always forces it up the page. The gyroradius will

20The terms parallel and perpendicular will be used in reference to the direction of the
magnetic field.
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increase with the particle’s motion up the page due to the speed acquired from
the electric force. Once the particle reaches its highest point one-quarter of
the way around its path, its speed will begin to decrease as it is decelerated
by the electric force and the gyroradius will shrink in response. We will
then have a distorded “circle” (actually not a circle at all!) with a larger
gyroradius at the top than at the bottom. The effect will be that, when the
particle returns to the level from which it started, it will have shifted to the
left. After another cycle, the particle will be further to the left. In fact, each
cycle takes the particle further to the left and we can say that it is drifting
in the direction of E×B. A negatively charged particle will execute motion
in the opposite sense but, as you can appreciate by thinking it through, it
will drift in the same direction as the positive charge. Figure 2.3 shows the
paths of an ion and an electron (both released from rest) moving under the
action of an electric and magnetic field.

 

 

E   (up) B   (in)

Ion

Electron

Figure 2.3: The paths of an ion and an electron released from rest (at the far
right) in the presence of an electric and magnetic field. The paths are shown
to scale and both particles drift to the left.

Now, let us work out the equations of motion to test and extend our
understanding. The perpendicular components of Equation 2.13 are

dvx
dt

=
q

m
Ex +

qB

m
vy =

q

m
Ex ± ωcvy

and
dvy
dt

= −qB
m
vx = ∓ωcvx
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where, as before, the top sign applies to ions and the bottom sign applies
to electrons. Uncoupling these equations as we did in the case of cyclotron
motion gives

v̈x = −ω2
cvx (2.24)

and

v̈y = ∓ωc
(
qEx
m
± ωcvy

)
= −ω2

c

(
Ex
B

+ vy

)
. (2.25)

Notice that these equations are identical to Equations 2.15 and 2.16 ob-
tained for cyclotron motion when E = 0 except for the pesky addition of the
Ex
B

term in the RHS of Equation 2.25. This term complicates the solution but
we can play a nifty mathematical trick that allows us to write the solution
down by inspection. The troublesome Ex

B
is constant (because both Ex and

B are constant) and because its time derivatives are zero, we see that

v̈y =
d2vy
dt2

=
d2

dt2

(
Ex
B

+ vy

)
so that

d2

dt2

(
Ex
B

+ vy

)
= −ω2

c

(
Ex
B

+ vy

)
.

Defining v′y = Ex
B

+ vy gives

v̈′y = −ω2
cv
′
y (2.26)

The form of Equations 2.24 and 2.26 are identical to those of Equations
2.15 and 2.16 and so the form of the solutions must also be identical.21 That
is, it must be that

vx = v⊥ exp(iωct) (2.27)

and
v′y = ±iv⊥ exp(iωct)

or

vy = ±iv⊥ exp(iωct)−
Ex
B
. (2.28)

Equations 2.27 and 2.28 are those of a gyrating particle drifting along the
negative y−axis with a constant speed of Ex

B
as indicated by Figure 2.3.

21The effect of the definition v′y = Ex

B +vy is to transform the solution into a coordinate

system moving with the constant speed Ex

B in the direction of the drift.
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This solution is particular to our definitions E = Exx̂ +Ezẑ and B = Bẑ
and it is desirable to obtain a general form for any electric and magnetic
fields. To do this, suppose we average the motion over one period of the
gyration. The contributions to the motion due to the gyration will cancel
while the contributions from the drift will not. If we then define vgc to be
the “guiding center” velocity averaged in this way, it is clear that, because
the drift velocity is constant,

m
vgc
dt

= 0 = q (E + vgc ×B)

or

E + vgc ×B = 0.

Crossing this last result with the magnetic field gives

E×B + vgc ×B×B = 0

so that by vector identities

E×B = B× vgc ×B = vgcB
2 −B(vgc ·B).

The parallel component of vgc is given by Equation 2.23 and the perpendic-
ular component is

v⊥gc ≡ vE =
E×B

B2
(2.29)

which we call the E×B drift velocity.
This is a truly remarkable result in that the drift of a charged particle

in the presence of any arbitrary E and B is independent of anything having
to do with the particle (so long as it is charged). In particular, the drift
does not depend on the magnitude or sign of the particle’s charge, its mass,
or its velocity. Thus, both ions and electrons will drift together and will
generate zero net current. If one therefore seeks to drive a current in a
plasma, it cannot be done with the E × B drift alone. Given a particle’s
initial conditions, its gyroradius will vary with its mass, with v⊥, and with
the magnitude of its charge. The sense of rotation will vary with the sign of
its charge, but so long as the Lorentz force is the only force acting on it, the
particle will drift without fail in the direction of E×B at the uniform speed
given by the magnitude of E×B

B2 .
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2.2.3 General Drift Equation

Playing one more mathematical trick will allow us to extend the results we
obtained for the E × B drift to the case where the drift is caused by any
general force F. The Lorentz force can be written as F = FE + FB where
FE = qE and FB = qv ×B. Suppose we began the derivation of the E×B
drift with F in place of FE. The only change would be that, in the end, the
electric force FE = qE would be replaced by the general force F. That is,
instead of the result

vE =
qE×B

qB2
=

FE ×B

qB2

we would instead obtain

vdrift =
F×B

qB2
. (2.30)

This will prove to be a very useful result because it can be used to find
the drift resulting from any arbitrary force F. Suppose, for example, that we
are interested in the drift resulting from the gravitational force Fgrav = mg.
We have then

vgrav =
m

q

g ×B

B2

which is similar to the E×B drift but different in a few important apsects.
This drift is in the direction perpendicular to both the gravitational and
magnetic fields and its magnitude depends on both the particle’s mass and
charge. Thus, ions will drift in one direction at a certain speed while electrons
will drift in the opposite direction at a different and a net current will be
produced.

2.2.4 Orbit Theory

The cases dealt with above where E and B were constant were the “easy” ones
and we must now move on to more complicated situations where, promped
by the geometries present in Figure 1.1, the magnetic field is not constant in
space. We will treat three such cases:

1. There is a gradient in the magnetic field strength in the direction per-
pendicular to the field: ∇B ⊥ B. (e.g., as seen in Figure 1.1, on the
equatorial plane the field strength increases with decreasing distance
from Earth).
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2. The magnetic field is curved (e.g., all the field lines shown in Figure
1.1).

3. There is a gradient in the magnetic field strength in the direction par-
allel to the field: ∇B ‖ B (e.g., as seen in Figure 1.1, as one follows a
field line from the equator to the Earth, the field strength increases).

For these three cases, exact equations of motion are too complicated to
derive and we will instead obtain approximate solutions using orbit theory
that involves averaging quantities over one gyration as we did to obtain the
final form of the E×B drift.

Case 1: ∇B Drift

Suppose E = 0 and there is a perpendicular gradient in the field strength
(meaning the field strength has a gradient in the direction perpendicular to
the field). A charged particle with some initial perpendicular velocity will
travel through regions of changing magnetic field strength and we wish to
approximate the resulting motion. As we did with the E × B drift, let us
first reason through the situation before deriving the result.

Figure 2.4 shows an ion and an electron with initial positions indicated
by the large dots and having initial velocities directed up the page. The
directions of the magnetic field and its gradient are indicated on the figure.
Consider first the ion motion. As it travels up the figure, it will begin to
gyrate due to the magnetic force but, as it does so, it will move into regions
of higher field strength. Now, this field cannot change the particle energy
(i.e., its speed) but it does change the direction. But notice that as it executes
cyclotron motion, its gyroradius will change such that it is smaller towards
the top of the figure where the field strength is higher and larger towards
the bottom of the figure where the field strength is weaker (recall that the
gyroradius is rL = mv⊥

|q|B ). As a result, the ion will drift to the right in the
direction of B×∇B. The electron, on the other hand, with its opposite sense
of gyration, will drift to the left in the direction of −B×∇B. We therefore
expect that, in the presence of a magnetic field with a perpendicular gradient,
a drift will result that depends on the sign of the particle’s charge. This is a
very important difference from what we learned about the E×B drift (which
is independent of charge). The ∇B drift, as it is called, apparently can drive
a current in the B×∇B direction.
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∇  B

Ion

Electron

Figure 2.4: The paths of an ion and an electron started with an initial velocity
directed toward the top of the figure. The initial position of each particle is
indicated by a large dot. The magnetic field is directed into the page and
there is a gradient in the field strentgh toward the top of the page. The ion
and electron paths are not drawn to scale.

To derive an expression for this ∇B drift, let us take B = Bẑ as before
and assume that the gradient in B is along the y−direction. The force on a
charged particle is

F = qv ×B

so that
Fx = qvyB (2.31)

and
Fy = −qvxB. (2.32)

We wish to employ orbit theory wherein the particle motion is averaged over
a gyration and our goal will be to obtain an average force that can be inserted
into the general drift equation. Quantities averaged over one gyration will
be indicated by an overbar as, for example, F y.

We see from Equations 2.31 and 2.32 that the forces in the x− and
y−directions are cross-coupled to the velocity components. Noticing from
Figure 2.4 that there is apparently no net motion in the y−direction per-
pendicular to B but parallel to its gradient, we suppose that the average
velocity in that direction will be zero. The average force in the x−direction
will therefore be zero.

The average force in the y−direction is, however, complicated by the
presence of the drift that makes vx 6= 0. The best we can do here is to ap-
proximate F y as follows. Let us assume that B does not change significantly
over a gyration. We can then say that rL

L
<< 1 where L is a parameter

that defines the distance over which B changes appreciably. If this condi-
tion holds, we can approximate vx as the x−component of the velocity for
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a particle gyrating in a constant magnetic field as given by the real part of
Equation 2.18. That is, we can take

Fy = −qv⊥ cos(ωct)B.

Now, we have assumed that B does not change much over the gyration,
but to be sure it does change some (otherwise ∇B would be zero). We can
approximate B at any point in the gyration by Taylor expanding about the
initial point that we may take to be x = y = z = 0. To first order, this gives

B = B0 + x
∂B

∂x
+ y

∂B

∂y
+ z

∂B

∂z

or

B = B0 + (r · ∇) B

where B0 is the magnetic field at the origin. Because our field has only a
z−component and the gradient in B is along the y-axis, we have

B = B0 + y
∂B

∂y
.

The y term in this expression can be approximated by the real part of Equa-
tion 2.21 and the force in the y−direction is then

Fy = −qv⊥B0 cos(ωct)∓ qv⊥rL
∂B

∂y
cos2(ωct). (2.33)

We are finally in a position to determine the average force to be substi-
tuted into the general drift equation. Averaging the first term on the RHS
of Equation 2.33 yields zero and, because the average of cos2(ωct) over a
gyration is 1/2, we obtain the average force as

F y = ∓1

2
qv⊥rL

∂B

∂y

and the guiding center drift is therefore

vgc =
F×B

qB2
=
F y

qB
x̂ = ∓1

2

v⊥rL
B

∂B

∂y
x̂.
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Our derivation assumed that B = Bx̂ and that the direction of ∇B is
along the y−axis. Generalizing the solution to our particular case, we can
write the result for arbitrary B and ∇B:

v∇B = ±1

2
v⊥rL

B×∇B
B2

(2.34)

which we call the grad-B or ∇B drift. There are several important points to
note about this drift. First note that no electric field is required to produce
it - it results wholly due to the change in B over a gyration. Second, the
± signs indicates that ions and electrons drift in opposite directions. As we
noticed before, the ∇B drift will drive a current. Third, the direction of
the drift is perpendicular to both the magnetic field and the direction of its
gradient. Lastly, do not forget that this result is an approximation based
in two instances on the assumption of a circular gyration. The validity of
Equation 2.34 is tied to our assumption that rL

L
<< 1 where L is the length

scale of ∇B.

Case 2: Curvature Drift

Consider now the motion of a charged particle in the presence of a constant,
curved magnetic field. The particle may have some parallel velocity along a
field line and some perpendicular velocity that tends to make it gyrate around
the field line. As the particle travels along the field line, it will experience a
centripetal acceleration of magnitude aR = v2

‖/Rc where Rc is the radius of
curvature of the field line. The direction of this acceleration will be towards
the center of curvature. We may say then that a noninertial centrifugal force

FR =
mv2
‖

Rc

r̂ = mv2
‖
Rc

R2
c

is felt by the particle where Rc is a vector from the center of curvature to
the particle’s guiding center. The curvature drift will then be given by

vR =
FR ×B

qB2
=
mv2
‖

qB2

Rc ×B

R2
c

. (2.35)

Let us put off discussing this result for a moment and realize instead that this
result is often incomplete by itself. It is incomplete whenever and whereever
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the current density is zero because, in such a situation, any curved magnetic
field will have ∇B 6= 0: the field strength will get weaker with increasing Rc.

To modify Equation 2.35 in a way that takes this combined effect into
account, let us take a cylindrical coordinate system in which r̂ is along Rc,
the field line is in the φ̂ direction and the current equals zero. The curl of
B would then be in the ẑ direction and, from Ampere’s law with no current,
will equal zero. The z−component of the curl is then

(∇×B)z =
1

r

∂

∂r
(rBφ) = 0

and integrating this equation reveals that Bφ will be inversely proportional
to r. It must be then that |B| is proportional to the inverse of Rc so that

∇B
B

= −Rc

R2
c

.

Substituting this result into Equation 2.34 gives the ∇B contribution to
the total drift:

v∇B = ∓v⊥rL
2B2

B×
(
B

Rc

R2
c

)
=
m

2q
v2
⊥

Rc ×B

R2
cB

2
(2.36)

and the total drift is then obtained by adding Equations 2.36 and 2.35:

vR+∇B =
m

q

Rc ×B

R2
cB

2

(
v2
‖ +

1

2
v2
⊥

)
(2.37)

This curvature plus grad-B drift expression applies to particles drifting in
curved magnetic fields where the current density is zero.

We can rewrite Equation 2.37 in a handy way using the equipartition
theorem which states that, for a Maxwellian distrubution, each degree of
freedom acquires 1

2
kT of thermal energy. There is one degree of freedom

along a magnetic field line and two degrees of freedom perpendicular to it.
Thus

1

2
mv2
‖ =

1

2
kT

and
1

2
mv2
⊥ = kT
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so that

vR+∇B = ±Rc ×B

ωcR2
cB

2kT

m
= ±Rc ×B

ωcR2
cB

v2
th (2.38)

where vth =
√

2kT/m is the thermal speed.
This ∇B + Rc (∇B plus curvature) drift is in the same direction as ∇B

and depends on the sign of the charge but, as can be shown, not the particle
mass. It will therefore drive a current and, as we will see in a later chapter,
will play an important role in determining the motion of charged particles
trapped in Earth’s magnetic field.

Case 3: ∇B ‖ B (Magnetic Bottles)

The final case of single-particle motion we will treat is that of a particle
trapped in a magnetic bottle or mirror. The term “magnetic bottle” implies
a magnetic field geometry where the field strength increases with position
along the field line as illustrated in Figure 2.5.

  B

 z

Figure 2.5: A magnetic bottle showing the converging field lines in a geometry
where ∇B ‖ B.

A particle traveling on the central axis of the bottle will have a kinetic
energy given by K = 1

2
mv2
‖ + 1

2
mv2
⊥. That is, there are contributions to

the kinetic energy from the velocity in the direction parallel to the field and
in the directions perpendicular to the field. The parallel component of the
velocity makes the particle travel along the field line and the perpendicular
components result in gyration around the field line. As the particle trav-
els to the right from the center of the bottle, it will encounter increasingly
stronger magnetic fields and the perpendicular contribution to the kinetic
energy will increase as the particle gyrates faster and faster around the field
line. However, this increase in the perpendicular contribution to the kinetic
energy must come at the expense of the parallel contribution since the total
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energy cannot change (the magnetic field does no work on the particle). The
parallel component of the velocity must then decrease as the particle moves
into regions of increasing B. At some point, the parallel component of the
velocity will be decreased to zero and the particle will stop translating and
simply gyrate around the field line. As we will see below, it turns out that
the parallel force responsible for stopping the translation will still be active at
the instant translation stops and the particle will be reflected back to regions
of decreasing B toward the center of the bottle. The particle will then travel
to the left end of the bottle where the situation will repeat. The particle
will bounce from end to end, gyrating as it goes and is trapped inside the
magnetic bottle. This trapping is not perfect (some particles will escape)
but let us defer discussion of the escaping particles until later.

Turning our attention to a derivation of the force responsible for this
trapping, we first assume that our bottle is cylindrically symmetric. That
is, Bφ = 0 and there is no variation in B as we circulate around the bottle’s
central axis. Given the coordinate system shown in Figure 2.5, the trapping
force must act along the z−axis and we find from Equation 2.13 that this
component of force is

Fz = q (vrBφ − vφBr) .

Bφ is zero by assumption so the first term on the RHS vanishes. As can be
seen in Figure 2.5, the field lines converge to the central axis so that Br 6= 0.

To find an approximate expression for Br, we can impose ∇ · B = 0 on
our field in cyclindrical coordinates to find

1

r

∂

∂r
(rBr) +

1

r

∂Bφ

∂φ
+
∂Bz

∂z
= 0. (2.39)

The second term on the LHS is zero by our assumptions and we are left with
the job of using the other two terms to determine Br and the trapping force.

Suppose we know
(
∂Bz
∂z

)
r=0

which specifies how the z−component of the
field varies with position along the bottle and that there is not too much
variation in this component as we move off the central axis of the bottle
(i.e., ∂2Bz

∂r∂z
≈ 0). In this case, integrating Equation 2.39 yields

rBr = −
∫ r

0

r
∂Bz

∂z
dr ≈ −1

2
r2

(
∂Bz

∂z

)
r=0

and

Br = −1

2
r

(
∂Bz

∂z

)
z=0

.
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The trapping force is then

Fz =
1

2
qvφr

(
∂Bz

∂z

)
r=0

and can be averaged over one gyration using vφ = ∓v⊥ (ions will gyrate in
the −φ−direction and electrons will gyrate in the +φ−direction) and r = rL
to obtain

F z ≈ ∓qv⊥rL
∂Bz

∂z
= ∓1

2

mv2
⊥

B

∂Bz

∂z
.

This result can be written in a more convenient and general form if we identify
∇‖B = ∂Bz

∂z
as the parallel gradient and realize that the magnitude of the

magnetic moment of the gyrating particle is

µ = IA =
1
2
mv2
⊥

B
(2.40)

where I is the current resulting from the gyromotion and A is the area of a
circle with radius rL. With these definitions we may write the z−component
of the average trapping force as

F‖ = −µ∇‖B. (2.41)

This force is commonly known as the mirror force and depends on two
quantities: the particle’s magnetic moment and the parallel gradient of the
magnetic field strength. Note that it is a restoring force in the sense that
it always points to the center of the bottle, opposite to the direction of
increasing field strength. It is this force that is responsible for the bouncing
motion of a charged particle trapped in a magnetic bottle.

In §2.3.2 we will discuss magnetic bottles in more detail but let us now
take a brief aside and do our first real bit of space physics.

2.3 Periodic Motions in a Dipole Field

As we will see in Chapter 4, Earth’s magnetic field can be approximated
(although often not very accurately) by that of a magnetic dipole. Figure
2.6 shows a dipole field viewed from a location in Earth’s orbital plane and
in this section we will consider the periodic motions that result from the
interactions of charged particles with such a magnetic field.
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Figure 2.6: A dipole approximation to Earth’s magnetic field, viewed from
the side.

Suppose a charged particle is located on Earth’s equatorial plane on one
of the field lines shown in Figure 2.6. The particle will have a velocity given
by v = v⊥ + v‖B̂. As we have noted before, the perpendicular components
of the velocity will cause the particle to gyrate around the field line and the
parallel component will cause it to translate along the field line. We can
immediately identify the first of what will become three periodic motions
that occur: the gyration about a field line.

To identify the second periodic motion, notice that as the particle trans-
lates along the field line towards one of Earth’s poles, it encounters regions
of increasingly strong magnetic field. It is as if the magnetic bottle shown in
Figure 2.5 has been bent into the curved shape of a dipole with the center of
the bottle at Earth’s equator and the two ends at its poles. Just as a charged
particle was trapped in the magnetic bottle and bounced from end to end in
response to the trapping force, a particle in Earth’s dipole field will bounce
from pole to pole as it is trapped in the dipole field. This bounce motion is
the second periodic motion and the bouncing particles can be at least loosely
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identified with the famous VanAllen radiation belts.

The third and last periodic motion is easiest to identify if we suppose
that v‖ = 0 when the particle is in the equatorial plane. The particle will
still gyrate due to its v⊥ but it will not translate along the field line and
will therefore stay in the equatorial plane as it executes cyclotron motion.
But notice that there is a gradient to the magnetic field strength in the
direction perpendicular to the field. ∇B is directed inward toward Earth and
the particle will therefore experience a ∇B drift in the ±B ×∇B direction
depending on the sign of its charge. Ions will drift to the west and electrons
will drift to the east while remaining a constant average distance from Earth.
A westward current known as the ring current will therefore encircle the
Earth. This ∇B drift in a circle around Earth is the third periodic motion.
Of course, particles with nonzero v‖ will also undergo a ∇B+Rc drift around
Earth as they gyrate and bounce on the curved field lines. In this more
realistic case, the ring current will no longer be confined to the equatorial
plane and will be distributed over a broad range of latitudes.

The three periodic motions in a dipole field can be suc-
cinctly listed as: gyration, bounce, and drift. Under typ-
ical conditions, there are many gyrations per bounce pe-
riod and many bounces per drift period.

2.3.1 Geomagnetic Storms and the Dst Index

Figure 2.7 shows a plot of the Dst index from August 1998. The Dst or
“Disturbance storm time” index is essentially the hourly deviation from av-
erage of the low- to mid-latitude northward-pointing component of Earth’s
magnetic field22. In this figure, 7 days of the index are plotted. During ge-
omagnetically quiet conditions, the Dst index takes a nearly constant value
but, when there is a geomagnetic “storm” caused by enhanced activity on
the Sun, the Dst index varies in a characteristic way as shown in the figure.

Given what we know about particle trapping and periodic motions in a
dipole field, we are in position to understand the most obvious feature seen in
Figure 2.7 which is the large and relatively sudden decrease in the northward
component of Earth’s magnetic field that occurs near the middle of August

22The Dst index is freely available from the World Data Center for Geomagnetism at
Koyoto University, Japan: http://swdcwww.kugi.kyoto-u.ac.jp/dstdir/index.html
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Figure 2.7: Dst index from November 2003 showing the effect of a geomag-
netic storm on Earth’s magnetic field.

20, 2003. The more gradual recovery back to pre-storm values will soon lead
us farther into a discussion of trapping charged particles in a magnetic bottle.

To understand the sudden drop in the Dst index, let us first recall that
the ring current is a westward-flowing current that encircles the Earth due to
the ∇B+Rc drift of ions (to the west) and electrons (to the east). This ring
current will produce its own magnetic field that will combine with Earth’s
field to yield the net or total magnetic field observed at any point. At the
equator, Earth’s approximately dipole field points due north as shown in Fig-
ure 2.6 but the field due to the westward-flowing ring current points due south
by the right-hand rule for currents so that it weakens the total observed field.
Thus, when the ring current is increased, the observed northward-pointing
component of the total field is decreased and the Dst index consequently
takes on negative values. So we may associate negative deviations in Dst
with a strengthening of the ring current23.

This increase in the ring current occurs in response to “storms” on the
Sun such as solar flares or coronal mass ejections during which the Sun ejects

23As it turns out, the Dst index is not influenced by the ring current alone. Other (in
fact, any other) currents flowing in space will also contribute to the Dst index. However,
it can be shown that the ring current generally provides the dominant contribution.
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many more charged particles that can become trapped in Earth’s magnetic
field. These trapped particles gyrate, bounce and drift and significantly
inrease the ∇B + Rc drift current that produces the ring current. The Dst
index decreases in response to this increasing ring current.

We may then ask: once the ring current is increased due to a larger-
than-average number of trapped particles drifting in Earth’s field, for what
reason does it gradually return to pre-storm levels as seen in Figure 2.7?
The answer lies in the fact that the trapping is not perfect and ring current
particles slowly leak out of the magnetic bottle. To investigate this imperfect
trapping, let us introduce the very useful idea of adiabatic invariants.

2.3.2 Adiabatic Invariants

We know from classical mechanics that any periodic motion undergoing adi-
abatic change24 has a conserved quantity associated with it. This conserved
quantity is the action integral defined as I =

∮
pdq where p and q are the

generalized momentum and coordinate associated with the periodic motion.
Such a conserved quantity is called an adiabatic invariant and there must be
one associated with each of the gyration, bounce and drift motions described
above.

1st Adiabatic Invariant, µ

The first of our periodic motions is the cyclotron gyration around a field
line due to the Lorentz force and the perpendicular component of a par-
ticle’s velocity. To compute the action integral and evaluate the adiabatic
invariant, we must first identify the approproiate generalized coordinate and
momentum. The gyration path is a circle and so the appropriate generalized
coordinate is the angular position φ so that dq = dφ. The Lagrangian for a
charged particle gyrating in a magnetic field is L = 1

2
mv2
⊥+ 1

2
mv2
||+ qv ·A =

1
2
mr2

L(φ̇)2 + 1
2
mv2
|| + qrφ̇Aφ where A is the the magnetic vector potential25.

24By adiabadic change, we mean that the change in the period of the motion over one
cycle is small compared to the period.

25Recall that the magnetic vector potential is B = ∇×A. If you have not previously
encountered a Lagrangian that includes a magnetic potential energy term and are wonder-
ing how it makes its way into the expression (after all, the magnetic force does no work,
so how can it have a potential energy?), see any of the good textbook or web references
including, e.g., http://iweb.tntech.edu/murdock/ph4610/magfldlag.pdf.
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The generalized momentum associated with the φ coordinate is

pφ =
∂L

∂φ̇
= mv⊥rL + qrAφ.

Under adiabatic changes, the action integral is invariant and is given by∮
pφdφ =

∮
mv⊥rLdφ+ q

∮
rAφdφ.

The RHS may be rewritten as∮
pφdφ =

∮
mv⊥rLdφ+ q

∮
A · dl

= 2πmv⊥rL + q

∫ ∫
(∇×A) · dS

= 2πmv⊥rL + q

∫ ∫
B · dS

= 2πmv⊥rL + qBπr2
L (2.42)

where we have assumed that B is constant over the area S enclosing the path
and that B · dS is positive. This result can be be manipulated by recalling
that rL = v⊥/ωc and ωc = ±|q|B/m to quickly find that∮

pdq = ±6π
m

|q|
1
2
mv2
⊥

B

or, recalling Equation 2.40, ∮
pdq = ±6π

m

|q|µ. (2.43)

Now, since the action integral is constant and the particle mass and charge
are constant,

the magnetic moment µ must be constant and we
identify it as the 1st adiabatic invariant.

The magnetic moment is the invariant associated with cyclotron motion
but we must not forget that it is an adiabatic invariant. That is, µ is conserved
only if the quantities on which it depend vary slowly during a gyro-period.
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However, it can be shown that µ is a strong invariant so that even if v⊥ or
B vary with a frequency comparable (but still less than) the gyro-period,
µ is still reasonably conserved. But to be sure, if the magnetic field for
example is doubled or triped during one quarter of a gyro-period, µ will not
be conserved.

Conserved quantities are extrememly useful in determining the motion
of particles. Take for example the conservation of energy studied and used
extensively in introductory physics courses. The fact that total energy is
conserved makes it very easy to find the speed of a particle after it has
passed through some change in potential energy. For example, one can find
with only a few lines of algebra what will be the speed of a particle at all
points as it oscillates on a spring. And, significantly, one can do this without
integrating any equations of motion (assuming the potential associated with
the spring force is known). Conservation laws give us a very useful alternate
approach that we can use here to study in more detail the trapping of charged
particles in a magnetic bottle.

Approximately half of the magnetic bottle of Figure 2.5 is shown again
in Figure 2.8 but this time with the addition of some markers identifying
the locations of the strongest and weakest magnetic fields and the velocity
of a particle at the center of the bottle. Let us introduce a notation wherein
quantities evaluated at the center of the bottle where the field is weakest are
given a subscript of “0” and quantities evaluated at the location in the bottle
where the field is strongest are given a subscript of “m”. Thus the particle
velocity at the location shown in the figure is v0 and the field strength there
is B0. This velocity v0 has components parallel and perpendicular to B as
indicated and we can define the pitch angle there as

θ0 = tan−1

(
v⊥0

v‖0

)
. (2.44)

A particle with a 90◦ angle will therefore have no parallel velocity and will
not translate along the bottle but will gyrate about a fixed point at the
bottle’s center. At the other extremes, a particle with a 0◦ or 180◦ pitch
angle will translate along the length of the bottle26 but will not gyrate due
to its absence of any perpendicular velocity.

As the particle moves within the bottle, bouncing and possibly escaping,
its kinetic energy given by K = 1

2
mv2
⊥+ 1

2
mv2
‖ will remain constant since the

26By definition, a pitch angle of 0◦ corresponds to motion in the direction of B and a
pitch angle of 180◦ corresponds to motion in the direction opposite to B.
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Figure 2.8: Approximately half of a magnetic bottle. The vertical dashed
lines indicate locations of the weakest and strongest magnetic fields. A
charged particle with some velocity v0 is located at the center of the bottle
where B is weakest.

field does no work on it. Substituting 1
2
mv2
⊥ = µB and solving the above

equation for the kinetic energy, we find that

µ =
K − 1

2
mv2
‖

B
.

This equation is interesting because it contains two quantities that are con-
stant as the particle executes its motion within the bottle and two quantities
that vary with its motion. Because µ and K are both constant, we see that
as the particle moves into regions of increasing magnetic field strength, the
parallel component of its velocity must decrease so that the RHS remains
constant. On the other hand, as the particle moves into regions of lower
magnetic field strength, the parallel component of its velocity must increase
so the RHS remains constant. The result is the bouncing, trapped motion we
have already discussed but is now viewed in the light of conserved quantities
rather than that of the trapping force given by Equation 2.41.

The trapping force equation does, however, provide us with one additional
insight. Suppose a particle at the center of the bottle has no perpendicular
velocity and is only translating to the right along the central field line. In
such a case, its magnetic moment µ and its pitch angle θ0 will be zero and
there will be no trapping force. The particle will continue moving unimpeded
to the right at a constant speed and will escape the bottle. We may suspect
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then that even particles with a non-vanishingly small pitch angle may also
escape. We suspect the magnetic bottle is leaky and we wish to determine
how large the pitch angle may be before the leak is “plugged”. To do this,
we will return to an approach based on conserved quantities.

Suppose that, as the pitch angle is decreased from 90◦ and the particles
come closer and closer to escaping the bottle, we identify the “last-trapped”
particle and label its pitch angle as θl. Then for this particle, the turning
point must be located where B takes on its largest value. That is, for this
last-trapped particle, v‖ = 0 where B = Bm. Because the kinetic energy of
this particle is a constant, we can equate K0 with Km. That is, its kinetic
energy at the center of the bottle must equal its kinetic energy at the turning
point. We have then

1

2
mv2
⊥0

+
1

2
mv2
‖0 =

1

2
mv2

0 =
1

2
mv2
⊥m

since v‖m = 0. The magnetic moment at the turning point where B = Bm is
then

µ =
1
2
mv2
⊥m

Bm

=
1
2
mv2

0

Bm

which must equal µ at the center of the bottle by conservation of µ. Thus

µ =
1
2
mv2

0

Bm

=
1
2
mv2
⊥0

B0

and we find for the last-trapped particle that

B0

Bm

=
v2
⊥0

v2
0

.

But for this particle, v⊥0 = v0 sin θl so that

B0

Bm

= sin2 θl.

Particles with pitch angles smaller than θl will escape the bottle while parti-
cles with pitch angles greater than θl are trapped in it. If we define a mirror
ratio as

Rm =
Bm

B0

(2.45)
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or the ratio of the strongest to the weakest magnetic field strengths in the
bottle, we find that particles can escape the bottle if

sin2 θ0 <
1

Rm

. (2.46)

That is, as the ratio of the strongest to the weakest field becomes smaller,
the mirror ratio decreases and the bottle becomes more and more “open”
and leaky. A very large mirror ratio means the bottle is tightly closed and
very few particles will escape. Those particles that do escape are said to be
in the loss cone formed by rotating the vector v0 for pitch angle θl about the
bottle’s central field line. Any particle with a velocity vector v0 lying within
this loss cone will escape the bottle and be lost.

Evidence of this loss cone is commonly observed in Earth’s dipole mag-
netic bottle where the location of the strongest field is taken at the point
where the charged bouncing particles penetrate far enough along the field
lines to encounter the polar atmosphere. Deep in the atmosphere, there is a
very high probability that the charged particles will collide with the abun-
dant neutrals, loose their kinetic energy, and “escape” the bottle. Figure
2.9 shows 20 minutes of data from orbit number 9257 of the Fast Auroral
SnapshoT (FAST) satellite27. The axes show pitch angle versus time and the
grayscale indicates the energy flux (approximately proportional to number
density) of 0.1-1 keV electrons. Note the near absence of particles with pitch
angles near 0◦. These particles have travelled nearly along a field line, pen-
etrated deep into the atmosphere due to their small µ and the consequently
small trapping force, and been lost.

As another example showing the usefullness of the first adiabatic invariant
µ, consider Figure 2.1028 that shows a diagram of the VASIMR (VAriable
Specific Impulse Magnetoplasma Rocket) engine being developed by the Ad
Astra Rocket Company and the Johnson Space Center. In this engine, a
plasma is generated and confined by magnetic fields but the magnetic field
geometry is such that the field diverges and becomes progressively weaker
with increasing position along the ejection nozzle.

To accelerate the plasma and provide thrust, the plasma is heated in
the perpendicular direction by azimuthal electric fields in resonance with the
plasma’s ion cyclotron frequency. As a result of this perpendicular heating,

27Data from the FAST mission are freely available on the web at: http://sprg.ssl.-
berkeley.edu/fast/.

28from: http://www.daviddarling.info/encyclopedia/V/VASIMR.html
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FAST Low Energy Electrons -12/24/1998

09:40 09:45 09:5509:50Time (UT)

Altitude (km) 3256.0 3562.3 3805.1 3980.6

P
it
c
h

 A
n

g
le

(d
e

g
re

e
s
)

-100

0

100

200

e
V

/c
m

 -
s
-s

r-
e

V
2

6

9

10

10

Figure 2.9: Low energy electron data from orbit number 9257 of the FAST
satellite showing the presence of a well-defined loss cone.

the ion Larmour radius increases and µ = IA = Iπr2
L tends to increase.

But so long as the Larmour radius is changed slowly compared to the ion
cyclotron frequency (meaning that the plasma is not heated too fast), µ must
remain constant. Now, a few lines of algebra will show that µ is proportional
to the magnetic flux through a gyro-orbit and thus, as the ions are heated
and rL increases, they are accelerated into the region of increasingly weak
magnetic fields in the ejection nozzle. The ejection of these ions at high
velocity (and thus high specific impulse) provides the engine with the thrust.

The first adiabatic invariant is the most important and useful of the three
since the periodic motion associated with it (cyclotron motion) has periods
that are much smaller than those of the bounce and drift periods. We have
therefore discussed it at some length and will give a less thorough treatment
of the other two invariants.

2nd Adiabatic Invariant, J

A gyrating particle in Earth’s magnetic field will bounce from pole to pole
so long as it is not in the loss cone and has some component of its velocity
along the field. The second adiabatic invariant is associated with this periodic
bouncing and, since the proof is rather lengthy, we omit it here and simply
state the result. The second adiabatic invariant is

J =

∫ p2

p1

v‖ds
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Figure 2.10: A diagram of the VASIMR engine. Conservation of µ for per-
pendicularly heated ions provides thrust by accelerating the ions through the
ejection nozzle.

where p1 and p2 are the turning points at each pole. This result essentially
reveals that the length between turning points of a magnetic field line on
which a particle is bouncing is a constant.

3rd Adiabatic Invariant, Φ

Suppose we look down on Earth from above and observe a particle drifting in
the circle caused by the ∇B+Rc drift which is our third periodic motion. It
can be shown that the third adiabatic invariant is simply the flux of magnetic
field lines through this drift circle given by

Φ =

∮
B · ds (2.47)

where the area to be integrated over is the area enclosed by the drift circle.

As Exercise 2.11 demonstrates, it can take some days for a particle to
complete a full drift circle around Earth. Conditions in space and the field
throughout the drift circle often change much more rapidly than this, violat-
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ing the adiabatic assumption so that Φ is, for most practical uses, not really
an invariant at all.
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Exercises
2.1: For each of the following cases, calculate the Debye length, plasma

parameter and plasma frequency, and use the first two criteria for defining
a plasma (assuming the third is automatically satisfied) to state whether or
not each case can be considered to be a plasma:

a. Earth’s ionosphere: Te = 0.08 eV, ne = 1× 106 cm−3

(Partial answer: λD = 2 mm, Λ = 104, ωpe = 60×106 rad/s (so fpe = 9
MHz))

b. Interstellar gas: Te = 0.5 eV, ne = 0.1 cm−3

c. Earth’s VanAllen Radiation belts: Te = 100 eV, ne = 1× 103 cm−3

d. Fusion reactor: Te = 2× 104 eV, ne = 1× 1014 cm−3

e. Typical flame: Te = 0.1 eV, ne = 1× 108 cm−3

Note: In the field of space physics, you will often encounter “temperatures”
given in energy units. When you encounter this, it is to be assumed that
Boltzmann’s constant k has been absorbed into the “temperature” so that,
in this case, Te is really kTe. A useful approximation to keep in your head
(and with which you may check your conversions) is that 1/40 eV ≈ 300 K
(multiplied by an implicit k).

2.2: In the derivation of the electron plasma frequency, we assumed the
ions were stationary because to their mass is much greater than the electron’s
mass. Derive an expression for the plasma frequency ωp without assuming
stationary ions. Compare this more correct result with the one derived in
the text and show they are approximately equal.
(Hint: include the term ni = n0 + δni in Poission’s equation and use the ion
equations of motion and continuity. You will have five equations and five
unknowns but the procedure is identical to that followed in the text.)

2.3: Compute the cyclotron frequency and Larmour radius for the
following cases. In each case, take the velocity vector to be perpendicular to
the magnetic field. [from Chen, 1983, p.25]

a. A 10-keV electron in Earth’s magnetic field of 5× 10−5 T
(Answer: ωce = 9× 106 rad/s, rL = 7 m)
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b. A solar wind proton streaming with a speed of 300 km/s in the inter-
planetary magnetic field of 5× 10−9 T

c. A 1-keV He+ ion in the solar atmosphere near a sunspot where the
magnetic field is 5× 10−2 T

d. A 3.5-MeV He++ ash particle in an 8 T fusion reactor

2.4: Beginning with the electron continuity equation, Poisson’s equation
and the electron momentum equation, show all the steps required to obtain
the linearized perturbation Equations 2.9, 2.10 and 2.11.

2.5: Beginning with the linearlized perturbation equations from Exer-
cise 2.4, supply the missing steps required to obtain the plasma frequency
given in Equation 2.12.

2.6: In the derivation of the plasma frequency, we assumed oscillating
solutions and employed the substitutions

∂

∂t
→ −iω

∇ → ikx̂.

Demonstrate the validity of these substitutions.
2.7: Beginning with the two equations immediately preceeding Equa-

tion 2.20, use Euler’s identify to obtain Equations 2.20 and 2.21.
2.8: Beginning with Equation 2.37, complete the steps required to

obtain Equation 2.38.

2.9: Show that, as Equation 2.40 states, IA =
1
2
mv2⊥
B

for a particle
moving in the presence of a magnetic field. As the text suggests, this can be
done by computing the current I due to the charged particle’s gyromotion
over an area A defined by a circle of radius equal to the Larmour radius rL.

2.10: For each of the following cases, sketch particle trajectories sepa-
rately for electrons and protons. Define your coordinate systems and clearly
illustrate the direction of the magnetic and electric fields.

a. Assume a static uniform magnetic field oriented along the x-axis with
no electric field. Charged particles have initial velocity components of
vx0 = vy0 = 0 and vz0 = v0.

b. Assume a static uniform magnetic field oriented along the y-axis with
a static uniform electric field along the z-axis. Charged particles are
initially at rest.
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c. Assume a magnetic field along the z-axis that increases in strength
with increasing values of z. Charged particles have initial velocity
components along the x- and z-axes with vx0 ≈ vz0 .

2.11: Suppose the magnetic field strength in Earth’s magnetic equato-
rial plane is given by B = B0(RE/r)

3 where B0 = 0.3 Gauss is the surface
equatorial field strength and r is the geocentric distance.

a. Obtain an expression for the drift period (the time it takes a particle
to drift around the Earth) of a particle on the equatorial plane with a
pitch angle of 90◦ and energy W .

b. Evaluate this period for both a proton and an electron of 1 keV energy
at a distance of 5RE from the center of Earth.

c. Justify the grad-B assumption that rL/L << 1 (where L is a length
characterizing the distance over which B changes appreciably) for the
cases described in b. above.

In this problem, ignore the curvature drift (using only the grad-B drift).
The curvature drift is not actually negligible but, as it turns out, does not
seriously impact the numerical answer.

2.12: Complete the missing steps between Eqs. 2.42 and 2.43.
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Chapter 3

The Sun and the Solar Wind

3.1 Introduction to the Sun

In 1993, the group They Might Be Giants released an album containing the
title song, “Why Does the Sun Shine (The Sun Is A Mass of Incandescent
Gas)” and the reader who can be persuaded to listen to this song will likely
have an amusing and rewarding experience. The Sun is a main sequence
star predominantly fueled, as the song lyrically points out, by nuclear fusion
of hydrogen into helium. Comparatively speaking, our Sun is an ordinary
star but just as ordinary people may effect extraordinary impacts on those
closest to them, our Sun is the most significant object in the solar system.
This chapter presents an overview of the Sun, its structure and processes,
and discusses the solar wind and interplanetary magnetic field (IMF) that
fill the space of our solar system and interact with all its celestial objects.

With apologies to those having a keen interest in the worthy field of
solar physics, it is admitted at the outset that the focus of this chapter is
on those topics that most directly impact our study of the near-Earth space
environment. As a result, many interesting and important topics are left
untouched and others are merely introduced.

Stars are classified by the Morgan-Keenan system that encodes a star’s
temperature (thus its apparent color) and size (an indication of its current
point in the life cycle of a star). From the highest to the lowest temper-
atures, stars are classified as type O,B,A,F,G,K or M. Table 3.1 lists the
types and some associated average characteristics relative to values of the
Sun (identified by the � subscript). Appended to the letter encoding a star’s

55
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temperature range is a number that expresses, in tenths, where it lies in
that range. For example, the Sun is a type G2 star which means that its
approximate surface temperature is two tenths of the way from 6000 K to
5000 K or ∼5800 K. Finally, a Roman numeral code from I-V is appended
that identifies the approximate size of the star. The largest stars, known as
supergiants, are identified as class I and the classification number increases
as the star’s size decreases. The smallest stars are known as dwarf stars, are
on the main sequence and are identified as class V. Our Sun is a spectral
type G2V star which means it is a main-sequence star with an approximate
surface temperature of 5800 K. Such stars are abundant in our galaxy and
Alpha Centauri, the next closest star to us, is also a type G2V star.

Star Approximate Surface Mass Radius Luminosity
Type Temperature (K) (M�) (R�) (L�)

O >25,000 60 15 1.4× 106

B 25,000-11,000 18 7 2× 104

A 11,0000-7500 3.2 2.5 80
F 7500-6000 1.7 1.3 6
G 6000-5000 1.1 1.1 1.2
K 5000-3500 0.8 0.9 0.4
M <3500 0.3 0.4 0.04

Table 3.1: Average characteristics of stellar spectral types.

Table 3.2 presents a selection of the Sun’s “vital statistics”[Beatty et al.,
1999, p.25]. To give these numbers perspective, the volume of the Sun is
sufficent to contain more than a million Earths and its average density is
about one fourth that of Earth and about 40% higher than that of water.
The density at the center of Sun is, however, more than 100 times higher than
the average. The Sun’s radius is about 109 times Earth’s radius (RE) and
its mass is 330,000 times that of Earth. The average distance separating the
Sun and Earth, defined to be one astronomical unit (AU), is ∼150 million km
which is about 23,500 RE and photons emitted by the Sun cover this distance
in about 8.3 minutes. The Sun’s luminosity, which is the total amount of
photon energy radiated per second, is a staggering 3.85× 1026 W and taking
humankind’s power consumption to be 1.6×1013 W1, we find that in a single
second the Sun emits enough photon energy to power humankind for more

1see http://en.wikipedia.org/wiki/World energy consumption#Primary energy
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than 750,000 years. Using Einstein’s famous relation E = mc2, we find that
the Sun looses more than 4 billion kilograms of mass per second due to its
photon radiation (to say nothing of any particles leaving the Sun). It has
been loosing mass at essentially this rate for billions of years and will do so
for billions more.

This is worth repeating: for billions of years, the Sun has been
loosing billions of kilograms of mass each second, and it will
continue doing so for billions of years to come. The Sun is very
massive indeed!

Solar Parameter Value
Age 4.5× 109 years
Radius R� = 6.96× 108 m
Mass M� = 1.99× 1030 kg
Density 1.4× 103 kg/m3 (mean)

151× 103 kg/m3 (center)
Temperature 15.6× 106 K (center)

5780 K (photosphere)
2− 3× 106 K (corona)

Luminosity 3.85× 1026 W
Solar Constant 1366 W/m2

Principal constituents Hydrogen (92.1%)
Helium (7.8%)
All others (0.1%)

Equatorial rotational period 26.24 daysa

Average Sun-Earth Separation 150× 109 m
a This is the rotational period as observed from Earth. The
sidereal period is approximately 24.5 days.

Table 3.2: Vital Statistics of the Sun.

3.1.1 The Sun’s Life-Cycle

It appears the Sun was born about 4.5 billion years ago from a gravitationally
collapsing cloud of hydrogen-dominated interstellar gas. As this gas cloud
collpased it released gravitational potential energy, some of which was re-
leased as thermal radiation but much of which was absorbed by the interior,
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raising the temperature and pressure.2 At some point during the collapse,
temperatures and pressures in the core reached levels sufficient to support the
fusion of ionized hydrogen into helium. This lighting of the “nuclear fires”
increased the outward pressure gradient force, counteracted the gravitational
collpase, and stabilized the Sun’s size.

With the beginning of nuclear fusion in its core, the Sun entered the main
sequence in which this gravitational equlibrium would be expected to persist
for some 10 billion years. As the Sun (and in fact as any star) progresses
through the main sequence, it gradually brightens due to a slowly increasing
rate of fusion in its core. At some time in the future, perhaps 3-4 billion years
from now, the energy output of the Sun will be sufficient to doom Earth to
a runaway greenhouse effect, raising temperatures to such levels that the
oceans will boil [Bennett et al., 2008, pp.495-497].

Once the Sun has exhausted its core nuclear fuel, it will undergo a series of
rapid changes over the next few hundred million years whereby it will become
a red giant, eventually reach a radius that encompases the Earth, and finally
collpase into a dim white dwarf. Earth, if it has not been destroyed by the
Sun during its death-throes, will become cold and dark [Bennett et al., 2008,
pp.570-572]. But as this eventuality is understood to lie more than 5 billion
years in the future and is, in any case, entirely beyond our control, it presents
no cause for concern.3

2The interested student should investigate the virial theorem (K = − 1
2U where K

and U are the average kinetic and potential energies) from which many important insights
may be gleaned. For example, given the virial theorem and E = K + U , it is clear that
E = 1

2U so that as the potential energy of a collapsing gas cloud decreases, half of the
released energy must leave the system (as, for example, thermal radiation). The virial
theorem also reveals (given some assumptions) that the temperature of a gravitationally
bound system varies as one over its radius. As a further tease to encourage the study of
star formation, notice that the previous point implies that a system under gravitational
collapse has a negative heat capacity: As the gas cloud collapses (lowering its energy), its
temperature increases!

3Is there not a missing punctuation mark in the English language? A ‘?’ indicates that
the writer has asked a question; a ‘!’ indicates, among other things, a point of excitement;
a ‘.’ indicates, well, just about anything else. Should there not be a mark to indicate that
the writer is intending to demonstrate not a question, excitement, or bare statement, but
rather a reason for calmness? Let this mark be called the calmness mark and indicate
it with the symbol -̈. The sentense preceeding this footnote should be ended with the
calmness mark. Rest assured, this footnote will not survive the first real edit of this text -̈
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3.1.2 Solar Irradiance

The solar constant F� is the amount of photon energy per unit area per
second available at 1 AU, at the top of Earth’s atmosphere. It can be ap-
proximated by assuming that the solar luminosity (L�) is radiated equally
in all directions so that

F� ≈
L�

4π(1 AU)2
≈ 1366 W/m2.

Satellites orbiting above Earth’s atmosphere have this amount of power den-
sity available, e.g., for conversion to electrical power using solar arrays. As-
suming a conversion efficiency of ∼35%, space-based solar arrays require an
area of ∼2 m2 per kilowatt of electrical power produced. Ground-based solar
arrays receive significantly less power due to the absorption of solar radia-
tion by the intervening atmosphere. Under ideal conditions, the flux of solar
radiation at the surface of Earth is about 1000 W/m2 and under typical
conditions it is far less.

The Sun’s spectral irradiance defines the emitted photon power per unit
area per unit wavelength and its integral over all wavelengths and viewing
angles from the Sun yields the luminosity. Figure 3.1 shows the Sun’s spectral
irradiance at the top of Earth’s atmosphere4. The numerous “bite-outs”
in the spectrum are due to absorption of photons in the Sun’s atmosphere
and are known as Fraunhofer lines5. A blackbody fit to Figure 3.1 shows
that the Sun has an effective blackbody temperature of ∼5785 K. Note that
the photon energy output of the Sun maximizes in the visible portion of
spectrum.6

4Data from http://rredc.nrel.gov/solar/spectra/am0/
5After the German physicist Joseph von Fraunhofer (1787-1826.)
6The Sun appears yellow not because its spectral irradiance peaks in the yellow (see

the inset plot in Figure 3.1), but for more complicated reasons. Its irradiance peaks in the
blue but has a small variance across the visible spectrum so that it is essentially a source
of white light. The Sun appears white in images taken from space. The yellowish color
we observe on the ground with our eyes is a result of atmospheric scattering (proportional
to 1/λ4 so that bluer wavelengths are scattered more than redder wavelengths), our eye’s
spectral sensitivity (we can see yellow colors more easily than we can see blue colors), and
the brain’s image processing (which makes the Sun appear even yellower because of the
sky’s blue background).
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Figure 3.1: Spectral irradiance of the Sun observed at 1 AU.

3.2 Solar Structure

3.2.1 The Sun’s Interior

Figure 3.2 shows an illustration of the Sun in cross-section. At the center
is the core that extends out to about one quarter of the Sun’s radius and
it is here that the Sun’s power is generated through nuclear fusion of hy-
drogen into helium nuclei. Core temperatures and pressures are such that
charged particles collide with energies sufficient to overcome the repulsive
Coulomb force. The short-acting strong force then binds, or fuses, the col-
liding particles together, releasing in the process the energy that powers the
Sun. Figure 3.3 illustrates the fusion of hydrogen into helium nuclei through
the three steps known as the proton-proton chain. Step 1 involves the fusion
of two hyrdogen nuclei into deuterium, liberating 0.42 MeV of energy. The
release during this step of a positron and a neutrino results in the change of
one proton to a neutron. Thus in Step 1,

1
1H + 1

1H→ 2
1D + e+ + ν + 0.42 MeV.

The positron indicated in this reaction annihilates very rapidly with an elec-
tron, producing two gamma rays with 0.511 MeV of energy each (thus con-
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serving energy) and travelling in opposite directions (thus conserving mo-
mentum).

Figure 3.2: The Sun in cross-section, showing its basic structure. Figure
from http://ase.tufts.edu/cosmos/view picture.asp?id=590.

In Step 2 of the proton-proton chain, a deuterium nucleus fuses with
another proton to form helium-3, releasing a gamma ray and 5.49 MeV of
energy. That is,

2
1D + 1

1H→ 3
2He + γ + 5.49 MeV.

The final step of the proton-proton chain proceeds in one of four ways, the
most common of which involves the fusion of two helium-3 nuclei into helium-
4 with the release of two protons and 12.86 MeV of energy. In this reaction,

3
2He +3

2 He→ 4
2He + 2 1

1H + 12.86 MeV.

The net change in mass over the three steps of this proton-proton chain
is approximately the difference between the mass of a helium-4 atom and the
mass of four hydrogen atoms.7 This mass, converted into energy, amounts
to 26.7 MeV and given the Sun’s luminosity, it can be shown that the Sun
coverts 600 billion kg of hydrogen into helium every second (see Exercise 3.2).

7In this approximation, the neutrino mass is neglected.
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Another calculation shows that the reactions in the proton-proton chain occur
a mind-boggling 1038 times per second (see Exercise 3.1).

ν ν

γ γ

Proton

Neutron

Positron

γ Gamma Ray

ν Neutrino

     Step 1:

  Protons Fuse

into Deuterium

            Step 2:

Proton and Deuterium

  Fuse into Helium-3

            Step 3:

Proton and Helium-3

 Fuse into Helium-4

Figure 3.3: Fusion in the Sun’s core proceeds along the proton-proton chain
of 3 reactions to fuse hydrogen into helium nuclei.

Photons emitted by the core are absorbed and re-emitted innumerable
times during their random walk journey to the surface of the Sun and beyond.
The size of the Sun and its densities are such that photons emitted by the
core require a few hundred thousand years to reach the surface. On Earth,
we are bathed in photons that left the outer surface of the Sun some eight
minutes ago, but these “same” photons left the core a few hundred thousand
years ago!

Proceeding outward away from the core, the radiative zone indicated in
Figure 3.2 extends to ∼ 0.86R� as the temperature steadily drops from its
core values. In this radiative zone, outward energy transport is accomplished
primarily via photon radiation. Continuing outward, the Sun continues to
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cool and the next ∼ 0.14R� constitutes the convection zone where the tem-
perature gradient is large enough that equilibrium cannot be maintained by
radiation alone. Here the Sun roils like a pot of water on the stove with ar-
eas of hot plasma that rise to the surface being replaced by areas of sinking
cooler plasma.

3.2.2 The Sun’s Atmosphere

This continual overturning in the convection zone lies just beneath the lowest
layer of the Sun’s atmosphere, the photosphere, which is the visible surface
of the Sun and a mere 500 or so km thick. It is here that the blackbody
temperature reaches the values of ∼5785 K mentioned above. Viewed with
the naked eye, the photosphere appears as a smooth surface but viewed with
sufficient resolution, its granulation reveals the churning and overturning
nature of the underlying convection zone. Sunspots, a topic to be discussed
at some length in §3.3.1, sometimes appear on the photosphere. Although
sunspots commonly have radii larger than that of Earth, they are not usually
visible at Earth without magnification.8

Above the photosphere lies the chromosphere with a thickness of ∼ 2500
km. This middle layer of the Sun’s atmosphere has a temperature of about
10,000 K and is the region responsible for most of the Sun’s radiated ultra-
violet light. The outermost layer of the Sun’s atmosphere is known as the
corona and extends several million kilometers above the photosphere. At
least in part due to its very low density and correspondingly low heat ca-
pacity, coronal temperatures reach values of over a million Kelvin. Coronal
gasses are therefore copious producers of X-rays.

The Sun’s corona is spectacularly beautiful but not usually visible with
the naked eye due to the overwhelmingly bright photosphere that lies be-
neath it. Several coronal images recorded from satellite instrumentation will
be presented below but here it may be pointed out that rare occurrences on
Earth do in fact make it occasionally possible to view the corona with the
unaided eye. Specifically, solar eclipses are those rare events when the moon

8Naked-eye sunspots are sometimes observed. One of the authors (Hughes) saw one
on a cold winter’s day in Fairbanks, AK. It was around noon and the Sun was low on the
horizon, viewed through a dense ice-fog that dimmed the Sun to the point where it could
be looked-at directly. There was a large black spot in the lower left-hand side of the Sun.
Upon arriving at work, the observation was confirmed by comparing with the most recent
solar image on spaceweather.com.
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passes between Sun and Earth on a trajectory that blocks at least part of
the Sun from view. In one of the solar system’s most surprising coincidences,
the ratio of our moon’s to the Sun’s radii almost exactly matches the in-
verse ratio of their distances from Earth so that, when viewed from Earth,
each appear to be very nearly the same size. On rare occasions the moon’s
trajectory during a solar eclipse entirely blocks the Sun’s photosphere which
for a few brief moments reveals the corona to the unaided eye. Figure 3.4
shows a photographic image of the corona taken during just such an event,
the total solar eclipse of August 11, 1999 as seen from France.9 This coronal
atmosphere is the outermost layer of the Sun and extends into interplanetary
space.

Figure 3.4: The Sun’s corona revealed during the total solar eclipse of August
11, 1999. Photo by Luc Viatour.

3.3 Solar Activity

For the vast majority of us who do not live either above the arctic or below
the antarctic circles, the Sun rises and sets every day. We set our watches

9Image from http://en.wikipedia.org/wiki/Corona.
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by it and are at least as sure of these two daily occurrences as we are of
those two other things we are told are the only guarantees in life10. Year
after year, decade after decade, and generation after generation we perceive
very little, if any, change in either its warmth or its brightness. Our Sun
appears to be constant. Careful observers for hundreds if not thousands of
years have however noted that the Sun is in fact not constant. Spots appear
on it’s otherwise uniformly-appearing bright surface. They persist for some
time and disappear. More or fewer of these so-called sunspots appear at a
given time and their number goes through a relatively ordered cycle. Those
living at high latitudes (either northern or southern) note a similar cycle in
the occurrence of large auroral displays. The Sun is in fact active and this
section describes some of this activity with a particular interest in that which
impacts Earth and human technology.

3.3.1 Sunspots

Figure 3.511 shows a white-light image of the Sun’s photosphere revealing
the presence of several large sunspots. Stated most simply, sunspots are dark
spots on the photosphere. They are dark only in the sense that they are
darker than the sorrounding areas and this darkness is indicitave of their
lower temperatures. Photospheric temperatures in a sunspot range from
4000-4500 K whereas the average photospheric temperature is ∼5800 K.

Sunspots have been observed and counted for hundreds if not thousands of
years and telescopic observations that began around the year 1610 provided
the first evidence that the Sun rotated.12 Observations soon revealed another
startling fact regarding sunspots: their numbers and even their locations on

10Benajmin Franklin, in a letter to Jean-Baptiste Leroy on November 13, 1789 famously
noted, “Our new constitution is now established, and has an appearance that promises
permanency; but in this world nothing can be said to be certain, except death and taxes.”

11From: http://en.wikipedia.org/wiki/File:Sun projection with spotting-

-scope.jpg
12It is difficult for us in the modern era, with so much accumulated information and

when so much scientific progress is incremental, to appreciate the worldview-changing
effects of such fundamental discoveries. All the more so because of this, the student
is encouraged to put him or herself in the place of those early investigators and feel
the weight of their discoveries. The Sun rotates! Students, recall in this context the
year in which Galileo was censured by the Roman Inquisition for views expounded in his
heliocentric work, Dialog on the Two Chief World Systems, and in which legend records
his unpenitent muttering about the Earth: “Nevertheless, it moves.” Such were the times.
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Figure 3.5: A white light image of the Sun’s photosphere, showing large
sunspots. Photograph by SiriusB.

the Sun varied over time in a quasi-regular pattern.
The Wolf number, also known as the International sunspot number (SSN),

encodes the number of sunspots and sunspot groups on the photosphere.
Observations reveal that, on average, sunspots groups are formed of approx-
imately 10 individual sunspots and so the SSN is calculated as 10 times the
number of sunspot groups plus the sum of all individual sunspots not part
of the previously counted groups. Historical data and observations from the
Royal Greenwich Observatory (RGO), the US Air Force (USAF), and the
US National Oceanic and Atmospheric Administration (NOAA) are used to
compute daily-, monthly-, and yearly-averaged values of the SSN. Figure
3.6b shows a time series of the monthly-averaged SSN13 since the year 1874.
These data display several interesting features. Perhaps most obviously,

the SSN varies with a period of about 11 years between
successive maxima.

During solar minimum, the SSN is nearly zero while at solar maximum the
number peaks at values that differ significantly from cycle to cycle. Fourier
analysis shows that this solar cycle has a dominant period of approximately

13Data from http://solarscience.msfc.nasa.gov/greenwch/spot num.txt
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10.7 years although the variation about this mean is significant. These solar
cycles are numbered and solar cycle number one is defined as the cycle that
began in March 1755. The solar cycle number is identified in Figure 3.6b as
the number near the base of each SSN peak. As of 2010, we have entered solar
cycle 24. As you will find in Exercise 3.3.5, several periods of unusually low
and high SSN have been identified and these periods are strongly correlated
with geophysical observations including Earth’s global mean temperature.
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Figure 3.6: a) A so-called butterfly diagram showing the fraction of the
solar hemisphere covered by sunspots as a function of both time and solar
latitude. Darker colors indicate a larger fraction of coverage with maximum
values (shown as black) representing coverage of approximately 2% of the
latitudinal strip. b) The monthly-averaged SSN from 1874-2014. The vertical
lines identify example times of solar minimum (those passing through SSN
minima) and solar maximum (those passing through SSN maxima). The
solar cycle number is listed near the base of each SSN peak.

In addition to the counting of sunspots that yields the SSN, observers
at the GRO, USAF, and NOAA have also noted the solar latitude at which
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those sunspots occur. Figure 3.6a shows these data14 in the form of a so-
called butterfly diagram that displays the fraction of the solar hemisphere
covered by sunspots as a function of both time and solar latitude. In this
figure, darker areas indicate a larger fraction of coverage and it can be seen
that the vertical lines indicating times of solar maximum pass through the
darkest areas on the butterfly diagram. Butterfly diagrams reveal a curious
and interesting feature. If we identify the beginning of a solar cycle as the
time of solar minimum, we see that as sunspots first begin to appear (that is,
as the SSN begins to increase from its local minima near zero), they tend to
form at the highest latitudes (typically about 40◦) and generally appear at
consistently lower latitudes as the 11-year cycle progresses until, just before
the beginning of the next cycle, sunspots tend to appear at very low latitudes
(typically about 15◦).

Much like the Earth and other bodies in the solar system, the Sun gener-
ates a magnetic field and this field permeates the Sun itself and, as we will see
below, the entire solar system. Further insight into the nature of sunspots
and of their importance to the near-Earth space environment comes from
observations of the strength and polarity of magnetic fields inside sunspots.
The magnetic field strength inside sunspots is several orders of magnitude
higher than the photospheric average. Further, it has long been known that
sunspots tend to occur in pairs and that the two sunspots forming a pair
have opposite magnetic polarity. Figure 3.7 shows an image recorded by
the MDI instrument onboard the SOHO satellite of the Sun’s photospheric
magnetic field polarity. In this figure, gray regions indicate a relatively weak
magnetic field and white (black) regions indicate a strong field directed out
of (into) the photosphere. For convenience, let us designate the white regions
as those of positive polarity and the black regions as those of negative polar-
ity. In addition to the obvious black-white pairings of sunpots in this image,
note that in the southern hemisphere, the negative polarity spots tend to
lead the positive polarity spots and that the reverse is true in the northern
hemisphere.

From one solar cycle to the next, this reversal of polarity ordering from
northern to southern hemisphere is consistently found, but amazingly, it is
also found that in any given hemisphere, the ordering reverses during each
consecutive solar cycle. That is, if in the northern hemisphere of a given
solar cycle, positive spots lead negative spots, then two things can be stated.

14Data from http://solarscience.msfc.nasa.gov/greenwch.shtml
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Figure 3.7: Full-disk magnetogram image from the Michelson-Doppler Imager
(MDI) instrument onboard the SOlar and Heliospheric Observatory (SOHO)
satellite. Gray regions indicate very weak magnetic fields and white (black)
regions indicate strong magnetic fields directed out of (into) the solar pho-
tosphere. Movie frame from: http://soi.stanford.edu/press/SSU 2000-

/Backside/movies/mag.qt

First, in the same solar cycle, southern hemisphere spot pairs will be lead by
negative spots. Second, in the following (or preceeding) solar cycle, northern
hemisphere spot pairs will also be led by negative spots. Thus we may say
that in addition to, or superposed onto, the 11-year solar cycle is another
22-year cycle during which the polarity of sunspot pairs in a given solar
hemisphere is repeated. Even more, the Sun has a magnetic field much like
Earth does and the polarity of this field reverses every solar cycle so that it
repeats every ∼22 years. The student should not allow this stupendous fact
to speed by unpondered. Suppose the Sun’s magnetic field to be that of a
bar magnet located near it’s center.15 This supposed bar magnet reverses
polarity every ∼11 years!

The reasons for these polarity reversals (both of the Sun itself and con-

15It is not!
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sequentially of its sunspot pairs) is an area of current research but we may
gain some qualitative insight into the reasons with the addition of two more
facts. First is the observational fact that the Sun exhibits differential rota-
tion wherein it rotates fastest at its equator and progressively more slowly
towards its poles.16 The change in rotational period is significant and the
Sun at its poles takes at least 33 days to complete a rotation as compared to
approximately 25 days near its equator. Second, for reasons we will explore
in more detail in §3.6.1, the Sun’s plasma and magnetic fields are in a sense
locally linked so that they rotate together.

Figure 3.8 presents a time sequence of images of the solar photosphere and
it’s magnetic field lines. In this figure, the solar magnetic field is represented
by the blue lines with white arrows indicating polarity. A helpful model is to
think of the Sun as a differentially-rotating ball and each magnetic field line
as a SlinkyTM that lies on the surface of the ball. In panel a) at the beginning
of the sequence, the magnetic field is directed from south to north and we take
this field to be approximately that of the bar magnet mentioned previously.
Panel a) corresponds to solar minimum, a state of ordered solar magnetic
field and very few if any sunspots. The first effects of the Sun’s differential
rotation are noticed in panel b) where due to the higher rotation rates near
the equator, the solar plasma has begun to distort the magnetic field and, in
our model, each SlinkyTM wrapping the surface is becoming longitudinally
distored. This distortion continues and becomes more extreme in panels c)-e)
as the equatorial regions continue to outstrip the higher latitudes.

Such a collection of wound-up slinkies is a difficult thing to control and
at some point first pictured in panel f), one of them has been twisted to such
an extent that it begins to kink and break free from the ball’s surface. Note
the polarity of the magnetic field line on which this “kink” first appears
and notice that, at the site of kink, the field will be directed out of the
photosphere at the leading edge and into the photosphere at the trailing
edge. These two points with their opposite polarities are the sites of the
first sunspots in a new solar cycle. The process continues, the SlinkiesTM

become more wound-up, more prone to “kinking”, and more sunspots appear
in both hemispheres. In panels g) and h), field lines in both hemispheres may
be traced to see the hemisphere-reversed polarity pattern of sunspot pairs
discussed previously. Finally, in panel i) the magnetic field has become highly
disordered and there are a large number of sunspot pairs. This final panel

16This seems a strange behavior and I cannot explain its cause.
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a) b) c)

d) e) f )

g) h) i)

Figure 3.8: A time-sequence of frames beginning with solar minimum
and ending with solar maximum. The blue lines indicate the Sun’s mag-
netic field that progresses from ordered to disordered as the solar cycle
advances. Adapted from http://sohowww.nascom.nasa.gov/gallery/-

Movies/dynamo/dynamo.mpg

represents solar maximum and continued progress towards the next solar
minimum essentially follows the reverse sequence but with the end result of
the next solar minimum polarity being opposite that shown in panel a). Thus
in one solar cycle, the Sun’s magnetic field has gone from being highly ordered
at solar minimum, through a highly disordered state at solar maximum and
returned to a highly ordered state with reversed polarity at the next solar
minimum.17

The student may at this point reasonably ask why so many words have
been dedicated to sunspots, their numbers, polarities, and relation to the
solar cycle. Two reasons are that the SSN is highly correlated with geomag-
netic activity on Earth and that sunspots themselves are directly linked with
some causes of this activity. This link is explored in the following section.

17The solar cycle, its spatial and time scale, and the processses involved are among the
most amazing things the author has ever encountered.
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3.3.2 Solar Flares and Coronal Mass Ejections

Figure 3.9 shows an image of the Sun recorded with the SOHO EIT (Ex-
treme ultraviolet Imaging Telescope) instrument at the 304 Å emission line
of singly-ionized Helium. Identified in this image are two types of features
of interest to us here: solar filaments and prominences. Filaments are dark
crack-like features that appear on the solar disk and prominences are bright
loop-like structures that extend upward from the photosphere and chromo-
sphere into the corona and are visible near the limb. Filaments and promi-
nences are actually two different manifestations of the same feature in that
a prominence is a filament viewed from the side. These features form when
relatively dense low-lying plasma at a temperature of ∼80,000 K populates
a magnetic loop much like those illustrated in Figure 3.8. In part depending
on the wavelength at which they are observed, filaments appear dark for one
of a few reasons. As with sunspots, the emissions may be coming from a re-
gion that is simply cooler and therefore darker than the background against
which they are viewed. Also, the number density of the emitting species
may be lower in a particular region than in the background, making that
region, as before, darker than the background. Third, enhanced absorption
at particular wavelengths may cause a region to appear dark.

Prominences, on the other hand, appear bright because they are viewed
near the solar limb against the tenuous corona and the dark background of
space. Filaments and prominences can form in a day and may persist stably
for several months during which time they will have rotated with the Sun
into and out of view a number of times. Prominences are truly spectacular
features, often spanning distances of many Earth radii and containing plasma
with masses exceeding 1014 kg. As spectacular as prominences are when they
are stable, they are unquestionably more so when they collpase and explode,
flooding their path with highly energetic plasma and electromagnetic radia-
tion. These explosions may be loosely called solar flares and coronal mass
ejections (CMEs).

Solar flares and CMEs are likely distinct events triggered by a common
mechanism [Kallenrode, 2004, p.188]. Both transfer vast amounts of energy
from coronal magnetic fields to the plasma and electromagnetic radiations
and for our purposes here we may naively consider solar flares to be smaller,
more localized “explosions” of a magnetic loop and CMEs to be large scale er-
ruptions involving a significant fraction of the solar corona. Plasma ejections
from these events can attain masses in excess of a billion tonnes travelling
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SOHO EIT 30.4nm

September 14, 1999

Filaments

Prominence

Figure 3.9: September 14, 1999 EUV image of the solar corona from the
SOHO EIT instrument at 304Å. Several filaments and a large prominence
are visible.

at speeds of over two million miles per hour. The energy output of a large
flare can exceed 1025 J while that of a large CME can exceed 1026 J, more
than doubling the Sun’s energy output for its duration. Earth at a distance
of 1 AU from the Sun is a small target for this energetic ejecta but these
events are neither rare nor highly localized in space so that Earth-impacts
are a statistical certainty. During solar minimum, approximately one CME
is observed per week and this rate increases to several per day during solar
maximum. As we will soon see, the ejecta occupies a volume in space that
increases as it travels into the solar system so that it may be likened to the
pellets of a shotgun blast. With dozens or even hundreds of such blasts oc-
curing per year, our distance from the Sun and Earth’s small size offer no
statistical protection. Earth’s direct interaction with radiations and dense
plasma traveling at millions of miles per hour is a certainty. We are protected
(at least to some extent) by Earth’s own magnetic field and atmosphere, but
as this is a topic for future discussions, let us return to the prominences
whose collapse is often the trigger for such events.

Figure 3.10 shows frames from an artist’s rendered NASA amination illus-
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trating the evolution of a pair of sunspots into a solar flare. The animiation
begins in panel a) with a view over the photosphere and through the hot and
tenuous corona. A pair of magnetic field loops, which we may identify with
the “kinks” illustrated in Figure 3.8, are visible along with their associated
sunspots. In panel b) the view has moved from above to below the surface of
the photosphere and a newly formed magnetic loop is visible. In panels c)-e)
this loop protrudes through the surface of the photosphere and forms a new
sunspot pair. If we identify the resulting loop structure visible in panels f)
and g), again from above the photosphere, as a prominence, then the edge-on
view shown in panel h) would represent a filament. In panels i)-n), some of
the energy contained in this magnetic loop is released as a solar flare through
a process known as reconnection whereby the magnetic field is reconfigured
and plasma is ejected into space. Panels o) and p) illustrate the remnants
of the loop. The entire process illustrated in this figure occurs on the time
scale of minutes and releases a large amount of energy.

a)a) b) c) d)

e) f) g) h)

i) j) k) l)

m) n) o) p)

Figure 3.10: An artist’s rendering of the evolution of a pair of sunspots
into a solar flare. Image frames from http://sohowww.nascom.nasa.gov/-

bestofsoho/Movies/10th/SunspotsForm.mpg

Solar flares are classified according to the peak energy flux from soft
X-rays (1-8 Å) as observed by the Geostationary Operational Environment
Spacecraft (GOES) fleet. Table 3.3 shows the classification scheme which
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is logarithmic with a linear subclassification. To illustrate the scheme, note
that the energy flux from a B1 class flare is 10 times higher than from an
A1 flare and the energy flux from M7 flare is 7 times higher than from an
M1 flare and 700 times higher than from a B1 flare. M and X class flares
are powerful enough to cause significant geomagnetic activity and disturbed
space weather.

Solar Flare GOES Peak Energy
Classification Flux 1-8 Å(W/m2)

A(1-9) (1− 9)× 10−8

B(1-9) (1− 9)× 10−7

C(1-9) (1− 9)× 10−6

M(1-9) (1− 9)× 10−5

X(1-ζ) (1− ζ)× 10−4

Table 3.3: Soft X-ray solar flare classification scheme

The strongest recorded flare occurred on November 4, 2003 and is officially
classified as an X28 although the energy flux saturated the GOES detectors
for many minutes and the classification may therefore be only a lower bound.
Although this flare was not directed at Earth, its effects caused numerous
satellite anomalies and forced astronauts onboard the International Space
Station to take shelter in radiation-hardened areas. Solar flares are often as-
sociated with CMEs and Figure 3.11 shows a composite image of a large CME
that occurred on August 7, 2002 as recorded by the SOHO LASCO (Large
Angle Spectrometric COronograph) and EIT instruments and Figure 3.12
shows frames from a SOHO LASCO video of the eruption of large CME on
October 28, 2003. Figures 3.11 and 3.12 illustrate the massive scale of these
events but the student is strongly encouraged to browse the NASA SOHO
archive of images and videos and more fully appreciate the size, violence and
regularity of these events.18

As visually compelling as these images and videos of our dynamic sun are
(to say nothing of the compelling physics involved!), our interest in them is
to understand how solar activity impacts the near-Earth space environment
and Earth’s ground- and space-based technologies. To be sure, the impacts
of events such as solar flares and CMEs are significant and many of Earth’s

18The “Best of SOHO” archive is found at http://sohowww.nascom.nasa.gov/-

gallery/bestofsoho.html
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Figure 3.11: SOHO LASCO/EIT composite image of a large CME. From
http://sohowww.nascom.nasa.gov/gallery/images/c2eitcomp.html

0224UT 0336UT 0536UT

0824UT 0912UT 1124UT

Figure 3.12: SOHO LASCO images showing the eruption of a large CME.
The left- and right-hand images in each panel show wide and narrow field-
of-view images of the solar corona recorded with two different instruments
but closely separated in time. The average time for each set of images is
given in the frames. From http://sohowww.nascom.nasa.gov/gallery/-

Movies/flares.html

processes and phenomena we will encounter throughout this text are asso-
ciated with them. But let us defer those investigations until later chapters
and now move outward from the Sun into the interplanetary medium, re-
membering that our Sun is active with an ∼11-year solar cycle, that it not
infrequently undergoes violent erruptions that spew billions of kilograms of
plasma into space at speeds of millions of miles per hour, and that some of
this plasma will on occasion be directed towards Earth.
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3.4 Introduction to the Solar Wind

“The vacuum of space” is a phrase fairly entrenched in most of our minds
- and yet space is most certainly not a vacuum at all. Two items may be
mentioned to turn our attention to the possibility of a certain wind from the
Sun blowing through the supposed vacuum of interplanetary space. First,
recall that the solar corona is the outermost layer of the Sun’s atmosphere and
that its temperature exceeds a million Kelvin. Could these temperatures be
high enough that the coronal plasma “boils off” into space much like steam
rising from a pot of water boiling on a stove? That is, could the kinetic
energy of coronal plasma exceed the Sun’s gravitational potential energy so
that the plasma may continuously flow away from the Sun?

Second, it has long been known that comets sometimes have not one, but
two (and sometimes even three) distinctly visible tails. Figure 3.13 shows
photographs of Comet Hale-Bopp that clearly display two tails. Of these
two tails, one appears blue in color and the other appears white or yellow in
color. The white or yellow tail is a dust tail composed of small cometary par-
ticles weakly pushed by solar photon pressure into a diffuse shape generally
following the comet’s orbital path. The other (blue) tail is known as the ion
tail, is less diffuse, and is swept radially away from the Sun. In 1943 Cuno
Hoffmeister suggested that this tail forms when “solar corpuscular radiation”
acts on the cometary material [Hoffmeister, 1943]19. In more modern par-
lance, this solar corpuscular radiation is called the solar wind, the continuous
flow of charged particles from the Sun and in which the entire solar system
is bathed.20

Table 3.4 presents a selection of “vital statistics” for the solar wind and its
embedded IMF [Kivelson and Russell, 1995, pp.92-94]. The top part of the
table shows observed values, mostly gathered from satellite observations, and
the bottom part of the table shows derived properties where n is the (assumed
equal) proton and electron number density, k is Boltzmann’s constant, Tp and
Te are the proton and electron temperatures respectively, and γ is the ratio of
specific heats at constant pressure and constant volume (taken to be γ = 5

3
).

19The existence of this corpuscular radiation had been suspected and proposed many
years prior to Hoffmeister’s work in 1943. For example, Kristian Birkeland in 1903 pro-
posed that a stream of electrons coming from the Sun was responsible for the aurora.

20Because this tail is observed to be swept radially away from the Sun, we may suspect
that solar wind particles have velocities in the same direction.
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a) b)

Figure 3.13: Images of Comet Hale-Bopp showing two distinct tails. Pho-
tographs a) and b) were taken in 1997 by Malcolm Ellis and Jerry Lodri-
guss, respectively. Images from a) http://www.semp.us/publications/-

biot reader.php?BiotID=433 and b) http://astronomy.swin.edu.au/-

cosmos/C/Comet.

To comment on these values, a few items may be noted. First, notice
that contrary to the previous assumption,21 the number density of electrons
is slightly higher than that of the ions; the excess electrons originate mainly
from the doubly-ionized Helium ions.22 The flow speed is variable but the
typical number of 450 km/s corresponds to approximately a million miles
per hour. Imagine - at 1 AU, approximately a dozen particles in every cubic
centimeter of space are constantly flowing towards earth at a million miles
per hour! This is the solar wind.

21That ni = ne, which is true for singly ionized ions.
22If we assume that protons and doubly-ionized Helium atoms are the only ions in the

plasma, it is possible to determine their relative abundances. Taking the rough values as
given yields 7.1aH + 0.25 × 2aHe = 6.6 and aH + aHe = 1 where aH and aHe are the
abundances of hydrogen and helium, respectively. From these two equations we find a
hydrogen abundance of >92% and a Helium abundance of <8% in the solar wind. Actual
abundances vary with solar cycle but are not far from these values.



3.5. PARKER’S SOLAR WIND 79

Solar Wind - Typical Observed Values at 1 AUa

Proton density 6.6 cm−3

Electron density 7.1 cm−3

He2+ density 0.25 cm−3

Flow speedb 450 km/s
Proton temperature 1.2× 105 K
Electron temperature 1.4× 105 K
IMF Magnetic fieldc 7× 10−9 T

Solar Wind - Typical Derived Properties
Gas pressure, pgas = nk(Tp + Te) ∼30 pPa

Sound speed, cs = γp
ρ

=
(

γk
mp+me

(Tp + Te)
) 1

2 ∼60 km/s

Magnetic pressure, pmag = BIMF

2µ0
∼ 15 pPa

Proton gyroradius, rLp =
v⊥p
ωcp

∼80 km

Flow time from corona to 1 AU ∼4 days
Proton-proton collision time ∼ 4× 106 s
Electron-electron collision time ∼ 3× 105 s
a Real-time solar wind conditions from the ACE satel-
lite located at the L1 Lagrange point can be found at:
http://www.swpc.noaa.gov/ace/MAG SWEPAM 24h.html
b This flow is directed nearly radially away from the Sun.
c The IMF magnetic field strength is highly variable. Its orienta-
tion is nearly parallel to the ecliptic plane and directed approx-
imately 45◦ from the Sun-earth line.

Table 3.4: Vital Statistics of the Solar Wind and its IMF.

3.5 Parker’s Solar Wind

In 1958, Eugene Parker published a much disbelieved but now widely ac-
claimed paper on the solar wind [Parker, 1958].23 Motivated by cometary
observations that suggested the existence of such a solar wind, Parker in-
vestigated the dynamic consequences of those observations and arrived at

23For Eugene Parker’s telling of the story surrounding this paper (and a good deal of
additional advice and insight), see “The Martial Art of Scientific Publication” by E.N.
Parker as published in EOS, vol. 78, no. 31 on September 16, 1997 - or download the pdf
at: www.hao.ucar.edu/∼travis/seminar/art.pdf.
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two conclusions of particular importance to our study. First, given a set
of reasonable assumptions, the Sun’s corona cannot be in a state of static
hydrodynamic equilibrium. That is, there must be a continuous non-zero
flow of coronal mass away from the Sun. Second, he was able to deduce the
effect of this flow on the configuration of the IMF. Let us consider these two
conclusions in turn.

Having investigated and rejected the possibility that the solar corona
could be in static equilibrium,24 Parker proceeded to develop a theoretical
model for the equilibrium state of a steadily expanding corona. His model
was spherically symmetric so that all quantities vary only with radial distance
from the Sun and it was assumed that the flow was entirely in the radial
direction. A further assumption that the expansion was “steady” eliminated
all time derivatives.

Parker’s model of the corona is a fluid model developed from two fun-
damental relations: a momentum equation and a mass continuity equation.
We encountered a momentum equation in Eq. 2.5 and a continuity equation
in Eq. 2.7.25 The equation of mass continuity in the solar corona is

∂ρ

∂t
+∇ · (ρu) = 0

where ρ is the coronal mass density and u is the fluid flow velocity. Recalling
now from Ch. 2 that a momentum equation is essentially Newton’s second
law applied to some volume of space with an average mass density of ρ, we
must idenfity all force densities that act on a volume of the coronal plasma.
There are three such forces to mention here. The first is the pressure gradient
force that results when the fluid pressure varies with position; the second is
the magnetic force resulting from the coronal plasma moving in the presence
of a magnetic field; and the third is the gravitational force. Following Parker
and neglecting the magnetic force, the momentum equation is

ρ
∂u

∂t
+ ρ (u · ∇) u = −∇p− ρGM�

r2
r̂

where p is the coronal pressure, G is the universal gravitational constant and
r is the heliocentric distance.

24This possibility led to unreasonably high pressures as r → ∞ and was therefore
rejected.

25Both of those equations apply to particles. A fluid derivation of their equivalent forms
is presented in §5.2.
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The two preceeding relations may be simplified by applying Parker’s as-
sumptions. Eliminating all time derivatives and enforcing spherical symme-
try and radial flow yields a continuity equation given by

1

r2

d

dr

(
ρur2

)
= 0 (3.1)

and a momentum equation given by

ρu
du

dr
= −dp

dr
− ρGM�

r2
. (3.2)

We seek the solution u(r) of these differential equations.
Parker obtained the solution by employing the equation of state p =

2nkT where n and T are the number density and the assumed constant
temperature of protons in the expanding corona26,27. The student will notice
that substitution of this equation of state into Eq. 3.2 will necessitate an
expression for dn/dr that describes the variation in proton number density
with heliocentric distance. This expression is obtained from Eq. 3.1 (see
Exercise 3.3.8) and, upon substitution, yields a momentum equation with
u(r) as the only dependent variable. The momentum equation may then be
expressed as (

u2 − 2kTi
m

)
1

u

du

dr
=

4kTi
mr
− GM�

r2
(3.3)

where m is the combined mass of a proton and an electron and Ti is the
(assumed constant) coronal temperature. Figure 3.14 shows six solutions to
this equation obtained by varying the boundary condition (the flow speed u
at the base of the corona)28. Consideration of this interesting figure raises
many questions, among which are: Solutions IV and V cross at the so-called
critical point (rc,uc) - what are the physical significances of rc and uc? Which
of these solutions represent the actual solar wind? Why may the others be
rejected?

26The factor of two in the equation of state results from assumed equal contributions
to the pressure from two species of particles: protons and electrons.

27Rather than including a heat-flow equation to simultaneously solve for T (r), Parker,
on the basis of certain solar observations, assumed the corona was isothermal above ap-
proximately 1.4 solar radii.

28The dashed solutions I,II,III and VI in Figure 3.14 are members of families of solutions
(an infinite number of solutions exist in each family) and the solid solutions that separate
the families are singular in that a single boundary condition results in solution IV and a
different single boundary condition results in solution V.



82 CHAPTER 3. THE SUN AND THE SOLAR WIND

0 5 10 15
0

50

100

150

200

250

300

350

rc

uc

Heliocentric Distance (millions of km)

S
o

la
r 

W
in

d
 S

p
e

e
d

 (
k
m

/s
)

Ti = 1 × 106 K

I

II

III

IV

V
VI

Figure 3.14: Six representative solutions of Equation 3.3 for a million de-
gree solar corona, showing coronal flow speeds as a funciton of heliocentric
distance.

To begin answering these questions, let us first identify rc and uc. Note
that solutions III and VI appear to (and, in fact, do) have local extrema
where r = rc. Thus, du/dr |rc= 0 for these solutions and, setting the RHS of
Eq. 3.3 to zero at this same point, we find that

rc =
GM�m

4kTi
≈ 5.8R� (3.4)

for a typical coronal temperature of one million Kelvin. Consider now solu-
tions I and II and note that du/dr |u=uc

r 6=rc
= ±∞. At r 6= rc the RHS of Eq.

3.3 is nonzero and finite so that (u2 − 2kTi/m) |uc= 0 for these solutions and
therefore

uc =

√
2kTi
m
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which is the isothermal sound speed in the corona.29 Thus, for a million
Kelvin solar corona, solutions IV and V both pass through the sonic barrier
at a heliocentric distance of somewhat less than six solar radii.

We now turn our attention to determining which of the six shown solutions
represents the actual solar wind. Solutions I and II may quickly be rejected
based on the unphysical double-valued flow speed. It is not physical for the
coronal plasma following solution I to flow outward at subsonic speeds from
small values of r, reach a maximum distance and then return to small values
of r at supersonic speeds. Solution II does not even exist inside the critical
radius of ∼ 6R�. Solution III is entirely supersonic and is rejected on the
basis of spectroscopic observations that reveal small Doppler shifts near the
base of the corona. Solution IV is supersonic at the base of the corona and
is rejected on the same basis. We are then finally left with solutions V and
VI as those that may represent the actual solar wind.

Both solutions V and VI have low flow speeds near the base of the corona,
in agreement with the previously mentioned observations. They differ in that
solution V becomes supersonic beyond the critical radius while solution VI
remains subsonic and tends towards zero flow speed as r →∞. How may we
determine which is physical? To foreshadow the answer, let us denote solution
V as the solar wind solution and solution VI, due to its lower speeds, as the
solar breeze solution. For the solar breeze solution it can be shown that, as
the flow speed tends to zero, the density and therefore the pressure tend to an
unphysically large constant. Solution VI, the solar breeze solution, is rejected
for the same reason as the possibilty of a solar corona in static hydrodynamic
equilibrium was rejected. For solution V, the solar wind solution, it can be
shown that the density and pressure tend to zero with increasing r and
this condition is consistent with the solar wind merging smoothly with the
exceedingly low densities of interstellar space.30 Figure 3.15 shows solar
wind speeds (solution Vs) for various coronal temperatures as a function of
heliocentric distance. Note that the solar wind at the orbit of Earth for a
million degree corona is supersonic with a Mach number of nearly four.

Parker’s model of the solar wind includes a number of simlifying assump-
tions and its validity is open to criticism as a consequence. Signficantly more

29For an iosthermal plasma, γ = 1.
30State-of-the-art solar wind models predict that the solar wind does not merge

smoothly with the gas of interstellar space (which has a pressure of ∼ 10−13 Pa). Rather,
since the flow is supersonic, it terminates in a shock wave at a boundary known as the
heliopause.
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Figure 3.15: Solar wind speed for several coronal temperatures as functions
of distance from the Sun

sophisticated models now exist but none call into question the basic nature of
the steadily-flowing solar wind and none arrive at significantly different (for
our purposes) solar wind speeds at Earth’s orbit. Parker’s model was a mon-
umental development in the history of space physics and works impressively
well.

3.6 Spatial Configuration of the IMF

Having thus conquered the solar wind, aided in part by assumptions that
included ignoring the Sun’s magnetic field, Parker [1958] turned his attention
to the effects of the solar wind on the spatial configuration of that field. In
his opening discussion to section V of that paper, Parker noted that no field-
free regions are observed on the surface of the Sun so that “each cubic meter
of gas flowing outward from the sun is threaded by magnetic lines of force
from the main bulk of the sun.” The question is: what becomes of these
magnetic field lines as they are presumably swept into space with the solar
wind to become the IMF? To answer this question, we must first entertain a
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diversion on the topic of “frozen-in flux”.

3.6.1 Frozen-in Flux

In DC circuit analysis, Ohm’s law takes the form V = IR where V and R
are the voltage and resistance across a circuit element and I is the current
through the element. The law is an approximation31 and as the complexity
of the circuit increases, the law relating voltage to current also becomes more
complex. For example, in an AC circuit containing reactive elements such as
capacitors and inductors, the voltage across and the current though a circuit
element may not be in phase with each other and a new, more general, form
of Ohm’s law is required. This version of Ohm’s law is conveniently expressed
in phasor form as Ṽ = ĨZ̃ where the ˜ denotes a complex number in phasor
form and Z̃ is the impedance. Solving for current, we find that

Ĩ =
Ṽ

Z̃
= Ỹ Ṽ

where Ỹ = 1/Z̃ is the admittance, a measure of how easily and with what
phase shift a circuit element allows current to flow in response to an applied
voltage Ṽ .

Currents also flow in plasmas and we desire an Ohm’s law applicable
to them. This version of Ohm’s law should be cast in terms of quantities
appearing in Maxwell’s equations: instead of a voltage Ṽ driving a current Ĩ
through an element of impedance Z̃ or admittance Ỹ , we have the fields E
and B driving a current density j through a plasma of conductivity32 σ. In
§7.8, we will derive Ohm’s law from fundamental principles but here it will
be abruptly stated in the rest frame of the plasma. In that frame,

j′ = σE′

where the ′ symbols identify quantities in the plasma rest frame. We do
not here define σ but suggest that in a collisionless plasma such as the solar
wind, the conductivity is so large that it will be insightful to consider it as

31Are there any “laws” of physics that are not approximations?
32In general, the conductivity of a plasma is a tensor. Here we will treat it as a scalar

and take up the more complicated situation in §7.8.



86 CHAPTER 3. THE SUN AND THE SOLAR WIND

infinite.33

Just as the electrons in a perfect conductor almost immediately rearrange
themselves in response to an applied static electric field such that the applied
field is exactly cancelled, the electric field in the rest frame of an infinitely
conductive plasma is also maintained at zero.34 Most often however, the
solar wind is observed from a reference frame other than its rest frame (for
example, from the Earth where the solar wind plasma is traveling towards
the observer at a million miles per hour) and a transformation is required to
account for this difference in reference frames. The required transformation
is the Lorentz transformation and, given a typical solar wind speed35 u,
we are justified in taking the non-relativistic limit by ignoring terms in the
transformation of order u2/c2. The current and electric field then transform
as j′ = j and E′ = E + u × B where the unprimed quantities are those
observed in the non-rest frame and u is the observed flow speed. Ohm’s law
then becomes

j = σ (E + u×B) .

(As another way of realizing this form of Ohm’s law, consider that for a
plasma flowing in the presence of a magnetic field B, both terms in the
Lorentz force equation (qE and q(u ×B)) contribute to the plasma motion
that results in the current j.)

Given this Ohm’s law and an essentially infinite conductivity, the current
j will remain finite only if

E + u×B = 0 (3.5)

which is an often-made assumption with space plasmas. Here we investigate
the consequences of this assumption applied to the interaction between a
magnetic field (e.g., the IMF) and a convecting plasma.

Consider a region of space bounded by an open surface S threaded by
magnetic flux

Φ =
x

S

B · dS.

33The suggestion is then essentially that collisions limit the rate at which charged par-
ticles can move through a plasma. In the absence of collisions, there is nothing to impede
the acceleration by E′ of the charged particles, meaning the conductivity is essentially
infinite.

34Otherwise, the current would be infinite (which is unphysical).
35As in the previous section, u is used to denote the speed of a fluid element in the

solar wind and is to be distinguished from the speed v of a single particle.
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We take this surface to be convecting with the infinitely conductive plasma.
It may deform, expand or contract as it convects and we wish to evaluate
the change in Φ as it undergoes these motions. That is, we wish to evaluate

dΦ

dt
=

d

dt

x

S

B · dS.

Evaluation of this integral is complicated by the fact that the limits of the
integral (the surface S) are functions of the differential variable t so that the
time derivative may not simply be brought inside the integral.36 We therefore
employ the Leibniz integral rule for three dimensions37 to obtain

dΦ

dt
=

x

S

(
∂B

dt
+ (���

�:0∇ ·B)u

)
· dS−

∮
c

(u×B) · dc

where u is the plasma flow velocity with which S convects and c is a closed
contour bounding the surface S. Applying Ampere’s law to the first term
and Stokes theorem to the last term on the RHS gives

dΦ

dt
= −

x

S

(∇× (E + u×B)) · dS = 0

where the last equality must be true given Eq. 3.5. That is, for a perfectly
conducting plasma, there is a constant flux through an arbritary surface
convecting with the plasma. We attach to this result the important interpre-
tation that there is no relative motion between magnetic field lines and the

36In other words, because S can change shape, S = S(t) and the order of operation
cannot be simply exchanged.

37This rule is perhaps more well known in one dimension:

d

dt

∫ b(t)

a(t)

f(x, t)dx =

∫ b(t)

a(t)

∂

∂t
f(x, t)dt+

db(t)

dt
f(b(t), t)− da(t))

dt
f(a(t), t)

while the three-dimensional version is:

d

dt

x

S(t)

F(r, t) · dS =
x

S(t)

(
∂

∂t
F(r, t) + [∇ · F(r, t)]u

)
· dS−

∮
c(t)

[u× F(r, t)] · dc

with S, c and u defined in the text.
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convecting plasma: the magnetic field is frozen into the plasma38,39.
The conclusion of the previous paragraph is too important and too often

used in space physics to pass over so quickly. Again, given our assumption of
a perfectly conducting plasma, we see that the plasma cannot flow across a
magnetic field line (although it can of course flow along it) or, from another
reference frame, that a magnetic field cannot diffuse through a perfectly
conducting plasma. Although the analogy can be misleading40 it is often
said that

a perfectly conducting plasma and its magnetic field are
frozen together like a bead (the plasma) on a wire or
string (the magnetic field line).

We may gain some qualitative insight into the behavior of a magnetized
plasma by considering extreme cases for the relative values of the energy
densities in the plasma flow and in the magnetic field.

Consider first a case where the plasma flow energy density dominates the
magnetic field energy density so that ρu2/2 >> B2/2µ0. In this case, the
plasma flow will dictate the magnetic field geometry. To put it in terms of
the bead on a string analogy, a highly energetic bead (the plasma) will easily
distort and drag around a nearly tensionless string (the magnetic field)41. In
the opposite extreme where B2/2µ0 >> ρu2/2, the magnetic field geometry
will dictate the plasma motion. Here it is as if the string is under great tension
and the bead is unable to distort it. Of course, between these two extremes
the situation is less straightfoward and must be carefully considered.

38This interpretation may be formally demonstrated [see e.g., Parks, 2004, pp187-189].
39When applying this interpretation, the student must carefully remember that, in gen-

eral, it is not possible to uniquely identify a magnetic field line. In a perfectly conducting
plasma, it is true that the magnetic field lines are frozen into the plasma (or, alternately,
that an element of the plasma fluid is attached to a given field line) but accepting the
frozen-in interpretation implies a field line is defined as that abstract thing on which the
plasma element is attached. As a hopefully instructive example for the student to think
about, consider the drift motion of particles trapped in a dipole magnetic field, paying
particular attention to the idea and assumptions of frozen-in flux and the definition of the
magnetic field lines.

40See the above footnote on interpreting the flux-conserving property of perfectly con-
ducting plasmas.

41As we will see in §??, the magnetic energy density B2/2µ0 manifests itself as both
magnetic pressure (in a direction perpendicular to the field line) and as magnetic tension
(in a direction parallel to a field line).
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3.6.2 The Interplanetary Magnetic Field

Given the conclusions of the previous section, let us accept a solar wind flow-
ing with spherical symmetry radially away from the Sun42 and the presence
of frozen-in solar magnetic field lines carried by it. These magnetic field lines
are the IMF and we wish to know something about both its strength and its
orientation in space.

To begin, let us consider the locus of points or “path” traced by successive
parcels of solar wind plasma flowing radially away from the same source
location on the Sun’s equator.43 As each parcel flows outward, the source
rotates with the Sun under it so that, as we will see in more detail below,
the path takes the shape of an Archimedian sprial. Figure 3.16 shows paths
for solar wind parcels launched from four different locations on the source
equator. For one of the paths, locations are indicated for six parcels launched
from the Sun at equally-spaced time intervals (identified as t0 through t5)
with the most recent parcel near the source surface and the most distant
parcel at 1 AU.44

Assuming the solar wind speed is constant, the radial and azimuthal (or
longitudinal) positions of a parcel are given by

r(t) = r0 + ut (3.6)

φ(t) = −ω�t+ φ0 (3.7)

where r0 is a constant equal to the source surface radius, u is the solar
wind speed, ω� is the Sun’s rotational angular velocity, and φ0 is a constant
specifying the longitude on the Sun’s equator from which the parcel was
launched. To identify the shape of the path through space (rather than
the variation of each component with time as given in Eqs. 3.6 and 3.7),
it is necessary to eliminate time from these two equations. Performing the

42More modern work including observations has revealed that the solar wind is not
spherically symmetric. See, for example, the amazing data collected by the Ulysses satellite
that orbits the Sun at high inclination and revealed the presence of a high-speed polar
wind.

43To be more precise, it should be noted that these parcels are not actually launched
from the Sun’s “surface” (at r = R�); they are launched from a source surface some
distance from the Sun. A reasonable approximation is to take this source surface to be at
the critial radius given by Equation 3.4.

44I am obliged to remark here, as I think everyone is who ever discusses this topic, that
the effect is similar to that observed with a rotating garden sprinkler.
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Figure 3.16: Spiral paths of solar wind parcels launched from four equally-
spaced locations on the Sun’s equator, taking the solar wind speed to be a
constant u = 450 km/s. For one of the paths, the locations of six successively-
launched parcels are indicated. The solar radius has been exaggerated by a
factor of 10 (and therefore nearly equal to the source radius) for convenient
display and Earth’s orbit at 1 AU is indicated by the large dashed circle.

required substitution yields

r = r0 −
u

ω�
(φ− φ0)

which is the equation of an Archimedian spiral.

Because the Sun’s magnetic field is frozen into these plasma parcels, we
may expect that the IMF will take the same shape. That is, as each parcel of
plasma distorts its local field and carries it in the radial direction, the base
of the fieldline rotates with the Sun under it so that the field takes on the
same sprial shape discussed above. Continuing this conceptual model, the
magnetic field must be parallel to the spiral that, given Equations 3.6 and
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3.7, has an unscaled tangent vector45 s given by

s = ur̂− rω�φ̂. (3.8)

If ψ is then the sprial angle between an IMF field line (assumed tangent
to the path) and the Sun-Earth line as shown in Figure 3.16, Equation 3.8
shows that

tanψ =
Bφ

Br

=
−rω�
u

. (3.9)

At the Sun’s surface, r = 0 and ψ� = 0 or 180◦ (the IMF is radial or anti-
radial at the Sun)46 and, as you can show by substituting the appropriate
values,47

ψ⊕ ≈ 45◦ or 135◦ (the equatorial IMF at Earth makes an
angle of approximately 45◦ with the Sun-Earth line).

While the above discussion reveals the very interesting result that the
equatorial IMF is wound up in the shape of an Archimedian sprial, it does
not tell us the strength of that field. Both this IMF and the plasma carrying
it will interact with Earth’s own magnetic field and, in addition, form part
of the space environment in which satellites may operate. We therefore wish
to estimate the strength of the IMF as a function of radial distance from the
Sun.

The equatorial IMF has both radial and azimuthal components and we
may find the field strength by solving for each component separately. The
IMF must satisfy ∇ ·B = 0 which, for spherical coordinates, yields

∇ ·B =
1

r2

d (r2Br)

dr
= 0

where it has been assumed that ∂Bφ/∂φ = 0. Integrating this result gives

Br(r) = B0

(r0

r

)2

(3.10)

45Imagine a particle moving along the path defined by these two equations. Because

velocity is always tangent to the path, the tangent vector is parallel to v = dr(t)
dt r̂+r dφ(t)dt φ̂.

46See footnote 50 for an explanation of why there are two possible values.
47See Exercise 3.3.9.
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where the terms with the ‘0’ subscript are taken at any reference radius.
Thus we see that the radial component of the spiral field falls off as 1/r2. To
find the azimuthal component, we may use Equations 3.9 and 3.10 to find

Bφ(r) =
−rω�
u

Br = −B0
r2

0ω�
ur

.

which shows that the azimuthal component of the IMF fall off as 1/r. The
strength of the IMF is then

B(r) = B0

(r0

r

)2
√

1 +
(ω�r
u

)2

. (3.11)

Taking typical solar magnetic field strengths at r0 = rc, it can be shown that
the strength of the IMF at Earth is consistent with the 7 nT given in Table
3.4 (see Exercise 3.11).

3.6.3 The Heliospheric Current Sheet

So far we have been considering the IMF in the solar “equatorial” plane.
While the general results are relevant, we have left a few important points
unconsidered. First, the Sun’s magnetic moment is not usually aligned with
its rotational axis, resulting in an offset between its rotational and magnetic
equators48 that depends on solar longitude. Second, the magnetic equator
may have a complicated, or at least a rippled, structure. It is to the conse-
quences of these points that we now turn our attention.

Figure 3.17a illustrates the structure of the so-called helispheric current
sheet within the inner solar system where the spiral angle is small (that
is, at small distances from the Sun where the IMF is nearly radial). Note
that the IMF in the magnetic equatorial plane is directed away from the
Sun above the plane and toward the Sun below it. There is therefore a curl
to the IMF that, from ∇ × B = µ0j (ignoring the displacement current),
results in a clockwise current when viewed from above.49 This current is in
the form of a “thin” sheet, known as the heliospheric current sheet with a

48As an aid in visualizing the concept of a magnetic equator, consider a dipolar magnetic
field that has a magnetic equator along the locus of points where the magnetic field has
no radial component.

49During the succeeding solar cycle when the Sun’s magnetic polarity has reversed, the
direction of this current will also have reversed.
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a) b)

Figure 3.17: a) The heliospheric current sheet (adapted from Smith et al.
[1978]). b) The ballerina model (figure from the public domain).

typical thickness of ∼ 5RE flowing around the Sun’s magnetic equator. If
the magnetic equator is tilted with respect to the Sun’s rotational axis, the
heliospheric current sheet will also be rotated so that Earth, and the other
planets, will be sometimes above and sometimes below the plane. Given the
magnetic polarity shown in Figure 3.17a, when a planet is above the current
sheet, it will experience an IMF with a positive radial component; when it
is below the current sheet, it will experience an IMF with a negative radial
component.50 Thus for a tilted, planar magnetic equator, there are two so-
called magnetic sectors. If the magnetic equator is not planar but rippled
or having some more complicated structure (as if often the case near solar
maximum), there will be four or more magnetic sectors.

Figure 3.17b shows an artist’s rendition of the heliospheric current sheet
for distances extending to the orbit of Jupiter. Here the spiral angle becomes
significant and in addition to the sector structure imposed by a tilted, rippled
magnetic equator, the current sheet forms a twisted pattern often described
as resembling that of a twirling ballerina’s skirt.

50This change in sign of the radial component is responsible for the two values of the
spiral angle ψ given previously.



94 CHAPTER 3. THE SUN AND THE SOLAR WIND

3.7 Summary

Our Sun is a main-sequence star with a surface temperature of ∼5800 K. It’s
energy output is powered by nuclear fusion in its core resulting, at least in
part, in a luminosity of 3.85× 1026 W. Embedded in the Sun and its atmo-
sphere is its magnetic field that, due to the Sun’s faster rotation about its
equator than its poles, leads to the formation of sunspots, the 11- and 22-year
solar cycles and the generation of solar storms that can impact technology
near Earth.

While the surface of the Sun is relatively cool at ∼5800 K, its coronal at-
mosphere reaches temperatures into the millions of Kelvin. This atmosphere
continually “boils off” forming the solar wind and carrying away on the order
of a billion kilograms of plasma every second. Embedded in this plasma and
carried along with it is a remnant of its magnetic field known as the IMF
(Interplanetary Magnetic Field).

Both in its quiescent state and during storms, solar photons, plasma, and
the IMF fill the solar system and interact with its cellestrial objects. At
Earth the solar luminosity has an irradiance of ∼1340 W/m2, the solar wind
has a proton density of ∼7 cm−3 with a nearly equal number of electrons, and
speeds of ∼450 km/s. The IMF at Earth has a typical but highly variable
magnitude of 7 nT and is oriented nearly parallel to the ecliptic plane but
rotated to an angle of ∼45◦ or 135◦ relative to the Sun-Earth line.

As the Sun is the main driver of dynamics at Earth, the following chapters
examine the impact these solar photons, plasmas, and magnetic fields have
on our planet and the technology we have deployed around it.
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Exercises
3.1: How many times does the proton-proton chain of fusion reactions

occur each second in the Sun?
3.2: What mass of hydrogen is converted into helium each second in

the Sun?
3.3: Estimate the required dimensions for a ground-based solar array

capable of meeting the United States’ electrical power demands.
3.4: Obtain the Sun’s zero air mass spectral irradiance data from the

web site listed in the text, perform a blackbody fit to those data, and verify
the given temperature of ∼5785 K.

3.5: Research the historical SSN data and investigate and comment on
the Maunder minimum, the Dalton minimum, the Spörer minimum, and the
Modern maximum.

3.6: Given the values listed in Table 3.4 (p.77), estimate the Sun’s
mass loss rate due to particle outflow. Compare the value with the mass loss
rate due to its luminosity.

3.7: Complete the missing steps that lead to Equations 3.1 and 3.2.
3.8: Taking I to be the mass per second passing through concentric

spherical shells, show from Equation 3.1 that

dn

dr
= − I

4πm

(
2

ur3
+

1

u2r2

du

dr

)
.

3.9: Use Equation 3.9 to calculate the spiral angle of the IMF at each
planet.

3.10: Verify Equation 3.11 using the given expressions for Br and Bφ.
3.11: Use Equation 3.11 to calcualate the strength of the IMF at Earth

and compare with the value given in Table 3.4. To do this, take, for example,
the reference radius to be r0 = rc and research the solar magnetic field to
obtain B0 from sources outside this text.

3.12: Estimate the magnitude of the current flowing in the heliospheric
current sheet. Assume the current sheet extends to a distance of 100 AU
from the Sun and that the IMF has an average value of 0.05 nT. (Hint: Use
Ampere’s Law. Answer: I ≈ 1× 109 A.)
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Chapter 4

Earth’s Magnetosphere

4.1 History

Since many hundred years before Christ, it has been known that certain
mineral-laden rocks attract iron. Around the year 1000, Chinese investigators
discovered that some such rocks, known as lodestones1, always pointed in the
same direction when free to pivot in the plane parallel to Earth’s surface.
Imagine the suprise and delight that followed when it was appreciated that
this direction was essentially along the lines of longitude. The magnetic
compass had been invented and uses in navigation and timekeeping quickly
followed [Merrill and McElhinny, 1983].

Most historians of science would agree that “modern science” began
around the year 1600 with the towering works of Copernicus, Kepler and
Galileo. Among these giants stands William Gilbert, personal physician to
Queen Elizabeth I and, of more immediate interest to us here, an early physi-
cist who struggled to understand the nature of magnetism. His crowning
achievement was De Magnete, written in Latin (as was the custom in those
days) and published in the year 1600.2 In this work, Gilbert hypothesized
that loadstones always pointed in the same direction because Earth itself
was a lodestone and that their opposite poles attracted each other. Gilbert
may have been incorrect in the details but this was a marvelous step in the
history of science: the Earth is a magnet . We may now ask two questions.

1The word lodestone comes from Middle English and could be interpreted as ‘course
stone’, indicating their usefullness in navigation.

2It has since been translated and reprinted in English.

97
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First, where and what is the source of this magnetism and second, what is
the nature and extent of the field? We will concentrate on the latter question
and give but slight treatment to the former.

4.2 The Source of the Geomagnetic Field

In the middle 1800s, Carl Gauss and Wilhelm Weber organized a “Magnetic
Union” to establish a world-wide network of magnetic observatories. For the
most part, the observatories were located in a chain across Siberia and at
a great number of locations in both the northern and southern hemispheres
set up by the British empire. Armed with data from this network, Gauss
was able to determine not only the general location of the source of Earth’s
magnetic field (inside the Earth) but also its strength (more on this later).

The structure of Earth’s interior can be divided into three regions: its
crust, mantle and core. The crust and mantle are generally nonmagnetic
and therefore, because the source of geomagnetic field is inside the Earth,
that source must lie within the core. The core is divided into two parts: a
solid inner core and a liquid outer core. There are very good reasons to belive
that the geomagnetic field does not originate in the solid inner core3 and so
we are left, by elimination if for no other reasons, with the liquid outer core
as the source region.

The detailed mechanism by which the geomagnetic field is generated is a
topic of current research but it can be safely stated that most geophysicists
agree that Earth’s magnetic field is generated in the liquid outer core by a
magnetohydrodynamic self-exciting dynamo. Were we to leave the reader
with such obfuscated terminology, we would be guilty of something very
similar to deceit and so a brief, mainly qualitative explanation follows.

Magnetohydrodynamics (or MHD) theory is discussed more fully in §5.2
but for now, let us just say that this is a theoretical framework that de-
scribes magnetized, electrically conductive fluids such as plasmas or, as in
this case, molten metal. A dynamo is a generator of electric current and thus
of magnetic fields and a self-exciting dynamo is one in which the operation of
the dynamo strengthens the initial magnetic field through positive feedback.
Figure 4.1 illustrates such a dynamo. In this system, a conducting disk is

3Two of these are the high temperature of the inner core (that greatly exceeds any
expected Curie temperatures) and the fact that the geomagnetic field undergoes occasional
reversals.
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made to rotate on a conducting axis in the presence of a magnetic field. With
the sense of rotation as shown in the figure, the Lorentz q(v×B) force acts
to produce an excess of positive charge at the outside edge of the disk. This
excess charge is made to flow as a current through a solenoid oriented so
that its magnetic field enhances the original field responsible for the current.
Thus, the dynamo is said to be “self-exciting”. Of course, energy must be
supplied to maintain the rotation.

B
(everywhere)

B
(solenoid)

Current

Figure 4.1: A self-exciting dynamo. The Lorentz force acting on charged
particles in the conducting disk drives a current through the solenoid that
provides positive feedback to the system.

There are no conducting disks in the outer fluid core but the core does
support the flow of currents and a great deal of research suggests that a
dynamo is responsible for the geomagnetic field. This research is consistent,
at least qualitatively, with many observations including polarity reversals and
other variations in the field [see, e.g., Glatzmaier and Roberts, 1995, Kono
and Roberts, 2002].
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4.3 Introduction to the Main Field

4.3.1 The Dipole Approximation

The magnetic field surrounding Earth is the resultant of fields from many
different sources. The dynamo-generated internal field discussed above con-
stitutes over 90% of the net field and for this reason it is often referred to as
the main field. Near Earth, the main field is nearly dipolar where the dipole
axis is tilted approximately 11◦ from the rotational axis and is offset slightly
from the center of the planet. The north magnetic pole is located near the
south geographic pole and the south magnetic pole is located near the north
geographic pole. That is, if we conceptualize the main field as that of a short
bar magnet located inside Earth, the bar magnet would be upside down.

ω
Ε∼11

ο

Figure 4.2: An illustration of Earth’s main field, apporoximated as a dipole
tilted by ∼ 11◦ relative to the spin axis. Note that the north magnetic pole
is near the south geographic pole.

The dipole poles are the two points on Earth’s surface where the dipole
field is perpendicular to the surface. These occur at approximately 78◦ north



4.3. INTRODUCTION TO THE MAIN FIELD 101

and south geographic latitude near Thule, Greenland and Vostok Station,
Antarctica. Each of these locations are about 800 miles from the geographic
poles. A purely dipole field has no azimuthal component and is expressed in
spherical coordinates by

B = Brr̂ +Bθθ̂ (4.1)

with

Br =
2M

r3
cos θ and Bθ =

M

r3
sin θ (4.2)

so that

B =
M

r3

(
1 + 3 cos2 θ

) 1
2 (4.3)

where r is the radial distance from the center of the dipole, θ is the polar
angle measured from the dipole axis and M is the dipole moment.

Currently, Earth’s dipole moment is M ≈ 7.9× 1015 T ·m3.

It is useful to obtain an equation that describes the shape of these dipole
field lines and, given the tilt and offset of the dipole, this is most easily done
in spherical coordinates referenced to the dipole axis rather than to Earth’s
spin axis. A field line is, by definition, everywhere tangent to the field and
so a set of similar triangles reveals that

rdθ

dr
=
Bθ

Br

(4.4)

which can be integrated (see Exercise 4.1) to obtain the equation of a dipole
field line given by

r = r0 sin2 θ (4.5)

where r0 is a constant equal to the distance from the dipole origin (approx-
imately the center of Earth) to the field line on the dipole “equator” where
θ = 90◦. Equation 4.5 can be made more useful and intuitive by introducing
a few minor changes. Long habit has accustomed us to think of position from
the pole in terms of latitude instead of the polar angle θ and so we introduce
the quantity Φ = π

2
−θ (or Φ = 90◦−θ in degrees) that is the dipole latitude4

so that
r = r0 cos2 Φ. (4.6)

4Note that dipole latitude Φ is entirely unrelated to the 3rd adiabatic invarient (Equa-
tion 2.47) which is regrettably identified by the same symbol.
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The final change is motivated by the fact that distances in the near-Earth
space environment are often given in terms of Earth radii. For example, the
number 6.6RE is familiar to us as the radius of a geosynchronous orbit. And
so we wish to rescale Equation 4.6 so that the unit of length is RE. This is
done simply by redefining the constant r0 as L, the distance in Earth radii
from the dipole center to the point where the field line crosses the dipole
equator.5 Our final equation for the dipole field line is then

r = L cos2 Φ. (4.7)

Due to azimuthal symmetry about the dipole axis, the locus of points
on field lines with a fixed L value map out a surface known as an L−shell
that can be visualized by revolving a given field line around the dipole axis.
Every field line on a given L−shell reaches the same maximum distance from
the Earth6 and penetrates Earth’s surface at the same dipole latitude. This
latitude at which a field line on a given L−shell penetrates the surface is
known as the invariant latitude Λ. An expression for Λ can be obtained from
Equation 4.7 by solving, as a function of L, for the latitude at which r = 1
(that is, by finding the latitude at which the field line is 1RE from the center
of Earth). Thus,

Λ = cos−1

(√
1

L

)
(4.8)

uniquely relates the dipole latitude at which a field line penetrates the Earth
to the maximum distance it reaches from the center of the Earth. Figure 4.3
illustrates field lines and invariant latitudes for L=1,2,3,4,5 and 6.

4.3.2 Magnetic Elements

There are seven commonly used magnetic elements that describe the geomag-
netic field at any location with respect to a geographic coordinate system.
They are

1. Z: The vertical (radial) component, measured positive down.

5More properly, we divide Equation 4.6 by RE so that both r and r0 are measured in
units of RE .

6Here, as we will do in general, we ignore the slight offset between the dipole origin
and the center of the Earth.
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L=2, Λ=45ο

L=3, Λ=54.7ο

L=4, Λ=60
ο

L=5, Λ=63.4ο

L=6, Λ=65.9
ο

 Dipole

Equator

Figure 4.3: Dipole field lines and invariant latitudes for L=1,2,3,4,5 and 6.

2. H: The horizontal (tangential) component, measured along the mag-
netic meridian.

3. I: The magnetic inclination or dip angle given by tan I = Z
H

= −2 tan Φ.
Inclination is reckoned positive downward.

4. B (or F ): The total field strength given by B =
√
H2 + Z2.

5. X: The geographic northward component of H given by X = H cosD.

6. Y : The geographic eastward component of H given by Y = H sinD.

7. D: The magnetic (or compass) declination given by tanD = Y
X

. Mag-
netic declination is measured positive eastward.

Obviously, these are not all independent. Figure 4.4 illustrates their interre-
lationships.

4.3.3 Main Field Models

The dipole approximation to the main field is nicely described by Equations
4.1-4.8 but the actual main field is not so straightforward. Complications
include the “dipole” not being exactly centered on the center of Earth and
the fact that the main field is not purely dipolar. Thus, accurate represen-
tation of the main field requires a more detailed description than that of a
pure dipole and empirically-constrained spherical-harmonic models are the
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Geographic

    North
Magnetic

   North

Geographic

     East

Radially

 Down

B

HX

Y

Z

D

I

Figure 4.4: The seven magnetic elements, referenced to both a geographic
and geomagnetic coordinate system. The dashed lines form a rectange with
top and bottom surfaces parallel to the Earth’s local surface.

tools of choice. The term “empirically-constrained” here is meant to con-
vey the notion that such models are mathematical fits to recorded sets of
observational data. Further complicating the matter, Earth’s main field is
not constant but is changing with time and so the mathematical fits must
account for secular and harmonic trends in the field.

The two most widely-used main field models are the World Magnetic
Model (WMM) [McLean et al., 2004] and the International Geomagnetic
Reference Field (IGRF) that, when combined with its set of so-called defini-
tive coefficients, is known as the Definitive Geomagnetic Reference Field
(DGRF/IGRF) [International Association of Geomagnetism and Aeronomy
(IAGA), Division V, Working Group 8, 2003]. The WMM is produced by the
National Geophysical Data Center (NGDC) and the British Geological Sur-
vey (BGS) and is the standard model for the US Department of Defense, the
UK Ministry of Defence, the North Atlantic Treaty Organization (NATO)
and the World Hydrographic Office (WHO) navigation and attitude referenc-
ing systems. The DGRF/IGRF, on the other hand, tends to be used more
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extensively by magnetic field modelers and space physicists.7

Both of these models employ spherical-harmonic analysis to represent the
main field. While it is beyond the scope of this book to describe in detail
the methods used to arrive at the models, the student should be familiarized
with the process. In essence, the job that must be accomplished is this: given
a set of accepted magnetic field measurements distributed over the surface
and near Earth at a given time, determine the coefficients on a complete set
of orthogonal polynomials so that the polynomial fit represents the observed
field as accurately as possible. This must be done for data sets taken at
different times so that interpolation can be performed to model the field at
times and locations for which data are not available. Both the WMM and the
DGRF/IGRF do essentially this and are freely available on the internet where
the source code can be downloaded and web-based interfaces are available.8

Figure 4.5a shows DGRF/IGRF isomagnetic contours for the year 2000
of the dipole component of the surface main field. The contours are labelled

in units of Gauss where 1 G = 10−4 T so we see that the dipole field has
strengths of approximately 0.3 G near the equator and 0.6 G near the dipole
poles. As would be expected for a dipole field (although it is tilted and offset
with respect to Earth’s rotational axis), the contours are ‘orderly’ with well-
defined poles which happen to be located near Thule, Greenland and Vostok
Station, Antarctica9.

The full DGRF/IGRF model reveals that the surface main field shown
in Figure 4.5b is actually quite non-dipolar. The geomagnetic field is much
more spatially variable than the dipole approximation would suggest and
Thule and Vostok Station, the dipole poles, occupy positions of apparently
no special importance when the full field is considered. It is important to
note, however, that because the non-dipolar contributions to the main field
fall off more rapidly than the dipole contribution, the main field at altitudes
spanning some tens of kilometers to a few Earth radii is actually more dipolar

7I (Hughes) don’t know why one set of organizations uses the WMM while the other
tends to use the DGRF/IGRF. Perhaps you know (or will find out) and be kind enough
to tell me.

8See, for example: http://www.ngdc.noaa.gov/geomag/WMM/DoDWMM.shtml and
http://omniweb.gsfc.nasa.gov/vitmo/igrf vitmo.html.

9Vostok Station, Antarctica is said to be the location of the of the lowest reliably mea-
sured temperature on Earth (-128.6 ◦F). Although I don’t know much about it’s history,
I do know that it was established in 1957 during the enormously productive International
Geophysical Year (IGY)). Thule, Greenland is home to the USAF’s northernmost base.
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Figure 4.5: DGRF/IGRF isomagnetic contours of Earth’s b) main field and
a) its dipole component. The contours are labelled in units of Gauss.

than the surface field.10 For this reason, magnetic phenomena in space (e.g.,
the aurora, which will be discussed later) are often organized nearly around
the dipole poles.

Figure 4.5b shows a relatively deep minimum in the main field near Brazil.
This region of weak geomagnetic field is known as the South Atlantic Anomaly
(SAA) and is largely due to the offset in the dipole field that is centered sev-
eral hundred kilometers from the center of Earth in the direction away from
the SAA, thereby weakening the surface field at the more distant locations.
Recall from §2.3 that particles trapped in Earth’s “magnetic bottle” execute
three periodic motions: gyration, bounce and drift. The relatively weak fields
over the SAA lower the mirror ratio (Equation 2.45) and open the magnetic
bottle for particles bouncing on field lines in the SAA’s range of L−shells and
longitudes. Significantly, this range of L−shells includes the VanAllen radia-
tion belts that, as we will see in §4.4.3, contain highly energetic electrons and
protons that pose a serious threat to orbiting spacecraft and astronauts. For
example, the Hubble Space Telescope passes through the SAA many times
each day and several high-voltage instruments are powered down during each
pass to avoid radiation damage. Astronauts passing through the SAA report
a higher-than-usual indicence of “shooting stars” in their visual fields as a
result of radiation interacting with the optic nerves.

10The nth term in a spherical harmonic expansion is weighted by a factor proportional
to r−(n+1) where r is the geocentric distance. It is because of this dependence that lower-
order terms dominate at larger distances from Earth.
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4.3.4 Magnetic Poles

There is a good deal of interest in the notion of Earth’s magnetic poles. How-
ever, given the surface field shown in Figure 4.5b, it can easily be appreciated
that the definition of a “pole” for such a field configuration is not entirely
straightforward. Two definitions, each defining a different pole, are often
encountered in practice.

1. Geomagnetic poles are the two locations on the surface where the best-
fit dipole field is vertical.

2. Dip poles, also known as the magnetic poles are the surface positions
where the geomagnetic field is vertical.

Note that the dip and geomagnetic poles differ in location because the
geomagnetic field is not purely dipolar. The dip poles can be (and in fact
are) identified using direct measurements by locating the positions where
the surface field is vertical. It is not possible to locate the geomagnetic
poles using direct measurements because there is no unique feature of the
geomagnetic field that indicates the locations of the best-fit dipole field poles.
The locations of the geomagnetic and dip poles can be approximated using a
geomagnetic field model (such as the IGRF) but modeled dip poles are found
to differ somewhat from the results of direct measurement.

Figure 4.6 shows locations from the IGRF model of the north and south
dip and geomagnetic poles for the years 1900-2010 [Data from British Geolog-
ical Survey, 2009]11. The positions of the dip poles change rapidly in response
to solar wind and IMF conditions and both the dip and geomagnetic poles
have secular trends that are clearly visible in Figure 4.6.

At least during the past 100 years or so, the dip poles have been moving
at a much higher average speed than the geomagnetic poles.12 Over the past
∼100 years, the northern hemisphere dip pole has moved with an average
speed of about 15 km/yr. The southern hemisphere dip pole as moved about
half as far over the same time. Interestingly, it is also fairly clear from Figure
4.6 that the position of the northern hemisphere (southern magnetic) dip
pole is accelerating. These changes in the geomagnetic field are presumably
related to the amazing phenomena of magnetic reverals.

11Also see: http://www.geomag.bgs.ac.uk/education/poles.html.
12This would indicate that the geomagnetic field’s higher order harmonics are changing

at a more rapid rate than the dipole contribution.
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Figure 4.6: Locations of the IGRF model geomagnetic and dip poles for the
northern and southern hemispheres for the years 1900-2010.

4.3.5 Magnetic Reversals

The polarity of the solar magnetic field reverses about every 11 years near
the peak of solar max. Evidence suggesting a corresponding phenomenon
on Earth was discovered as early as 1904 when lava flows were observed to
contain remnant magnetizations roughly opposite to that of the present geo-
magnetic field [David, 1904, Brunches, 1906]. It is by no means a trivial task
to verify that such reversed magnetizations actually indicate geomagnetic
field reversals rather than the results of processes internal or local to the
rocks being studied. However, the task has been undertaken by generations
of researchers and the overwhelming body of evidence indicates that Earth’s
magnetic field does indeed undergo polarity reversals [Jacobs, 1994].

The paleomagnetic evidence indicates that the polarity of the geomag-
netic field has reversed many hundreds of times and that reversals occur, on
average, about every 250,000 years with the reversals being being accom-
panied by dramatic changes in geomagnetic field intensity and, of course,
direction. Typically, reversals are accomplished over the course of a thou-
sand or more years [Jacobs, 1994]. There is currently no uncontested evidence
that links geomagnetic polarity reversals with biological extinctions.

The geomagnetic field is currently in an unusually long period of constant
polarity with the last reversal occurring some 780,000 years ago. Possibly
suggestive of an imminent (on geologic time scales) reversal, the intensity of
the current geomagnetic field is decreasing at an accelerating rate and is now
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∼35% lower than its maximum values of about 2000 years ago.13

4.4 The Magnetosphere

The geomagnetic field is the net magnetic field around Earth resulting from
the vector superposition of all naturally-occurring magnetic fields including
the main field, other crustal and mantle fields, and fields produced by currents
flowing in the near-Earth space environment. It was appreciated as early as
1930 [Chapman and Ferraro, 1930] that the geomagnetic field would serve as
an obstacle to the oncoming solar wind plasma,14 around which it would have
to flow in a manner somewhat analogous to water in a stream flowing around
a rock. In this section, we will investigate this solar wind-geomagnetic field
interaction to understand the structure of the resulting magnetosphere and
the currents that support it.

4.4.1 Formation of the Magnetosphere

Consider first the geomagnetic field to be that of a dipole and assume there
is no solar wind. The dipole will extend into space as the field strength falls
off as 1/r3, as we have previously seen. Our goal here will be to add the
solar wind, allow it to interact with the geomagnetic field, and understand
qualitatively why the magnetosphere results.

Solar wind and magnetospheric plasmas are highly conductive so that
the frozen-in flux theorem discussed in §3.6.1 holds. This theorem can often
be taken to imply that once a charged particle begins gyrating around a
particular field line, it must always remain on that field line.15 Many RE

in front of Earth in the direction of the Sun, the solar wind ram pressure
greatly exceeds (typically by a few orders of magnitude) both the solar wind
thermal pressure and the magnetic pressure of the geomagnetic field. Thus
there is more energy density in the particle flows than in the field and, as with
the case of the solar wind’s interaction with the solar atmosphere, particle

13This very interesting topic is worthy of more discussion than is given here.
14Recall that strong observational evidence for this plama was reported by Cuno

Hoffmeister (involving comet tails) in 1943.
15But recall that they don’t do this. Frozen-in-flux was obtained from a fluid description.

Nevertheless, the analogy is both tempting and helpful (unless it leads to incorrect physics
(which it can), in which case it is both tempting and harmful.)
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motions control the magnetic field topology. Figure 4.7 illustrates how this
results in the formation of the magnetosphere.

a) vsw b) vsw

c)
vsw

Magnetosphere

Magnetopause

Figure 4.7: An illustration of the formation of the magnetospheric cavity
by the solar wind. a) A dipole approximation to the geomagnetic field in
vacuum, before an oncoming front of solar wind plasma interacts with the
shown field lines. b) The dayside magnetic field lines are compressed as by
the solar wind. c) The solar wind flows flows around the magnetosphere,
dragging some field lines with it into a long tail.

Figure 4.7a illustrates a situation where, after being “switched off” for
some time, an oncoming front of solar wind plasma is about to interact
with the approximately dipolar vacuum geomagnetic field. In panel b), the
solar wind plasma has reached the geomagnetic field and, because it cannot
flow across the field lines because of frozen-in flux, it exerts a ram pressure
on them that compresses the field on the dayside. As this dayside field is
being compressed, the field strength and magnetic pressure increase until
the point is reached where the magnetic pressure equals the ram pressure
and the particles no longer control the magnetic field topology. The solar
wind plasma must then flow around the geomagnetic field as illustrated in
panel c). As the flow is diverted, the dipole field geometry results in some
field lines being “dragged” with the flow into a long “tail”. The final result
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is a magnetosphere that is compressed on the dayside and elongated on the
nightside. The magnetosphere is separated from the solar wind by a pressure-
balance boundary known as the magnetopause.

The task of determining the exact shape of the magnetopause boundary
is difficult and, as pointed out by Baumjohann and Treumann [1997, pp187-
188], requires the numerical solution of a second-order three-dimensional non-
linear partial differential equation. We will not engage this problem here be-
cause, as we will very shortly see, there are excellent and accessible models
for the magnetospheric field lines that will elucidate details of the magneto-
sphere’s structure.

4.4.2 Size of the Magnetosphere

Although the task of determining the exact shape of the magnetopause is
beyond us, two obtainable quantities go a long way towards illustrating the
size of the magnetosphere: the so-called magnetopause standoff distance and
the limiting width of the tail.

The magnetopause standoff distance is the distance from the center of
Earth to the front, or nose of the magnetopause and a derivation of an ex-
pression for this quantity is useful and instructive. Considering the nose of
the magnetopause shown in Figure 4.7c to be in equilibrium, we may equate
the external with the internal pressures to obtain an expression for the equi-
librium position. There are three external pressures: the magnetic pressure
of the IMF, the solar wind thermal plasma pressure, and the solar wind
plasma ram pressure. The internal pressures are the magnetospheric mag-
netic and plasma thermal pressures. Pressure balance at the magnetopause
nose requires

pext = pint

where pext and pint are the total external and internal pressures, respectively.
Substituting the pressures mentioned above yields

εBIMF
+ εswthermal + εram = εBmp + εmpthermal (4.9)

where ε is an energy density that, given the geometry under consideration,
is proportional to pressure.16

16“Energy density is proportional to pressure” is an interesting phrase that you should
investigate. Under certain circumstances it is true. Under others, it is not.
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Our task is now to evaluate each term in Equation 4.9 and use the result
to determine the equilibrium position. Let us first turn our attention to the
LHS terms. As we saw in Table 3.4, under typical solar wind conditions
at 1 AU, εswthermal ≈ nk(Tp + Te) ≈ 30 pPa and εBIMF

= B2
IMF/2µ0 ≈

15 pPa.17 The remaining LHS term, the solar wind ram pressure, is the
momentum flux density of the bulk solar wind plasma flow absorbed by the
magnetopause nose. That is, the ram pressure is just the flow momentum
absorbed by the magnetopause nose per unit area per unit time. As shown
below, εram = Kρswv

2
sw ≈ 3 nPa where K ≈ 0.9 is an efficiency factor and

ρsw is the solar wind mass density. This ram pressure, while also very small,
is approximately two order of magnitude larger than the solar wind thermal
and IMF magnetic pressures and these two latter pressures can therefore be
neglected in evaluating Equation 4.9.

An expression for solar wind ram energy density (or pressure) is obtained
by evaluating the quantity εram = ∆Psw/(A∆t) where ∆Psw is the solar wind
momentum absorbed by an area A of the magnetopause in time ∆t. Figure
4.8 illustrates a constant flux of solar wind with speed18 usw and mass density
ρsw on the magnetopause nose. In a time interval ∆t, all solar wind particles
contained in the shaded box will impact the magnetopause nose and, if they
stagnate there, all of their momentum will be absorbed. In reality, the flow
does not stagnate and only the momentum fraction K is absorbed with the
remainder flowing around the magnetopause nose rather than being absorbed
by it. Thus,

∆Psw = KPsw = Kmboxusw = KρswVboxusw

= KρswA(usw∆t)usw = Kρswu
2
swA∆t

where mbox is the mass of solar wind particles contained in the shaded box
and Vbox is the volume of the shaded box. The solar wind ram pressure is
then

εram =
K∆Psw
A∆t

= Kρswu
2
sw.

Using numbers typical of the solar wind, one finds that εram ≈ 3 nPa.

On the magnetospheric side of the magnetopause (the RHS of Equation
4.9), it is assumed that εBmp >> εmpthermal so that the thermal pressure may

17These are very tiny pressures indeed!
18Assuming this value (along with others in this derivation) is constant.
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Magnetopause

A

~usw

ρsw

usw∆t

Figure 4.8: Solar wind ram pressure equals an efficiency factor times the
momentum of all solar wind particles in the shaded box per unit area per
unit time.

be neglected.19 Equation 4.9 then reduces to

Kρswv
2
sw =

B2
mp

2µ0

. (4.10)

In the final tally, the boundary between the solar wind and the magneto-
sphere is a pressure balance surface between the solar wind ram pressure and
the magnetopause magnetic field pressure.

We are now in position to inquire about Bmp, the strength of the geomag-
netic field at the magnetopause nose. If the field were dipolar and knowing
the field strength at the surface of Earth, we could simply apply a 1/r3 falloff
from the center of Earth to obtain a general expression for Bmp. However,
the dayside field is not dipolar but is compressed by the solar wind ram pres-
sure. It is not feasible to derive an exact expression for the compressed field
strength and we account for it by simply introducing a compression factor a
by which to multiply a dipolar field. The constant a will certainly be larger
than 1 and, for the time being, 2 is a reasonable estimate20 that we will make

19Spacecraft observations justify this assumption.
20A value of a = 2 would be obtained if the field were compressed by an image dipole.
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more precise later.
Equation 4.3 shows that at the magnetopause nose, which we assume lies

on the dipole equator,

Bmp = aBdipole =
aMdipole

r3
=
aB0

L3
mp

where Lmp is the magnetopause nose L−shell and B0 is the surface field
strength. Equation 4.10 then gives

Kρswu
2
sw =

(
aB0

L3
mp

)2
1

2µ0

=
(aB0)2

2µ0L6
mp

that may be solved for the quantity we are interested in:

Lmp =

(
(aB0)2

2µ0Kρswu2
sw

) 1
6

which is the dimensionless distance (in RE) from the center of Earth to the
magnetopause nose. Combining all the constants in the above expression,
taking a = 2.44 which measurements indicate is typical, and changing to the
system of units most often used when reporting solar wind conditions, this
expression reduces to

Lmp ≈ 107.4
(
nswu

2
sw

)− 1
6 (4.11)

where nsw is the effective solar wind proton number density 21 in cm−3 and
usw is the solar wind speed in km/s. For typical solar wind conditions, we
then find that

Lmp ≈ 10.

The above result indicates that the nose of the magnetopause has a typical
standoff distance of approximately 10RE. This is an important number and
perhaps most important because it exceeds the 6.6RE orbital radius of the
geostationary satellite fleet. Under normal circumstances, these satellites are

21The “effective” proton number density is somewhat higher than the actual proton
number density to account for the presence of some He++ in the solar wind with its mass
factor of 4.
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within the magnetosphere and shielded by it from many of the radiations of
space.

The limiting width of the magnetosphere tail may be estimated in a way
very similar to what was done above. As the solar wind flows down the
tail, it exerts essentially no ram pressure on the tail and only those terms
due to the solar wind thermal pressure and IMF magnetic pressures need
to be considered. Equating these pressures with typical tail magnetic field
pressures, one finds that RT ≈ 1.8Lmp [Baumjohann and Treumann, 1997,
p.189] where RT is the perpendicular distance from the center of Earth to the
sides of the magnetopause. That is, under typical conditions, the limiting
width of the magnetotail is about 2× 18RE. We can therefore approximate
the size of the magnetosphere as illustrated in Figure 4.9.

The magnetosphere extends ∼ 10RE into space towards the
Sun and reaches a width of ∼ 2 × 18RE across its flanks.
The downstream tail of the magnetosphere reaches to some
1000RE in the antisunward direction.

All of Earth’s geomagnetic field lines are contained within this volume.22

10RE

36RE

Figure 4.9: Approximate size parameters for Earth’s magnetosphere.

22Earth’s magnetosphere encompasses a huge volume (but Jupiter’s encompasses much
more!). Our moon orbits Earth at a typical radius of 60RE so that it is sometimes inside
and sometimes outside the magnetosphere.
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4.4.3 Structure of the Magnetosphere

The magnetosphere is a complex system consisting of many regions hav-
ing differing magnetic field geometries and plasma properties. In order to
identify and discuss these different regions, we must first obtain an accurate
representation of the magnetic field throughout the magnetosphere. This is
done most conveniently with a magnetospheric magnetic field model and, of
those that have been developed and are in use, among the most popular are
the series of models by Nikolai Tsyganenko [e.g., Tsyganenko, 1989, 1995,
Tsyganenko and Sitnov, 2005]. The Tysganenko models are semi-empirical
best-fit representations of the magnetospheric magnetic field based on satel-
lite observations and solutions of Maxwell’s equations. The codes for these
models are available online23 and Figure 4.10 illustrates several field lines
obtained with a Tsyganenko model that illustrate the large-scale structure
of the magnetosphere.

Bow Shock

The solar wind approaches the magnetosphere with a typical speed of 450
km/s. If this number is not shockingly large, perhaps it will be after conver-
sion into the more familiar units of miles per hour: The solar wind approaches
the magnetosphere with a typical speed of a million miles per hour!

It is tempting at this point to say something like, “Well, such a high
speed is clearly supersonic,24 so just as an airplane traveling supersonically
moves with a shock wave in front of it, the magnetsophere must have a
shock wave in front of it.” Tempting as such an analogy may be, it fails on
a critical point. An airplane travels through the air, a collisional gas that
supports sound waves (thus the term supersonic). The solar wind at 1 AU is
essentially collisionless and therefore does not support sound waves. Where
there are no sound waves to travel sonically there is no consequence to things
traveling supersonically. Nevertheless, there is in fact a type of shock wave
standing in front of the magnetopause (called the bow shock and shown in
Figure 4.10) and its effects and reasons for forming there are interesting. To
motivate and guide our thinking about why there could or should be a shock
in the collisionless solar wind plasma, let us first think about shocks in an

23See, e.g., http://geo.phys.spbu.ru/ tsyganenko/modeling.html or http://-

www.igpp.ucla.edu/public/tpoiii/Pliny/MATLAB/Tsyg/.
24Recall the solar wind sound speed of ∼ 60 km/s given in Table 3.4.
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Magnetotail

Plasmasheet

Plasmasphere

Magnetosheath
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(Solar Wind)

Polar Cusps

Magnetopause

Figure 4.10: Cross section of the magnetosphere identifying regions as de-
termined by magnetic field geometries and properties of the local plasma
populations. Earth’s radiation belts are not pictured.

abstract and qualitative sense as framed by the following analogy.

Suppose you plan a dinnertime visit to a friend’s home across town. You
compose a letter stating your plan, put it in the mailbox, and immediately
hop into your car and drive to his home. Of course you reach there before
the letter does and your friend is awkwardly surprised to find you expecting
dinner. The awkwardness occurred because you travelled faster than the
letter supplying the information required for a more typical reception.

Suppose further that the laws of human interaction allow for no awkward-
ness.25 How may the awkwardness of your sudden arrival be avoided? There
are many ways and the supposed law against awkwardness would require
you to bring at least one into effect. Perhaps as you hop into your car after
mailing the letter, you also send a text or email containing the equivalent
information. Your friend would then receive it in time to avoid the awk-

25Snicker, snicker. But the physical side of this analogy is that the laws of classical
physics tend to provide for smooth transitions between states (i.e., no “awkwardness”).
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wardness. On the physical side of this analogy, the mailed letter corresponds
to usual physical processes that convey information (e.g., sound waves) and
the text/email corresponds to an unusual way to convey information (e.g., a
shock wave).

Consider now an object moving through some medium. The medium
must26 flow around the object to avoid adding its negative relative momen-
tum to the object through direct collision and eventually stopping its mo-
tion.27 If this flowing-around-rather-than-colliding is to happen, information
about the object’s impending arrival must travel upstream ahead of the ob-
ject itself so that the medium has time to respond appropriately. In a medium
that supports sound waves, this information may be carried by a compres-
sional sound wave so that a pressure pulse causes the required flowing-around
effect through the laws of, for example, fluid mechanics and thermodynamics.

But what if the object moves faster than the speed at which information
is typically transmitted? In this case, nature avoids the ‘awkwardness’ of
discontinuous transitions and the relevant physical processes result in a faster
way of transmitting the required information. The information is carried by
a shock wave that travels ahead of the object. The effect of the shock wave
is to, among other things, slow down the flow speed so ‘ordinary’ processes
can provide for the required flow around the object. We may then ask what
these ‘ordinary’ processes are and with what speed they propagate.

Although the collisionless solar wind does not support sound waves, it
does support many other types of waves. In particular, three waves known
as Alfvén waves and the fast and slow magnetosonic waves exist in the solar
wind’s highly conductive magnetized plasma. A detailed development of
these waves is beyond the scope of this section and we simply state without
justification that our magnetosphere’s bow shock is a fast magnetosonic shock
with a typical fast magnetosonic Mach number of Mms ≈ 8 (from which you
can calculate a typical wave speed of ∼ 60 km/s).

The bow shock is an irreversible (entropy-increasing) wave that causes
a transition from super-magnetosonic to sub-magnetosonic flow. Upon in-
teracting with the shock wave, the plasma flow speed decreases but mass,

26Of course, must is too strong of a word. What is about to be described tends (ap-
proximately) to happen but we are not free to dictate that nature must work this way.

27That is, the medium must get out of the oncoming object’s path to avoid a collision
(and a possible pileup of mass) that slows down the object. To avoid creating a trailing
vacuum with the same end result, the medium must also flow into the vacancy left behind
by the passing object.
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energy and momentum are conserved across the shock boundary.28 So-called
Rankine-Hugoniot relations based on these conserved quantities can be de-
rived that relate upstream to downstream plasma parameters. For example,
conservation of mass flux across the boundary requires that

∂(ρmun)

∂n
= 0

where n is the shock-normal direction, ρm is the mass density and un is the
velocity component normal to the shock. Thus

(ρmun) |upstream = (ρmun) |downstream
or, to use a common notation,

[ρmun] = 0

where the square backets indicate the difference between upstream and down-
stream quantities. We see that because the downstream speed is lower than
the upstream speed, the downstream mass density (of the shocked solar wind)
must be higher than the upstream mass density. To conserve mass flux across
the bow shock, the plasma is more dense on the downstream side than on the
upstream side. Other conservation relations are developed by Kivelson and
Russell [1995, ch. 5] and the reader is highly recommended to this interesting
discussion.

The geocentric distance to the nose of the bow shock is about 30% greater
than to the magnetopause nose and it thus has a standoff distance of ap-
proximately 13 RE under typical solar wind conditions [Baumjohann and
Treumann, 1997, pp.192-193].

Magnetosheath

As illustrated in Figure 4.10, the region between the bow shock and the
magnetopause is known as the magnetosheath and is, for the most part, pop-
ulated with the shocked solar wind plasma and IMF29. The ratio of particle

28If mass were not conserved across the boundary, the boundary would become more
(or less) massive over time. This is neither expected nor observed. Energy is conserved
across the boundary because physicists believe in energy conservation more than almost
anything else (although energy may of course change form from, for example, directed flow
kinetic energy to the random motions of thermal energy). Momentum is conserved across
the boundary because the boundary exerts no net force on the plasma.

29A small fraction of the magnetosheath plasma comes from the magnetosphere.



120 CHAPTER 4. EARTH’S MAGNETOSPHERE

densities in the sheath to those in the solar wind range from approximately 4
near the bow shock nose to around 2 at locations far from the nose. Plasma
flows in the magnetosheath are highly turbulent with average speeds that
vary strongly with position and, most importantly, with distance from the
nose. As the solar wind is shocked upon entry into the magnetosheath, much
of its kinetic energy (which in the solar wind was largely contained in the
directed flows) is transferred into thermal energy and the temperature of
magnetosheath plasmas can be as much as 20 times higher than in the solar
wind. Thus, as compared to the upstream solar wind, the magnetosheath is
populated with relatively dense, turbulent, slow-moving, hot plasma.

Magnetopause

The magnetopause was discussed in §4.4.2. It is the pressure-balance bound-
ary between the solar wind and the magnetosphere, inside of which all of the
geomagnetic field lines are contained.

Polar Cusps

Turning our attention to regions inside the magnetopause, inspection of Fig-
ure 4.10 revels several distinct magnetic field geometries. Note first the polar
cusps which are the high latitude regions in the northern and southern hemi-
spheres where magnetic field lines transition from dayside field lines30 to those
that are swept past Earth into the tail. The two cusps are somewhat elon-
gated in latitude and longitude and their magnetic field geometry suggests
they link the magnetopause to the inner magnetosphere and the underlying
atmosphere. That is, shocked magnetosheath plasma can flow along cusp
field lines and have direct-entry access to the low altitude regions of Earth.
We might then expect a continual flow of plasma down these field lines into
the lower atmosphere, a topic we will take up again in §??.

Magnetotail

Magnetospheric field lines are classified as either “open” or “closed”. Closed
field lines emerge from the southern hemisphere and return to the northern,

30The term ‘dayside field lines’ refers to those field lines that cross the geomagnetic
equator on the dayside. Such field lines may, for example, exist on the nightside (in the
dark) at 1 RE but by definition must cross the geomgnetic equator at sunlit locations.
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penetrating the surface at a so-called conjugate location. All field lines in
a dipole approximation are closed. Open field lines, on the other hand,
do not link one hemisphere with the other. They ‘leave’ or ‘enter’ Earth’s
surface from one hemisphere31 and do not connect to the other. Instead, they
gradually and approximately align with the Sun-Earth direction and merge
or reconnect with the IMF some hundreds of RE downstream from Earth.
The interesting subject of magnetic reconnection will be taken up in §5.2.1.

The magnetotail is the region of the magnetosphere having open field
lines. Because the field lines are open and plasma is free to stream along
the field lines, down the tail, and to eventually merge again with the solar
wind, the magnetotail is characterized by plasma of low electron density (0.1
cm−3 or less) and energy (typically less than 0.5 keV). In the near-Earth tail,
magnetic field strengths of around 20 nT are typical and the field strength
gradually weakens until it approaches that of the IMF in the distant tail.

Magnetotail field lines converge in the high-latitude regions into what is
known as the polar cap. Solar wind electrons streaming along these field lines
with energies of a few hundred eV precipitate into the polar cap and form a
spatially homogenous polar rain. The magnetotail is approximately circular
in cross-section and is separated into two lobes, the northern and southern
lobes, by a region of relatively dense plasma known as the plasmasheet.

Plasmasheet

The region of closed field lines near the center of the tail is known as the
plasmasheet due to the closed field line geometry and the consequent higher
electron densities of ∼ 0.5 cm−3. The solar wind is the main source of
electrons and protons in the plasmasheet and these particles must first pass
through the tail before becoming part of the plasmasheet population. As
they do so, the particles are energized in the tail to typically ∼ 0.6 keV for
electrons and ∼ 5 keV for protons. The plasmasheet is typically 2-6 RE thick
and is a very important source of the auroral particles we will discuss in §??.

31Given the polarity of Earth’s magnetic field, field lines ‘leave’ from the southern
hemisphere where the field has a positive r̂ component and ‘enter’ the northern hemisphere
where the same component is negative.
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Plasmasphere

The final magnetospheric region identified in Figure 4.10 is the plasmasphere
which may be thought of as the magnetospheric extension of the ionosphere
to be discussed in Chapter 7. The plasmasphere is a region of closed field
lines forming a torus of cold (∼ 1 eV), dense (102 − 103 electrons cm−3)
plasma that maps to “subauroral” field lines, or field lines that map to Earth
at latitudes equatorward of where the aurora is observed. In contrast to the
rest of the magnetosphere, which is generally aligned along the Sun-Earth
direction, the plasmasphere almost corotates with Earth, taking on average
27 hours to complete a full rotation.

Radiation Belts

Explorer I was the first successful American satellite. It was launched from
Cape Canaveral on January 31, 1958 at 10:48 PM EST and carried a sci-
entific payload centered around James Van Allen’s cosmic ray32 detection
instrumentation. Van Allen’s telling of why and how his instrumentation
came to be onboard Explorer I is interesting and insightful [see, e.g., Gill-
mor and Spreiter, 1997, pp.235-251]. As is well known, data from Exlorer I
revealed that “My God, space is radioactive!”33 Van Allen and his team had
discovered what would come to be called the Van Allen Radiation Belts.

Particles trapped on Earth’s closed magnetic field lines will gyrate, bounce,
and drift. Some of these particles are highly energetic and it is these parti-
cles that form the radiation belts. Figure 4.11 shows a pleasantly old-school
image of the radiation belts. Note that there are two belts: an inner belt
composed of energetic protons and electrons, and an outer belt composed
of mainly energetic electrons. Between these two belts is the so-called slot
region.

The inner belt is temporally stable, extends to about 1RE above Earth’s
surface, peaking at an altitude of ∼ 3000 km, and results from the β-decay
of neutrons triggered by cosmic ray collisions with nuclei in the upper atmo-

32Cosmic rays are, in fact, not “rays” at all, but are highly energetic particles of cosmic
origin. The most energetic cosmic rays have energies in excess of 1020 J. Approximately
99% of cosmic rays are atomic nuclei with the remainder being solitary electrons. About
90% of the nuclei are protons. Although supernovae are one source of cosmic rays, other
sources and energization mechanisms are being actively investigated. Cosmic rays are a
continual source of error in both ground- and space-based electronics.

33Said by Ernest Ray, a colleague of Van Allen at the Univ. of Iowa.
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Figure 4.11: The Van Allen Radiation Belts. Image from NASA.

sphere. Proton energies in the inner belt extend to a few hundreds of MeV
while the electrons have typical energies in the range 1-5 MeV. Inner belt
protons are an important source of single-event upset events in space-based
electronics. In particular, protons in the South Atlantic Anomaly, discussed
above, provide the most intense radiation source in low Earth orbit.

In contrast to the inner belt, the outer electron belt is temporally vari-
able,34 extends from about 3-10RE above Earth’s surface, peaking at an
altitude of ∼ 4− 5RE, and is populated by electrons with typical energies in
the range 0.1-10 MeV.

4.4.4 Currents in the Magnetosphere

Previously in this chapter we have presented the magnetosphere as being
shaped by the solar wind pressure distorting an approximately dipolar geo-
magnetic field into a blunted (on the dayside), elongated (on the nightside)
cavity. The resulting magnetic field configuration is complex, dividing nat-
urally into the several regions discussed above, each embedded in magnetic
and possibly electric fields. As we saw in Chapter 2, plasma single-particle

34Energetic particle fluxes in the outer belt change rapidly with timescales on the order
of hours in response to geomagnetic storms (recall, for example, the discussion surrounding
§2.3.1 about trapped particles and the Dst index).
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motions in certain electric and magnetic field configurations result in currents
and, furthermore, any configuration of electric and magnetic fields must sat-
isfy Maxwell’s equations. Note in particular Ampere’s law,

∇×B = µ0J + µ0ε0
∂E

∂t

by which we see that whereever there is a curl to the magnetic field, there
must be a current (either conduction or displacement). In space plasmas
considered on large spatial and long time scales, displacements currents can
almost always be ignored and it is conduction currents that support the
magnetic field geometries.

Certainly there are regions in the magnetosphere where there is a curl to
the magnetic field and certainly there are regions where the magnetic field
geometry is such that single-particle motions result in ions and electrons
drifting in different directions. Thus we realize there must be currents in
the magnetosphere that work self-consistently with our previous discussions
to support the structure of the magnetosphere. In this section we will in-
vestigate the currents that support the stationary, average structure of the
magnetosphere. Other currents associated with magnetospheric dynamics
will be discussed in Chapter 5.

Figure 4.12 illustrates the major magnetospheric current systems. All
these currents must flow in closed loops and they are not independent, but
rather are interconnected in such a way that the current is everywhere di-
vergenceless and that the magnetic field produced results in the geometry
illustrated in Figure 4.10.35 The four major magnetospheric current systems
are:

1. the magnetopause current,
2. the neutral sheet and tail current,
3. the ring current and
4. the field-aligned (or Birkeland) currents.

The Magnetopause Current

The direction of the geomagnetic field at the magnetopause nose is approx-
imately normal to the ecliptic plane and has a strength of ∼70 nT. Moving

35A divergenceless current that flows in a closed loop is required by charge continuity:
∂ρ
∂t + ∇ · J = 0, where ρ is the charge. For stationary systems, the time derivative is
zero (showing that the current is everywhere divergenceless) and an application of the
divergence theorem shows that the current must flow in a closed loop.



4.4. THE MAGNETOSPHERE 125

Neutral Sheet Current

Tail Current

Magnetopause Current

Ring Current

Region 1 Current
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Figure 4.12: An illustration of the major magnetospheric current sys-
tems. Figure adapted from http://www.meted.ucar.edu/hao/aurora/-

txt/x m 3 1.php and c©The COMET Program.

some small distance towards the sun, just across the magnetopause and into
the solar wind, the magnetic field is the IMF with variable orientation and
typical strengths of only 6 nT. Such a field configuration has a nonzero curl
and from Ampere’s law we find that a current must flow on the surface
of the magnetopause to support the magnetic field geometry on both sides
of the boundary. Visualizing this geometry at the magnetopause nose, we
find that the magnetopause current36 must flow from west to east (dawn to
dusk) so that it strengthens the magnetic field on the earthward side of the
magnetopause and weakens it on the sunward side.

The magnetopause is a three dimensional structure and the magnetopause
current is not limited in spatial extent to the region near the nose. As shown
in Figure 4.12, this current flows over a large portion of the magnetopause,
generally circulating around the cusps where the geomagnetic field has zero
strength.

The physical mechanism by which this current is formed is, in the won-
derful way in which nature works, self-consistent with the pressure balance
requirement previously discussed for the magnetopause position. As the so-

36The magnetopause current is also known as the Chapman-Ferraro current, after the
investigators who in 1931 first proposed its existence.
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lar wind plasma encounters the magnetopause, the flow is generally diverted
around the flanks of the magnetospheric cavity, temporarily penetrating the
magnetopause before returning to the solar wind due to the Larmour radius
of the gyration orbits. The rotational directions of gyrations for ions and
electrons are opposite, resulting in the dawn to dusk current at the magne-
topause nose and the overall current pattern illustrated in Figure 4.12. The
reader is referred to Parks [1991, pp.254-256] for further details.

The Neutral Sheet and Tail Current

Inspection of Figure 4.10 reveals another region of the magnetosphere having
magnetic fields with a definite curl, and thus another region where current
must flow in accordance with Ampere’s law. Notice the magnetic field ge-
ometry in the tail and, in particular, in the center of the plasmasheet. Here,
as one goes from the southern to the northern tail lobe, the field direction
changes from begin nearly away from the Earth to nearly towards the Earth.
The strong curl to this field is supported by a neutral sheet current that, as
illustrated in Figure 4.12, flows from the dawnside to the duskside through
the plasmasheet and then, because it cannot simply terminate but must close
on itself, flows around the magnetopause flanks as the tail current where it
merges with the magnetopause current and closes with the neutral sheet
current.

Given Ampere’s law and typical values for the magnetotail field strengths
(BT ), and the length of the tail (LT ), one can estimate the tail current (IT )
required to support the field configuration. Applying Ampere’s law to the
neutral sheet current gives37∮

BT · dl = µ0INS

2BTLT = µ0(2IT )

JT =
IT
LT

=
BT

µ0

.

where INS is the neutral sheet current and the factor of 2 on the RHS of
the middle equation accounts for the converging currents from the northern

37The path of integration on the LHS of Ampere’s law is a rectangle oriented perpen-
dicular to the ecliptic plane, parallel to the Sun-Earth line, and situated to enclose the
tail current.
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and southern tail lobes. Using typical values of BT = 20 nT and LT =

100RE gives JT = 0.02 A/m and IT = 1× 107 A . (Ten million amps is a
large current!) Measurements indicate this current flows across a cross-tail
potential difference of ∼60 kV that indicates a massive power of P = IV =
1× 1012 W is required to support this current. This power is extracted from
the solar wind as it is diverted to form and flow around the magnetopause.

The Ring Current

The ring current was first introduced in §2.3 where it was noted that charged
particles trapped in Earth’s “magnetic bottle” gyrate, bounce and drift
around Earth such that an east-to-west current is produced. The current
is carried by trapped ions (which drift westward) and electrons (which drift
eastward) within the inner part of the plasmasheet at approximately 4−6RE,
with ions in the energy range of 10-100 keV carrying most of the current.
Contrary to the illustration in Figure 4.12 and to the name itself, the ring
current does not simply consist of a ring of current around the equator but
rather is carried by a sort of torus of drifting particles spanning a large range
of latitudes.

The ring current produces a magnetic field that weakens the geomag-
netic field at the surface and its magnitude can therefore be estimated using
low latitude ground-based magnetometers.38 During geomagnetic storms,
the density and energy of ring current particles increases and the diamag-
netic field they produce decreases the surface field strength by levels often
exceeding 100 nT.39

Birkeland Currents

The ring current encircles Earth but is stronger on the nightside than on
the dayside. Current continuity then requires that, as the ring current flows
from the nightside to the dayside, part of it must be diverted into another
current system. For the same reason, as the ring current flows from the
dayside to the nightside, the fact that its strength increases means that it
must be augmented by contributions from another current system. Figure

38But recall the warning in Chapter 2 footnote 23: the low-latitude geomagnetic field
is not influenced by the ring current alone.

39During extreme events, the surface magnetic field strength can be reduced by as much
as a few percent.
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4.12 illustrates this interplay between the ring current and what is known as
the region 2 current system. Region 2 currents are field-aligned or Birkeland
currents which are named after Kristian Birkeland who first proposed their
existence. They flow along field lines towards Earth on the duskside and
away from Earth on the dawnside.

Another Birkeland current system known as the region 1 system flows
along field lines at higher latitudes than those of the region 2 system and
partially closes the magnetopause current system. The polarity of the region
1 currents is generally opposite that of the region 2 system, flowing away
from Earth on the duskside and towards Earth on the dawnside. These
region 1 and region 2 current systems are key factors in driving the patterns
of ionospheric convection described in §7.9.

4.5 Summary

To be written.
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Exercises
4.1: Illustrate the similar triangles leading to the ratio given in Eq. 4.4

and perform the required integration to obtain Eq. 4.5.
4.2: Use the DGRF/IGRF magnetic field model to show that, out to

at least a few Earth radii, the geomagnetic equatorial field falls off as 1/r3.
4.3: Verify the substitutions leading to Eq. 4.11 and insert typical solar

wind values to show that Lmp ≈ 10.
4.4: By approximately what factor is the solar wind density increased

on the downstream side of the bow shock relative to the upstream side?
4.5: Typical solar wind values are given in Table 3.4 (p.77). For a

typical solar wind speed, determine the density required to move the mag-
netopause inside geosynchronous orbit. For a typical solar wind density,
determine the solar wind speed required to move the magnetopause inside
geosynchronous orbit. Investigate solar wind data and comment on how often
these required values are realized.
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Chapter 5

Magnetospheric Dynamics

5.1 Introduction

The previous chapter presented a static picture of Earth’s magnetosphere. In
that picture, the incoming solar wind and IMF interact with Earth’s geomag-
netic field to produce the magnetopause and other magnetospheric regions as
well as the magnetospheric currents that flow self-consistently to support the
structure. There was little mention or even hinting that this structure and
the currents that support it evolve over time. But in fact the magnetosphere
is quite dynamic and it could be argued that these dynamics are the more
important and compelling aspects of the magnetosphere. If Chapter 4 pre-
sented a “snapshot in time” of the magnetosphere, this chapter is intended
to develop and display the movie.

Those fortunate enough to live or travel at high latitudes need not wait
long nor look far for strong suggestions that the magnetosphere is impres-
sively, if not amazingly, dynamic. As the Norwegian explorer Fridtjof Nansen
put it [Nansen, 1897, p.253],

“Presently the aurora borealis shakes over the vault of heavens
its veil of glittering silver - changing now to yellow, now to green,
now to red. It spreads, it contracts again in restless change;
next it breaks into waving many-folded bands of shining silver,
over which shoot billows of glittering rays, and then the glory
vanishes. Presently it shimmers in tongues of flame over the very
zenith, and then it shoots a bright ray right up from the horizon,
until the whole melts away in the moonlight, and it is as though
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one heard the sigh of a departing spirit.”

Nansen was neither the first nor the last to be awestruck by the dynamic,
and sometimes violently dynamic, aurora. This wonderful phenomenon is
perhaps the most dramatic evidence that exciting things are at work in the
magnetosphere. Before understanding what these things are and what effects
they have, it is first necessary to introduce some additional physics.

5.2 Magnetohydrodynamics

5.2.1 Introduction to Magnetic Reconnection

Much of magnetospheric dynamics is driven by the process of magnetic re-
connection. The theory of this process is difficult, largely beyond the scope
of this text and, to some extent, still an area of active research. Even so, the
basic idea as illustrated in Figure 5.1 is reasonably straightfoward. When
oppositely directed magnetic fields are forced together, they can “merge”,
or “reconnect”, ejecting the local plasma in the process. In this figure, the
black magnetic field lines at the top are directed opposite to the light gray
field lines at the bottom. Both sets of field lines are carried into the re-
connection region by an inflow of plasma that carries the field lines with
the flow in consequence of the frozen-in flux condition. Near the horizontal
neutral line, a strong current sheet is present to support the magnetic field
configuration. At the center of the figure is an X-point, a point where two
oppositely directed field lines reconnect to become one (darker gray) field
line that preserves the original field polarities but is highly “kinked”. Highly
kinked magnetic field lines exhibit a sort of “magnetic tension”, discussed in
some detail in §??, that is analogous to the tension in a kinked spring. As a
result of this tension, the field lines, in an attempt to become unkinked, are
ejected from the reconnection region and carry ejected plasma with them.

A key observation from Figure 5.1 will lead us into some theory: note
from this figure than at locations where this reconnection happens, plasma
from one field line becomes intermixed with plasma from another field line.
Such mixing violates the frozen-in flux assumption and we may be able to
understand why, or at least where, reconnection happens by investigating
where in magnetosphere the frozen-flux assumption is invalid.

Let us begin our investigation of the frozen-in flux condition and reconnec-
tion by introducing the theory of magnetohydrodynamics or MHD for short.
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Figure 5.1: Cross-sectional view through a reconnection region showing oppo-
sitely directed and reconnected magnetic fields. Vertical plasma flows carry
the magnetic field into the reconnection region where, at the X-point, they
reconnect and eject the plasma. A current density J, directed into the page,
supports the magnetic field geometry.

Rather than modeling a plasma as a collection of single particles as we did in
§2.2, MHD models plasmas as a fluid or as a collection of fluids. In particu-
lar, MHD models the time evolution of magnetized fluid plasmas, from which
the term magneto-hydro-dynamics is obtained. As with any fluid description,
quantities in MHD are locally averaged. For example, the density at some
point is the average density over some volume that is small compared to the
system being modeled but large enough to contain a statistically significant
number of particles. MHD also assumes that locally averaged quantities vary
on time scales that are long compared to microscopic motions (such as plasma
oscillations and gyroperiods), and on spatial scales that are large compared
to the Debye length and the thermal gyroradius. That is, MHD deals with
average, bulk plasma motions and describes the large-scale, slow evolution
of a magnetized plasma. It cannot be used to study the “microphysics”
or single-particle motions involved in a process but it is an extrordinarily
valuable tool for understanding the large-scale picture.
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5.2.2 The MHD Equations

A complete MHD description requires the simultaneous solution of many
equations and we may determine the number of required equations by count-
ing the number of unknowns that must be modeled. In a fluid plasma, the
fluid velocity, mass density and pressure may all vary in space and time
and, taking the velocity to be a three dimensional vector, this yields five
unknowns. But MHD models magnetized fluids so we must also account for
the electric and magnetic fields and currents flowing the in plasma. Each of
these are vector quantities and together they introduce nine more unknowns
for a total of 14. A full MHD description therefore requires 14 independent
equations. Let us begin a presentation of these equation by introducing the
fluid equations.

In Chapter 2, we developed the continuity equation (Equation 2.7 which is
an expression of charge conservation. Here we may write an analogous equa-
tion expressing conservation of mass for a given fluid species (e.g., electron,
ions or neutrals). The continuity equation for a species s is

ms
∂ns
∂t

+ms∇ · (nsvs) = ms (Ss − Ls) (5.1)

where ms and ns are the mass and number density of a species and Ss and Ls
are the source and loss rates for the species in number per second. Assuming
charge neutraity and singly-ionized ions (so that ne =

∑
i ni) and a fully

ionized plasma (so that there are no neutral species), equation 5.1 may be
written for each species being modeled and summed over species to obtain
a continuity equation for the system as a whole. Further assuming there are
no sources of losses, we obtain

∂ρ

∂t
+∇ · ρv = 0 (5.2)

where ρ is the total mass density and v is the center of mass velocity. This
continuity equation is the first of the 14 required equations.

We encountered a momentum equation during our derivation of the plasma
frequency where it was noted that momentum equations are essentially ex-
pressions of Newton’s 2nd law. Here, a given species s may be exposed to a
variety of forces including those from pressure gradients, electric and mag-
netic fields, gravity and collisions. A typical momentum equation for species
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s may then be

ρs

[
∂vs
∂t

+ (vs · ∇) vs

]
+msvs (Ss − Ls) = −∇ps+ρqsE+Js×B+

ρsFg

ms

+Ks

(5.3)
where ρqs = qsns is the charge density, ps is the species partial pressure,
Js = qsnsvs is the current density associated with species s, Ks is the rate
of momentum change in species s due to collisions and Fg is the force of
gravity on species s. Taking the same assumptions as before, we may add
the electron and ion momentum equations to obtain

ρs

[
∂v

∂t
+ (v · ∇) v

]
= −∇p+ J×B +

ρFg

mp

(5.4)

since there can be no sources or losses of charged particles (there being no
neutrals to ionize), the electric forces are oppositely directed on each species
and therefore cancel and the net momentum is conserved. Furthermore,
the fact that ion masses greatly exceed electron masses makes it possible to
neglect the electron gravitational term in Equation 5.4. This vector equation
accounts for the next three of our required equations (bringing the current
total to four).

If we assume an ideal gas law for the equation of state, the total scalar
pressure is

p =
∑
s

nskTs (5.5)

which, for a fully ionized plasma, reduces to p =
∑

i nikTi+nekTe. We cannot
count this equation among the required 14 since doing so would introduce
more unknowns (the temperatures).

We may obtain more independent equations by examining the fields. In
the MHD limit of slow changes over large spatial distances, the displacement
current in Ampere’s law may be neglected, leading to

∇×B = µ0J. (5.6)

Faraday’s law is

∇× E = −∂B

∂t
. (5.7)

Equations 5.6 and 5.7 bring the total number of independent equations to
10 and we may suppose that 2 more may be obtained from the two scalar



136 CHAPTER 5. MAGNETOSPHERIC DYNAMICS

Maxwell equations. But note that ∇ · B = 0 and ∇ · E = ρq/ε0 (where
ρq is the charge density that, assuming charge neutrality, is equal to zero)
are not dynamical equations in the sense that they do not describe the time
variations of B and E. Rather, they are more like initial conditions that are
also satisfied at any time. So having now 10 equations, we need four more.

One of the required four may be obtained by imposing conservation of
either energy or entropy on the plasma. Conservation of energy is the more
problematic of these two choices as it introduces the heat flux vector into
the system which requires either further approximation or the addition of
three more independent equations to specify the heat flux. Conservation
of entropy, however, simply requres that the pressure and mass density are
related by

pρ−γ = constant

so that
∂p

∂t
+ v · ∇p = c2

s

(
∂p

∂t
+ v · ∇ρ

)
(5.8)

where cs is the plasma sound speed defined by cs = γp/ρ and γ is the ratio
of specific heats [Kivelson and Russell, 1995, p47].

One more vector equation (to bring our total to 14 and close the system)
may be obtained from a generalized Ohm’s law that is a relationship be-
tween the current density J and the fields. This relation may be derived by
subtracting the ion and electron momentum equations and performing some
algebra. The derivation would require a significant detour at this point and
we instead refer the reader to Baumjohann and Treumann [1997, pp141-142]
and Kivelson and Russell [1995, p.48] for details that result in

j = σ

[
(E + v ×B) +

1

n0e
∇pe −

1

n0e
j×B− me

n0e2

(
∂j

∂t
+∇ · (jv)

)]
.

(5.9)
where σ is the plasma conductivity. The conductivity of a plasma will be
discussed in detail in §7.8 where we will find that σ, in general, is a tensor
that relates the magnitude and direction of current flow in response to applied
forces.

Often the last terms on the RHS of Equation 5.9 are dropped, resulting
in

J = σ(E + v ×B) (5.10)
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and, in ideal MHD, the conductivity is assumed to be infinite so that

E + v ×B = 0. (5.11)

So we have succeeded in accumulating 14 MHD equations that can be
used to describe the slowly-varying time evolution of large-scale plasma flu-
ids. It was a nontrivial task to assemble the equations and the reader may
appreciate that the simultaneous solution of the set is, in general, quite a
formidable task. Formidable though they may be, the MHD equations are
routinely solved numerically and such models of the magnetosphere provide
rich insights into its dynamics and response to changing conditions in space.



138 CHAPTER 5. MAGNETOSPHERIC DYNAMICS



Chapter 6

Earth’s Neutral Atmosphere

6.1 Motivation

Earth’s neutral atmosphere1 is a spherical layer of gas surrounding our planet
and, compared to the scale of regions we have investigated up to this point, it
is an exceedingly thin spherical shell. In fact, half of the atmospheric mass lies
beneath 6 km in altitude and only something on the order of a ten thousandth
of a percent of it lies above 100 km in altitude where space is considered to
begin. Most of Earth’s atmosphere is therefore beneath the near-Earth space
environment and omission from this book could be argued on this point alone.
But we should appreciate, for example, that atmospheric drag is a primary
consideration for satellites in low-Earth orbit, that the neutral atmosphere
is central to the formation of Earth’s ionosphere, that the neutral atmo-
sphere protects us from various radiations from space, that auroras result
largely from the interaction of magnetospheric plasma with the neutral at-
mosphere, and that the dynamics of the atmosphere have definite impacts
on space-based technology. Given the importance of topics on this list and
the context and perspective that a basic understanding of the neutral atmo-
sphere can provide, this chapter attempts to walk a middle ground between
the typically plasma-dominated field of space physics and the chemistry- and
fluid dynamics-dominated field of aeronomy. This middle ground regrettably
ignores most of the compelling dynamics of the atmosphere and focuses on

1Translated from Greek, the word atmosphere literally means ‘vapour ball’.
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general, static properties.2

6.2 Introduction

Water, earth, air and fire are the four classical ‘elements’3 and we may con-
sider air to be equivalent to the neutral atmosphere that we breathe. The
first evidence that air was not an element, but rather a mixture of various
gasses, was provided around the year 1630 by Jan Baptista van Helmont
(1577-1644) who identified carbon dioxide (called by him gas sylvestre) re-
leased by burning charcoal.4 The next consitituent of our neutral atmosphere
to be discovered was molecular oxygen, first around 1772 by Carl Wilhelm
Scheele (1742-1786) and then independently by Joseph Priestly (1733-1804)
in 1774.5 In addition to his discovery of oxygen in 1774, Scheele simulta-
neously also discovered molecular nitrogen. He labelled O2 and N2 as ‘fire
air’ and ‘foul air’ respectively to indicate that the first supports combustion
while the latter suppresses it.

N2 and O2 are the two most common constituents of the atmosphere at
ground level and together they account for around 99% of its atoms and
molecules. As we will see below, CO2 is the fourth most common constituent
(and yet it was the first to be discovered). The missing element in the top
four constituents is argon: an inert, colorless, odorless, and tastless noble
gas. No doubt these properties added to the delay in its being identified
as a relatively common constituent. Following the discoveries of CO2, O2

2So we will largely ignore meteorology, weather, climate change, global circulation,
gravity waves, tides, etc. To briefly indicate the complexity and importance of these topics,
note that among them are some of the most mature, developed, challenging, and important
problems related to the study of our planet. Humans have tried for millenia to predict
the weather and even today’s state-of-the-art models run on the fastest supercomputers
cannot determine with certainty whether or not it will rain two days in the future at a given
location. Additionally, questions concerning global climate change must be considered
among the most important facing mankind.

3Often the fifth element or quintessence is also listed. This quintessence is the aether
that lies beyond the other four.

4van Helmont claims to have have coined the term ‘gas’, by which he meant vapors
different from the ordinary air we breathe. Gas Sylvestre may be loosely translated from
latin as “gas from wood”.

5Credit for the discovery of O2 is usually given to Priestly because he was the first to
publish his findings.
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and N2, more than a century passed before Lord Rayleigh6 (1842-1919) and
Sir William Ramsay (1852-1916) isolated argon from air in 1894. Rayleigh
and Ramsay were awarded the 1904 Nobel prizes in physics and chemistry,
respectively, for their discovery. Given these discoveries and others that
followed, we now know that the neutral atmosphere is a gaseous mixture of
atoms and molecules that may contain in suspension, at certain locations and
times, small amounts of solids and liquids including dust and water droplets.

Table 6.1 summarizes the atmospheric composition at ground level. The
abundances of nitrogen, oxygen and the noble gasses do not vary significantly
with location or time. The other consitituents, significantly including water
vapor which is not included in the table, may vary by several percent in
relative abundance due to local conditions.7

Ground-level
Atmospheric
Constituent

Chemical
Formula

Relative
Abundance

(%)

Number
Density
(m−3)

Nitrogen (molecular) N2 78.1 ∼ 2× 1025

Oxygen (molecular) O2 20.9 ∼ 5.6× 1024

Argon Ar 0.93 ∼ 2.5× 1017

Carbon Dioxide CO2 0.035
Neon Ne 0.0018

Helium He 0.00052
Methane CH4 0.00015
Krypton Kr 0.00011

Hydrogen (molecular) H2 0.00005
Xenon Xe 0.00001

Table 6.1: Composition of Earth’s neutral atmosphere at ground level.

Thus the air we breathe is mainly nitrogen (∼78%), oxygen (∼21%),
and argon (∼1%) with a density and temperature such that the average
sea-level pressure is 101.325 kPa, defined to be one standard atmosphere
(or atm)8.

6Wikipedia relates that he was: John William Strutt, 3rd Baron Rayleigh, OM (Order
of Merit), PRS (President of the Royal Society).

7For example, water vapor near the surface varies from a relative abundance near zero
over deserts to about 4% over oceans and methane (CH4) is relatively more abundant over
cow pastures than deserts.
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In many ways, Earth’s atmosphere is surprising. Our nearest planetary
neighbors have atmospheres dominated by the oxidized CO2 molecule while
Earth’s atmosphere is oxidizing, alone in the solar system in its relatively high
(and far from thermodynamic equilibrium) abundances of life-sustaining O2.9

Local deviations from the average sea-level pressure of 1 atm are of course
strong drivers of atmospheric dynamics but here we will assume the atmso-
phere is in static equilibrium. Given this assumption, we may investigate
how atmospheric pressure varies with altitude.

6.3 The Hydrostatic Approximation

The pervasive force of gravity exerts a constant downward force on the at-
mosphere’s constituents and we may therefore expect the number density
(and pressure) of this gas to be highest at the lowest altitudes and to de-
crease with increasing altitude. To obtain an expression for this variation,
we recognize that static equilibrium requires a balance of vertical forces act-
ing on a parcel of air. Figure 6.1 shows these forces where p0 is the pres-
sure at the bottom of the parcel, A is the parcel’s cross-sectional area, δz
is the parcel’s height, δm is the airmass in the parcel, and δp is the as-
sumed change in pressure over the parcel height. If ρ and δV are the par-
cel’s mass density and volume, respectively, the parcel’s weight is given by
w = (δm) g = (ρ δV ) g = (ρA δz) g = ρAg δz.

In static equilibrium,
∑
Fz = 0 so from Figure 6.1,∑

Fz = − (p0 + δp)A− ρAg δz + p0A = 0.

Doing a line or so of algebra and taking the limit δz → 0, we find that

∂p

∂z
= −ρg (6.1)

which is known as the hydrostatic equation. The pressure p and mass density
ρ in this equation are not independent and are related to each other through

8Note that this pressure is the magnitude of weight per unit area of a column of air
extending from sea level to the “top” of the atmosphere and that 1 atm = 101.325 kPa =
14.696 psi = 760.0 mmHg = 29.92 inHg.

9The primary source of this excess O2 is of course biological activity (primarily photo-
synthesis) fueled by radiation from the Sun. In the absence of biological activity, the sur-
face concentration of O2 would be approximately 1013 times smaller than observed[Wayne,
1991, p.5].
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Figure 6.1: The vertical forces on an air parcel in static equilibrium.

an equation of state. Let us take the ideal gas law, p = nkT , where n is
the number density of the gas, k is Boltzmann’s constant and T is the gas
temperature. The ideal gas law may be written as

p = ρkT/mp (6.2)

where mp is the average constituent mass10 and n = ρ/mp. Solving Equation
6.2 for the mass density ρ, substituting into Equation 6.1, and separating
variables yields

∂p

p
= −mpg

kT
∂z (6.3)

that may be integrated to find

p = p0 exp

(
−
∫ z

z0

mpg

kT
dz′
)

= p0 exp

(
−
∫ z

z0

dz′/H

)
where

H ≡ kT

mpg
(6.4)

is the scale height.11 It can be shown that the scale height at ground level is
approximately 8 km (see Exercise 6.2).

10For air near ground level, the average constituent mass is mp ≈ 0.78(mN2
) +

0.21(mO2
) + 0.01(mAr) ≈ 0.78(28) + 0.21(32) + 0.01(40) amu ≈ 29 amu ≈ 4.8× 10−26 kg.

11Note that this result may be obtained directly (neglecting variations with altitude)
from the Boltzmann distribution we encountered in Chapter 2. In this case, the force
of gravity is directed straight down and its potential energy (mgz) ‘competes’ with the
random thermal energy given by kT so that we must have p = p0e

−mgz
kT .
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The scale height varies with neutral temperature, the average constituent
mass, and the gravitational acceleration g. To develop intuition about the
physical meaning of the scale height, consider an atmosphere for which H
is constant over altitude. If we further assume for this purpose that neither
g nor mp vary with altitude, the temperature must also be constant (i.e.,
the atmosphere is isothermal). Equation 6.3 can then be integrated and
combined with the ideal gas law to find

p = p0e
−(z−z0)/H and n = n0e

−(z−z0)/H

which show that atmospheric pressure and number density decrease expo-
nentially. An increase in altitude of ζ scale heights results in a factor of
eζ decrease in the atmospheric pressure and number density. Note carefully
that an increase in temperature results in a larger scale height and less severe
falloff with increasing altitude (and vice versa).12

Taking the ground-level scale height to be 8 km as mentioned above, it
can be seen that:

half the atmosphere lies below an altitude of 6 km
(∼20,000 ft)13; 90% lies below 18 km (∼11 miles) and
99.9997% lies below 100 km (∼62 miles).

These numbers and the extreme thinness of our atmosphere should not pass
by unappreciated. Fewer than 4 miles above our heads, less than half of the
atmosphere remains.

To give another physical interpretation of the scale height H, note that
it is the thickness of a constant-value layer. That is, if the exponentially
decaying atmosphere were compressed from above until the pressure and
number density were constant over altitude and equal to the reference (e.g.,
ground level) value, the thickness of this compressed layer would be exactly
one scale height. This interpretation follows directly from the integrals∫ ∞

z0

pdz = p0H and

∫ ∞
z0

ndz = n0H.

12This point will be recalled in §?? in the context of atmospheric drag. As the atmo-
sphere warms, density and satellite drag at a given altitude must increase.

13This is approximately the altitude of Denali, aka Mt. McKinley. Mt. Everest has an
altitude of over 8.8 km and the atmospheric pressure at its summit is approximately 1/3
of that at sea level; 2/3 of Earth’s atmosphere lies below the summit of Mt. Everest!
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In general the scale height H is not constant with altitude. As we will see
below, the atmospheric temperature varies significantly with altitude and,
at least for the upper atmosphere, so too does the average constituent mass.
Of course, the acceleration of gravity decreases with increasing altitude as
1/(RE + z)2.

6.4 Atmospheric Temperature

Having found the atmospheric pressure and number density to fall off expo-
nentially with scale height H as altitude increases, let us turn our attention
to the temperature of Earth’s atmosphere. It is no mean feat to quantitativey
evaluate from first principles the atmospheric temperature at ground level,
to say nothing about the additional complications required to determine its
variations with altitude. Here we will employ general approximations and
an empirical model to illuminate the problem and hopefully provide useful
understanding.

6.4.1 The Surface Temperature

To a good level of approximation, the atmosphere is heated by two sources
of energy: the Sun and the Earth. Recall from §3.1.2 that the Sun provides
a power density of F� ≈ 1366 W/m2 from above and the Earth, being con-
tinually warmed by the Sun,14 radiates as a blackbody in the far infared and
provides energy from below. We may crudely estimate Earth’s surface tem-
perature by equating the solar energy it absorbs to the blackbody radiation
energy it emits.15 The projected area of Earth intercepting the Sun’s energy
is πR2

E and we assume, because the Earth rotates, that this energy is on
average distribued across the whole surface of Earth. Some fraction of this
incident radiation is relfected from the surface and the reflection coefficient
is known as the albedo. Although the albedo varies with wavelength and
surface conditions, a globally-averaged value of 0.30 is generally accepted.16

That is, 70% of the incident solar energy is absorbed by Earth’s surface and

14Here we ignore other sources of energy within the Earth including those from radioac-
tivity and other geothermal sources.

15That is, we assume Earth is in radiative equilibrium with its environment.
16For visible light, the albedo of: forrested areas is ∼0.15, desert sand is ∼0.40, and

fresh snow is ∼0.90.
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30% is reflected. We may then use the Stefan-Boltzmann law to equate

πR2
E (1− aE)F� = 4πR2

EσT
4
E (6.5)

where aE is the globally-averaged albedo, σ is the Stefan-Boltzmann con-
stant17 and TE is Earth’s surface temperature.

Evaluating Equation 6.5 yields TE = 255 K for the surface temperature
of Earth (see Exercise 6.5). Note that this is the temperature of Earth’s
surface, not the temperature of the atmosphere at ground-level. The ac-
tual average temperature on Earth’s surface is some 30 K warmer than this
and the discrepancy is largely due to complicating effects attributable to
Earth’s atmosphere. To crudely suggest the basis of these effects, it must
be appreciated that Earth’s atmosphere acts as a “blanket” wrapping Earth
and absorbing the vast majority of its emitted infared (blackbody) radiation.
Some of this absorbed infared radiation is lost to space while some is directed
back towards Earth, in effect (but not in fact) reducing its albedo and raising
the surface temperature. Allowing for conduction and convection, we may
then take the atmospheric temperature at ground level to be equal to the
observed globally-averaged surface temperature of ∼287 K.

6.4.2 The Temperature Profile

Figure 6.2a shows perhaps the simplest model of what might be the expected
temperature profile for Earth’s atmosphere as heated by the two sources dis-
cussed above. At the highest altitudes, the temperature is determined almost
entirely by the energy input from the Sun. As some fraction of this energy is
absorbed, less is available for heating at lower altitudes so the energy input
decreases with decreasing altitude. Earth’s reradiated infrared blackbody
radiation is the dominant heat source at low altitudes and this contribu-
tion decreases rapidly with increasing altitude.18 The resulting temperature
profile should be approximately proportional to the sum of these two en-
ergy inputs at each altitude and we therefore expect relatively high values

17σ may helpfully be remembered as the “5-6-7-8 constant” because σ = 5.67 ×
10−8 W/m2/K4 to three significant figures.

18Water vapor is the dominant absorber of Earth’s infared near the ground. It’s density
decreases with a scale height of ∼2 km which is much shorter than those for the dominant
consituents due to condensation and precipitation as the air temperature decreases with
increasing height. In addition to water vapor, CO2 and O3 near the surface also contribute
to infrared absorption.
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at the ground and at the highest altitudes with a minimum value falling at
intermediate altitudes.
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Figure 6.2: a) The expected temperature profile for Earth’s atmosphere based
on two energy sources: the Sun (heating from above) and the Earth (heating
from below); b) a typical temperature profile from the MSIS-E-90 model.

Figure 6.2b shows a typical atmospheric temperature profile over Day-
tona Beach, FL, obtained from the MSIS-E-90 atmospheric model.19 This
profile looks generally similar to the expected profile in that temperatures
are highest near the ground and at the highest altitudes with lower values
at intermediate altitudes. The local maximum near 50 km is however unex-
pected and indicates an additional local heating source at that level. As it
turns out, this local source is due to absorption of solar EUV by the ozone
layer. Ozone is an extremely efficient absorber of EUV photons, particu-
larily in the so-called Hartley bands near 260 nm. These wavelengths are
harzardous to life due to their mutating effects on DNA and their absorp-
tion above ground level is therefore of critical importance. Not considering
so-called smog ozone near ground level, ozone is naturally produced in the
atmosphere by photodissociation of O2 and recombination to form O3. An
equilibrium balance between this source and loss mechanisms catalyzed by
natural OH and NO and man-made chlorofluorocarbons results in an ozone
layer with peak densities near 25 km but with sufficient densities at higher

19Data from the MSIS-E-90 empirical model are available from: http://omniweb.gsfc.-
nasa.gov/vitmo/msis vitmo.html
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altitudes to result in the unexpected temperature enhancements shown in
Figure 6.2b.

The temperatures at the highest altitudes shown in Figure 6.2 vary sig-
nificantly in reponse to the flux of UV and higher energy photons incident
on the atmosphere. At times of very high solar activity, the limiting tem-
perature may reach 2000 K and may be as low as ∼450 K during very low
solar activity. We may then expect a strong correlation between the limiting
temperature and the solar cycle (see Exercise 6.6).

Figure 6.3 shows the same temperature profile as in Figure 6.2b but with
a logarithmic altitude scale that accentuates the rapid fluctuates in temper-
ature near the ground. Note that the sign of dT/dz changes several times
as altitude increases. For the first 12 km or so above the ground, the tem-
perature decreases with increasing altitude and this region is known as the
troposphere.20 The slope then changes sign and temperature increases with
increasing altitude throughout the stratosphere until the level near 50 km.
In the mesosphere the slope reverses sign and the temperature reaches its
minimum value near 100 km. Above this level, the temperature in the ther-
mosphere increases with altitude until reaching its limiting value near 750
K.

The naming scheme described above organizes the atmosphere into re-
gions based on whether the temperature increases or decreases with in-
creasing altitude. The boundaries between adjacent layers, indicated by the
horizontal lines in Figure 6.3, are denoted the tropopause, stratopause, and
mesopause.21

6.5 Atmospheric Composition

We saw in Table 6.1 that Earth’s atmosphere at ground level consists of
molecular nitrogen (∼78%) and oxygen (∼21%) with relatively small addi-
tions of argon and a number of other trace or highly variable constituents.
It is natural to wonder how this composition varies with altitude. Certainly,

20The vertical extent of the troposphere varies with latitude and season. Its mean
vertical extent is about 18 km at the equator and 8 km at the poles.

21In the general field of “space physics”, a boundary between two adjacent regions is
typically called a pause, with the addition of a prefix to identify the underlying layer.
Thus, the magnetopause is the boundary between the magnetosphere and interplanetary
space, the tropopause is the boundary between the troposphere and the stratosphere, etc.
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Figure 6.3: The same MSIS-E-90 temperature profile shown in Figure 6.2b
but with a logarithmic altitude scale. Atmospheric regions are identified as
classified by: the sign of dT/dz (near the center), and by composition (near
the left side of the plot).

as we have previously seen, the total number density decreases exponentially
with altitude at a rate set by the scale height, but here we wonder whether
or not, at higher altitudes, the relative concentrations remain the same as
at ground level. The answer is perhaps unexpected: it is at first “yes” and
then, above a certain altitude, becomes “no”.

Figure 6.4 shows MSIS-E-90 composition data from the same date, time
and location as in Figure 6.3. There are several points of interest to note
from this figure. The horizontal axis is logarithmic so the exponential falloff
in number density with altitude is clearly visible below ∼100 km. Above ∼80
km, atomic species begin to appear that did not exist at lower altitudes and
that are certainly not normally present at ground level. One may well wonder
why they suddenly appear in the middle atmosphere and why their relative
abundances do not correlate with those of associated (and the presumed
source) molecules. That is, given the dominance of N2 at almost all altitudes
shown here, why are the concentrations of both O and H orders of magnitude
higher than that of N?
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Figure 6.4: MSIS-E-90 number densities of the most dominant atmospheric
constituents up to 200 km altitude.

Either a short or any more complete discussion of these points leads
farther into topics of atmospheric chemistry than required for our purposes
here. Let us simply note that these atomic species are produced through
photodissociation by solar EUV of O2, N2, and H2O to yield O, N, and
H respectively. The bond energies involved are approximately 5.13 eV for
O2, 9.79 eV for N2 and 4.7 eV for H2O, requiring photodissocating EUV
photons of wavelengths less than 242 nm, 127 nm, and 260 nm respectively.
We may now appreciate the relative concentrations of these three atoms as
shown in Figure 6.4: the concentrations of O2 and N2 in the mesosphere and
lower thermosphere differ by less than an order of magnitude but require
solar EUV photons of vastly different energies to yield the associated atomic
species. In fact, in a typical solar spectrum, photon fluxes energetic enough
to dissociate O2 may be 104 times higher than those with energies sufficient
to dissociate N2. This difference in energies and EUV fluxes is the main
reason why densities of O are far higher than those of N and why N is never
a dominant constituent at any altitude even though N2 is the most dominant
constituent at lower altitudes.

Hydrogen densities fall in between the two extremes discussed above be-
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cause the required photon fluxes are relatively high in the upper atmsophere
but the densities of H2O, from which H is obtained, are very low. As it turns
out, O2, O, and N2 are efficient absorbers of photons in the 1-100 nm range
and essentially all solar photons within this range are absorbed above 80 km
and are not significantly present near the ground where concentrations of
H2O are highest.

Figure 6.5 again shows the previous MSIS-E-90 composition data but in a
format intended to more fully illustrate typical variations with altitude. The
horizontal axis shows relative number density (Ni/Ntotal) of a given species
where Ni is the number density of the ith species and Ntotal =

∑
iNi. Note

that below to about 100 km, the relative concentrations of N2, O2, and Ar
are apparently constant and equal to their ground level values, indicating
that all species are decaying at the same exponential rate set by a common
scale height as defined in Equation 6.4. This region below about 100 km is
therefore known as the homosphere because the relative concentrations here
do not vary with altitude. This density variation of different species with a
common scale height is perhaps a bit unexpected: if a gas composed of several
different species is left undisturbed, heavier species will “sink” beneath the
lighter ones and the density of each species will vary with a unique scale
height that depends on its mass. The absence of this gravitational separation
indicates that the homosphere is well mixed. Something is stirring the pot,
so to speak, fast enough that gravitational separation is not effective. This
issue of mixing in the lower atmosphere will be addressed in §6.6.

Figure 6.5 shows very different features above∼100 than in the underlying
homosphere. At these higher altitudes it appears that individual species may
(and in fact do) gravitationally separate and vary independently of each other
with a species-dependent scale height given by

Hi =
kT

mig
(6.6)

where the i subscript represents the ith species and it is assumed that all
species have the same temperature. As mi increases, the scale height de-
creases, meaning that the exponential falloff occurs over a shorter altitude
scale relative to less massive species. Thus, as expected, lighter elements
will “float” on top of the more massive ones. This region of the atmosphere
where gravitational separation leads to varying relative concentrations based
on the mass of individual species is known as the heterosphere. The boundary
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Figure 6.5: MSIS-E-90 relative number densities of the most dominant atmo-
spheric constituents up to 1000 km altitude. Atmopsheric regions classified
by composition are listed near the plot center.

between the well-mixed homosphere and the gravitationally-separating het-
erosphere is, as you may well expect, known as the homopause. This gravi-
ational separation leads to atomic oxygen being the dominant constituent
from ∼180-550 km, reaching a maximum relative number density of ∼90%.
At higher altitutdes, the lighter elements begin to dominate and He has the
highest relative concentration from ∼550-2500 km. At altitudes above 2500
km, H, the lightest element, dominates and is nearly fully ionized by solar
EUV. This uppermost region is sometimes known as the protonosphere.

6.6 Atmospheric Stability

6.6.1 Overview

We saw in the previous section that the neutral atmosphere is “well-mixed”
below the homopause at ∼100 km and not mixed (and therefore graviation-
ally separating) above this level. The difference between these two regimes
has to do with atmospheric stability. In essence, pacels of air are constantly
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being displaced vertically.22 In some regions, parcels of air that are displaced
upwards are more dense than the surrounding ambient atmosphere and con-
squently “sink” back toward their original altitude. These parcels do not
significantly contribute to vertical mixing. The atmopshere in these regions
is stable to vertical perturbations. In other regions, the upwardly displaced
parcels are less dense than the ambient atmosphere and continue to rise (or
“float” higher) in an unstable atmosphere and provide significant mixing be-
tween altitudes.23 We now turn out attention to what makes the atmosphere
stable or unstable at various altitudes.

Figure 6.6 is reproduced for convenience from Figure 6.3 and provides a
clue to the cause of atmospheric stability. Note in this figure that the ho-
mopause occurs at approximately the same altitude as the mesopause and
that above this altitude, temperature monotonically increases with altitude.
Below the homopause the temperature either increases or decreases (depend-
ing on the layer) with altitude. This obvious contrast suggests the explana-
tion for why the homosphere is well-mixed and the heterosphere is not may
be related to the variation in temperature with altitude.

To investigate the stability a little more quantatively, let us consider the
adiabatic expansion of an air parcel as it rises in altitude as a result of some
vertical perturbation. Two regimes need to be considered in turn: first, a
regime where the ambient temperature increases with increasing altitude (as
in the thermosphere) and then where it decreases with increasing altitude (as
in the tropsphere). In both regimes, the upwardly displaced parcel maintains
pressure balance with its surroundings24 so that

pd = pa

ndkTd = nakTa

nd =
Ta
Td
na

where the d and a subscripts refer to values of the displaced and ambient
values respectively.

In the first regime where temperature increases with altitude, Td must be
less than Ta because the parcel starts at a lower altitude (where temperatures

22By, for example, winds over mountain ranges or convection in thunderstorms.
23Analogous comments could be made for air parcels that are displaced downwards.
24That is, we assume the parcel is displaced at a speed lower than the sound speed but,

to maintain the adiabatic assumption, fast enough that no thermal energy is transferred
to or from the parcel.
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Figure 6.6: The same MSIS-E-90 temperature profile shown in Figure 6.2b
but with a logarithmic altitude scale. Atmospheric regions are identified as
classified by: the sign of dT/dz (near the center), and by composition (near
the left side of the plot). (Reproduced from Figure 6.3.)

are lower) and the parcel’s temperature decreases further as it adiabatically
expands. The parcel’s density is then

nd =
Ta
Td
na > na (6.7)

so that it “sinks” back toward its equilibrium position and is stable to vertical
perturbations. A similar agument for a parcel displaced vertically downward
shows that nd < na and the parcel “floats” back toward its equilibrium
position and is stable to vertical perturbations. In general,

regions of the atmosphere where temperature increases
with altitude (e.g., the thermosphere) are stable to verti-
cal perturbations. In consequence, these regions are not
generally well-mixed by atmosperic motions and tend to
gravitationally separate according to species-dependent
masses and temperatures.

In the second regime where temperature decreases with altitude, the sit-
uation is more complicated. As the displaced parcel rises, it will maintain
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pressure balance, adiabatically expand, and cool as before. Opposite from
the previous case however, the ambient temperature also decreases and it is
not now clear how Td will compare with Ta. From Equation 6.7, if Td < Ta,
the parcel will be stable to vertical perturbations as discussed above. If, on
the other hand, Td > Ta, the vertically displaced parcel will be less dense
than the ambient atmosphere, will “float” even higher, and will not return
to its equilibrium position. In this case, the parcel is unstable to vertical per-
turbations and, in consequence, the region will be well-mixed by atmospheric
motions and will not gravitationally separate according to species-dependent
masses and temperatures.

In regions of the atmosphere where temperature de-
creases with altitude (e.g., the troposphere), atmospheric
stability is determined by the rate of ambient tempera-
ture decreases with altitude relative to the rate of adia-
batic temperature decrease with altitude.

The rate of adiabatic temperature decrease with altitude is known as the
adiabatic lapse rate. This important quantity is discussed below.

6.6.2 Adiabatic Lapse Rate

The25 first law of thermodynamics is a statement of energy conservation. It
can be stated as: the change in a system’s internal energy26 equals the heat27

added minus the work accomplished by the system.28 Rearranging terms as

25First, a note on notation for this section. The thermodynamic variable p is always
shown in lowercase. Quantities given as per unit mass are shown as lowercase. For example,
a system’s heat capacity at constant volume is Cv whereas the specific heat at constant
volume is cv ≡ Cv/M where M is the system mass. The subscript m is used to indicate
a molar quantity (that is, a quantity per unit mole of the substance). The molar specific
heat per at constant volume is then cv,m ≡ Cv/M/Nm where Nm is the number of moles
in the system.

26That is, the total energy of a system with a stationary center of mass.
27“Heat” is energy transferred between thermodynamic systems by kinetic interaction.
28In mechanics, the “work” term in energy conservations laws is usually written as the

work done on the system. For whatever reason, it is more common in thermodynamics
to deal with the work done by the system. One is of course the negative of the other and
this accounts for the “minus the work accomplished by the system” term in the first law
of thermodynamics. Consistency with mechanics would suggest that “plus the work done
on the system” is a more reasonable expression. However, the accompanying change of
sign would be a pesky thing until one got used to it.
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convenient, the first law of thermodynamics is

dQ = dU + p dV

where dQ is the heat added, dU is the change in internal energy and p dV is
the work accomplished by the system. For an ideal gas, the internal energy
is an explicit function of temperature alone so that dU =

(
∂U
∂T

)
V
dT ≡ CvdT

where Cv is the heat capacity at constant volume and

dQ = CvdT + p dV.

Dividing this expression by the number of moles in the system, Nm, and the
system mass M , we obtain

dqm = cv,mdT +
p

M
dVm (6.8)

where cv,m is the molar specific heat at constant volume and Vm is the molar
volume given by Vm = V/Nm.

Equation 6.8 can yield the adiabatic lapse rate by assuming an adiabatic
process (dqm = 0), an equation of state (the ideal gas law) and an expression
for the variation in pressure with altitude (the hydrostatic equation). The
approach taken below is essentially to relate variations in molar volume to
variations in pressure using the ideal gas law and finally to variations in
altitude using the hydrostatic equation. The first law of thermodynamics
can then be used to evaluate the adiabatic variation in temperature with
altitude.

For an ideal gas,
pV = (nV )kT = NmRT (6.9)

where R = 8.31441 J/mol/K is the universal molar gas constant. Dividing
this expression by the number of moles Nm in the system and expanding the
differentials yields

p dVm + Vmdp = RdT.

Setting dqm = 0 (the adiabatic condition) in Equation 6.8 and substituting
the result for p dVm into the previous expression gives

Mcv,mdT +RdT − Vmdp = 0

or
Cv,mdT +RdT − Vmdp = 0.
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Now, Mayer’s relation states that R = Cp,m−Cv,m for an ideal gas29 so that

Cv,mdT + (Cp,m − Cv,m) dT − Vmdp = 0

Cp,mdT − Vmdp = 0.

Substituting the hydrostatic relation from Equation 6.1 for dp and rearrang-
ing, we find that

Γd = −dT
dz

=
g

cp
(6.10)

where Γd is the dry air adiabatic lapse rate, the rate at which temperature
falls with increasing altitude for a adiabatically rising parcel of dry air in
an exponential atmosphere. This last result is obtained using the relation
cp = NmCp,m/M .

The molar heat capacity of dry air at constant pressure is approximately
given by cp = 1003.5 J/kg/K so that Γd ≈ 9.8 K/km. That is, a parcel of
dry air lifted vertically in Earth’s atmosphere will adiabatically cool at the
rate of ∼9.8 K/km.

If the ambient air temperature is falling at a rate lower than Γd ≈ 9.8
K/km (or increasing) with increasing altitude, the displaced parcel
will be cooler and more dense than the ambient air and the parcel
is stable to perturbations as discussed above.30 The parcel will be
unstable to vertical perturbations in the opposite condition, in which
case it will continue to rise.

29Note that cp,m > cv,p. Energy added at constant volume is entirely used to increase
the internal energy (because no work is done on or by the gas when the volume is constant).
However, when heat is added at constant pressure, some of the added energy is used to
increase the volume (doing work) and only the remainder is available to increase the
internal energy (and therefore the temperature). Thus it takes more energy transferred
as heat to raise the temperature at constant pressure than at constant volume. Mayer’s
relation formalizes this and evaluates the difference for an ideal gas. It is most simply
derived under isobaric assumptions for which the first law of thermodynamics becomes

dU = dQ− pdV
CvdT = CpdT − pdV
CvdT = CpdT −NmRdT.

Mayer’s relation follows by solving for the universal gas constant R.
30Recall the pressure balance argument: pd = pa (by assumption) so that Td < Ta

results in nd > na and the displaced parcel is stable. The case of reversed inequalities
leads to the displaced parcel being unstable to perturbations.
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Tropospheric air that is saturated with water adiabatically cools at a rate
significantly lower than Γd due to the release of latent heat of condensation as
the air rises.31 This, in effect, makes warm, moist air more unstable to verical
perturbations and is an important consideration in, as just one example, the
formation of thunderstorms.

The tropsphere and mesosphere, where temperatures decrease with alti-
tude, are at least marginally unstable. Vertical perturbations from a wide
variety of sources32 contribute to keeping these layers well-mixed so the rel-
ative concentrations of species remain constant with altitude. The thermo-
sphere, where temperature increases with altitude, is absolutely stable and
not well-mixed, leading to gravitational separation and a resulting diffusive
equilibrium. The stratosphere is sandwiched between the troposphere and
the mesosphere and, as its positive temperature gradient would indicate, is
stable to vertical perturbations and horizontally stratified.33 It is also well-
mixed as Figure 6.5 clearly indicates and, in light of its stability, this is
perhaps a bit unexpected. The stratosphere is mixed from the combined
actions of several effects including, for example, global circulation of the at-
mosphere and turbulent eddies. Gravitational separation is not effective in
the stratosphere due to its high number density (and the resulting high rate
of collisions which impede any tendency toward gravitational separation)
and the small mass differences among the dominant constituents (which are
mainly molecular nitrogen and oxygen).

6.7 Summary

To be written.

31Γ for saturated air at ground level is approximately half the value of Γd although an
exact treatment is beyond the scope of this development.

32These sources include, but are not limied to: convection and turbulence in the trop-
sphere due to conductive heating of ground-level air, and to the effects of breaking gravity
waves in the mesosphere.

33Thus its name.
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Exercises
6.1: In footnote 8, it was asserted that atmospheric pressure at sea

level is the weight per unit area of a column of air extending from sea level
to the top of the atmosphere. Use the hydrostatic equation to show that the
following generalization of that statement is true: The atmospheric pressure
at any altitude is the weight per unit area of the overlying column of air.

6.2: Show that the scale height at ground level is ∼8 km.
6.3: Show that the total mass of Earth’s atmosphere is ∼ 5× 1018 kg.

(Hint: Begin with atmospheric pressure at ground level and calculate the
weight of the overlying air.)

6.4: Plot the magnitude of acceleration due to gravity, g, from ground
level up to an altitude of 1000 km. Comment on what seems important about
its variation with altitude.

6.5: Evalute Equation 6.5 to verify the stated value of TE = 255 K.
6.6: Use the MSIS-E-90 Atmosphere Model to illustrate the variation

in the atmosphere’s limiting temperature with F10.7. (Note that F10.7 is
a common index measuring the noise level generated by the Sun at a wave-
length of 10.7 cm at Earth’s orbit. It is strongly correlated with the sunspot
number and the solar cycle.)

6.7: Verify the wavelengths given in §6.5 required to photodissociate
O2, N2, and H2O.

6.8: Demonstrate the equivalence pV = (nV )kT = NmRT used in
Equation 6.9.

6.9: Complete the steps required to obtain Equation 6.10.
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Chapter 7

Earth’s Ionosphere

In Chapter 6 on the neutral atmosphere, we encountered various layers clas-
sified according to physically significant properties. For example, variations
in the temperature profile gave rise to the labels troposphere, stratosphere,
mesosphere and thermosphere. Variations in composition, on the other hand,
gave rise to the labels homosphere and heterosphere. Layers named according
to differing physical properties may overlap and we found, for example, that
the troposphere, stratosphere and mesosphere occupy the same range of alti-
tudes as does the homosphere. In this chapter we introduce and consider new
atmospheric layers classified according to the density of free electrons. These
layers constitute Earth’s ionosphere, the partially ionized plasma region that
coexists with the neutral atmosphere.

7.1 Introduction

The discovery of Earth’s ionosphere has its roots in the history of radio
and it was, in fact, an experiment conducted by Guglielmo Marconi in 1901
that prompted widespread interest in its possible existence. Marconi was
able to demonstrate that longer than line-of-sight radio transmissions were
possible.1 The explanation of this unexpected observation came in 1902

1It would be difficult in our modern world of wireless communication to overstate the
importance of this experimental result. Marconi is sometimes represented as an amateur
tinkerer. He had no formal college or university education but if that makes him an
amateur, he was brilliant one. This monumental experiment occurred during December,
1901 and resulted in the letter ‘S’ being transmitted, via Morse Code, from a station
in Cornwall, England to a receiving station in Signal Hill, Newfoundland. The story of
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independently from Arthur Kennelly and Oliver Heaviside who suggested
that a conducting layer above the Earth would reflect transmitted signals
back to ground level, allowing for the achieved propagation distances. The
proposed layer was named the “Kennelly-Heaviside layer” and more direct
evidence for its existence was obtained in 1925 by Edward Appleton and
Miles Barnett using instruments very similar to what are today known as
ionosondes. Over time, the Kennelly-Heaviside layer became known simply
as the ionosphere.2 Appleton was later awarded a Nobel prize for his work
in the field.3

7.2 Static Electron Density Profile

There are two necessary ingredients for a planet to have an ionosphere:

1. something to ionize (i.e., a neutral atmosphere)

2. something to do the ionizing (e.g., solar EUV radiation)

and of course Earth satisfies these requirements. An assumed equilibrium
between the sources and losses of ionization at each altitude then determines
the vertical structure of the resulting ionosphere. This vertical structure is
in fact not static but rather is continually changing in response to differing
conditions that alter the sources and losses of ionization. Despite these vari-
ations, we can consider the two requirements above as they apply to Earth
and make an educated guess as to what form the vertical structure of the
ionosphere should take.

7.2.1 A Qualitative Argument

Figure 7.1 shows the general dependence with altitude of the neutral atmo-
spheric density and the intensity of solar EUV radiation. The neutral density

Marconi and this expiment is well documented and worth reading.
2This evolution of the name should be expected. In space physics, the usual geometry

of things leads us to call most things a (insert prefix here)sphere.
3Edward V. Appleton was awarded the 1947 Nobel Prize in Physics “for his investiga-

tions of the physics of the upper atmosphere especially for the discovery of the so-called
Appleton layer.” In the modern nomenclature presented below, the Kennelly-Heaviside
layer is known as the E-region and the Appleton layer is known as the F -region of Earth’s
ionosphere.
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is highest at ground level and generally decays exponentially. The intensity
of EUV is highest at the highest altitudes and decreases with decreasing
altitude as an ever-increasing fraction of the incident EUV is absorbed by
the exponentially increasing atmosphere. If the ionosphere is formed by solar
EUV ionizing the neutral atmosphere,4 it would be reasonable to expect that

the ionization profile should be approximately propor-
tional to the product of the atmsopheric density and the
solar EUV intensity.

Increasing Values of Quantity               

A
lt
it
u
d
e

 

 

Atmospheric Density

Solar EUV Intensity

Figure 7.1: Representative vertical
profiles of atmosphereic density and
solar EUV intensity.
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Figure 7.2: Representative vertical
profiles of atmospheric density, solar
EUV intensity and ionization.

Figure 7.2 shows this product and reveals several interesting features that
are generally true of the ionosphere. Note that:

1. At low altitudes, no ionization is expected due to the low intensity of
the ionizing solar EUV. (There is nothing to do the ionizing.)

2. At the highest altitudes, no ionization is expected due to the low neutral
atmospheric density. (There is nothing to ionize.)

3. At intermediate altitudes the ionization reaches a maximum, increasing
sharply from below and decaying relatively slowly as altitude increases
from the peak.

4We will see below that solar EUV is a primary (but certainly not the only) contributor
to the ionization of our neutral atmosphere.
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The International Reference Ionosphere (IRI) is an empirical standard
model of the ionosphere compiled from a wide variety of available data
sources.5 The model will output, among many other useful things, ionization
profiles for any date, latitude, and longitude. For comparison with the pro-
file shown above, Figure 7.3 shows an ionospheric profile from the IRI above
Daytona Beach, FL.6 This profile is similar to the one shown in Figure 7.2
and suggests that our general considerations were correct.
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Figure 7.3: Typical IRI model output of the electron density profile above
Daytona Beach, FL.

There are two ways to obtain more detailed knowledge of the ionospheric
profile: theory and experiment. The IRI model is empirical and we will
return to it and other experimental observations for more insights, but let us
first turn to theory.

5The IRI model is sponsored by the Committee on Space Research (COSPAR)
and the International Union of Radio Science (URSI) and is freely avail-
able through the web at: http://modelweb.gsfc.nasa.gov/ionos/iri.html or
http://modelweb.gsfc.nasa.gov/models/iri.html.

6The geographic latitude of Daytona Beach, FL is 29.2◦N and so this location serves
as a representative mid-latitude site.
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7.2.2 The Chapman α−Layer

Sydney Chapman was one of the most accomplished physicists of the 20th

century. This highly accomplished and excellent man published more than
450 scientific papers and served as Advisory Scientific Director of the Geo-
physical Institute in Fairbanks, AK from 1951-1970, during which time he
maintained a dual appointment at the National Center for Atmospheric Re-
search (NCAR) in Boulder, CO where he spent the bulk of each year. Dr.
Chapman’s contributions spanned the fields of kinetic theory of gasses, mete-
orology, geomagnetism, and ionospheric physics. His derivation of the iono-
spheric profile is classic. Given below is a derivation based on Rishbeth and
Garriott [1969, pp.89-94] of the so-called Chapman α−layer.

The Chapman α−layer is a steady-state model of the ionospheric elec-
tron density profile obtained by balancing, as a function of altitude and solar
zenith angle, the production rate of photoelectrons with losses due to re-
combination. We will assume that photoelectrons are produced at a given
altitude by incoming solar EUV and that recombination at the same alti-
tude is proportional to the product of electron and ion densities. Taking the
constant of proportionality to be α, the Chapman α−layer results.

The derivation begins with a number of simplifying assumptions. It is as-
sumed that a single wavelength of solar EUV is responsible for any ionization,
that the atmosphere consists of a single species of gas, that the atmosphere is
plane, horizontally stratified, and that the scale height is constant. While it
is of course true that none of these assumptions are strictly valid, the derived
result is useful and interesting nonetheless.

Figure 7.4 shows the coordinate system we will use in the derivation.
Altitude h is measured, as always, from the ground up, χ is the solar zenith
angle (the angle between the local vertical and the Sun), and s is distance
measured along the direction of solar EUV propagation. The intensity of
solar EUV at the top of the atmosphere is denonted as I∞.

As the radiation penetrates the neutral atmosphere, some of it is absorbed
and the intensity varies according to Beer’s law7: dI

ds
= −Iσn where σ is the

absorption cross-section and n is the neutral number density. That is, the
decrease in intensity with distance along the path is proportional to the num-
ber of neutral particles per unit volume and the cross-section (the effective

7Beer’s law is also known as the Beer-Lambert law, the Lambert-Beer law, or the Beer-
Lambert-Bougeur law. Apparently the law was discovered by Pierre Bouguer (1698-1758)
before 1729.
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I∞

s

χ

h

Figure 7.4: The coordinate system used to derive the Chapman α-layer.

absorbing area) of each neutral. If we define an “ionization efficiency” η to
be the number of photoelectrons produced per unit energy absorbed in this
way, it is clear that the rate of ionization is given by8

q = −ηdI
ds

= ηIσn (7.1)

which yields the number of electrons freed per unit volume per unit time. As
one would expect, this rate is proportional to the energy absorbed. We will
assume that η is constant.

The following bit of notation will prove useful. For an element ds of the
path of radiation, let us define an increment of optical depth as dτ = −dI

I
=

σnds. Integrating this equation from the top of the atmosphere to the point
of unit optical depth gives: ∫ I

I∞

dI ′

I ′
= −

∫ τ

0

dτ ′

which yields
I = I∞e

−τ . (7.2)

Thus,

8As a sure sign that we have run out of letters, the q in the following equation is the
ionization rate and is not a particle’s electric charge.
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for every unit of optical depth travelled along the path
s, the intensity decreases by a factor of e.

Remember that our goal is to derive the steady-state electron density
profile. To do so, we must evaluate the production function q, balance it
with losses due to recombination and evaluate the result as a function of
altitude. Presently, we know that the production function depends on the
derivative of intensity which varies with optical depth. So let us obtain an
expression for the optical depth as a function of altitude. Certainly

τ(s) =

∫ s

0

σn ds

but we require τ(h), not τ(s). The change of variable is accomplished by
relating altitude (h) to the ionizing radiation’s path (s). From the geometry
of Figure 7.4, we have dh = − cosχds so that ds = − secχdh and

τ(h, χ) = −
∫ h

∞
σn secχdh = σ secχ

∫ ∞
h

n dh.

This integral can be simplified. Assuming a constant scale height, we have
n(h) = n0e

− h
H so that∫ ∞

h

n dh =

∫ ∞
h

n0e
− h
H dh = n0He

− h
H = n(h)H.

This interesting result reveals that if the neutral atmosphere above a certain
altitude h were to be compressed to the same pressure or density as that
present at h, the thickness of the resulting layer would be exactly one scale
height H. Combining this result with our previous expression for τ(h, χ)
gives

τ(h, χ) = σn(h)H secχ. (7.3)

We are now in a position to evaluate the production function q as function
of altitude and solar zenith angle.

q = ηIσn = ηI∞e
−τ(h,χ)σn0e

h
H = ηI∞σn(h)e−τ(h,χ). (7.4)

Knowing the production function, we can determine the location in the iono-
sphere where it takes it maximum value. That is, we can determine the
location where the most photoelectrons are produced per second per unit
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volume. To do this, we must take the derivative of q with respect to some
spatial variable and, since dI

ds
is already known from Beer’s law, let us find

the maximum of q in terms of the path s. From Equation 7.4, q maximizes
where

dq

ds
=
d (ησIn)

ds
= ησ

(
n
dI

ds
+ I

dn

ds

)
m

= 0

where the m subscript indicates that the given quantity is to be evaluated at
the peak of q. The terms in parentheses summing to zero, we can separate
variables and evaluate each individually:

1

n

dn

ds
=

1

n

dn

dh

dh

ds
=

1

n

(−n0

H
e−

h
H

)
(− cosχ) =

cosχ

H

and Beer’s law gives
1

I

dI

ds
= −σnm.

Summing these two terms to zero and rearranging yields an important
insight that we will make use of several times:

σnmH secχ = τ(sm, χ) = 1. (7.5)

That is, assuming the scale height H is constant, the production of photo-
electrons is maximized at “optical depth unity” where I

I∞
= 1

e
or where the

intensity of solar EUV is ≈ 1
3

of its value at the top of the atmosphere.
Let us use this insight to find the maximum production rate when the Sun

is directly overhead (χ = 0). Affixing the subscript 0 to indicate a quantity
for which χ = 0, we have from Equation 7.4

qm0 = I∞ησnme
−τ(sm,0) =

I∞τ(sm, 0)

H
e−τ(sm,0)

but τ(sm, χ) = 1 so that

qm0 =
ηI∞
eH

.

Using Equation 7.5 and a bit of algebra, the normalized production rate
at all heights and solar zenith angles can be expressed as

q

qm0

=
I

I∞

ne

nm0

=
I

I∞
e

1−(h−hm0 )
H .
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If we define zH to be the “reduced height” and again make use of Equation
7.5 to realize that

I

I∞
= e−τ = e

−nσHnm0 secχ

nm0 = ee
−z secχ

then we find that the production function is given by

q(z, χ) = qm0e
1−z−e−z secχ. (7.6)

Figure 7.5a shows a plot of this production function, normalized by qm0 ,
as a function of reduced height. Note that, as should be expected, the pro-
duction of photoelectrons maximizes for χ = 0 (i.e., when the Sun is directly
overhead) and that, as the Sun sets, the maximum production rate of pho-
toelectrons both decreases in magnitude and shifts to higher altitudes. We
will return to this point after balancing this source of photoelectrons with
the losses to determine the steady-state electron density profile.
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Figure 7.5: Chapman α-layer production function and electron density as a
function of altitude and solar zenith angle.

The only loss mechanism we will consider is recombination whereby an
electron and ion recombine to yield a neutral. This loss rate should be
proportional to the product of the ion and electron densities. Taking the
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rate constant to be α and enforcing neutrality gives the loss rate L = αn2
e

where ne is the electron density. In equilibrium, the rate of photoelectron
production will equal the rate of loss so that q = L = αn2

e. Substituting the
result from Equation 7.6 and solving for ne gives the electron density profile
as

ne(z, χ) = nem0
e

1
2(1−z−e−z secχ) (7.7)

which is the Chapman α−layer.
Figure 7.5b shows plots of this layer as a function of solar zenith angle

and altitude. Note that the electron density profile displays the same trends
with solar zenith angle as were observed with the production function:

as the Sun sets and the solar zenith angle increases, the
ionosphere decays and lifts.

This decaying and lifting are both due to the fact that, as the Sun sets, the
incoming EUV passes through more of the atmosphere at higher altitudes
(thus, lifting) and the condition of unity optical depth where the production
is maximized is reached at higher altitudes where the density of neutrals
available to ionize is lower (thus, decaying).

This simple theory of the Chapman α−layer is useful for the insights it
provides but, as it turns out, is too simple to predict many of the ionosphere’s
observed features. Complications that break each of Chapman’s assumptions
are more or less important at different altitudes and, as a result, the iono-
sphere rarely closely resembles an actual Chapman layer. Let us therefore
turn to observations for further insights.

7.3 Ionospheric Layers

Notice again Figure 7.3 (p. 162) that shows a typical electron density profile
above Daytona Beach, FL obtained from the IRI model and note two things
in particular. First, the electron density in the ionosphere apparently varies
by more than five orders of magnitude. Second, while the large peak at
approximately 300 km is the most obvious feature, there is a slight hint of a
smaller peak near 100 km. These items suggest that the linear scale used to
plot Figure 7.3 may be concealing interesting structure and that a logarithmic
scale might be more revealing.

Figure 7.6 shows the same electron density profile as Figure 7.3 but, in this
case, the horizontal axis is logarithmic. We do in fact see more structure in
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this figure and, in a manner similar to what was used to identify atmospheric
layers classified according to the neutral temperature profile, we identify and
name three ionospheric regions (or layers):

1. The D−region is the lowest-lying ionospheric layer and
exits from about 50-90 km.

2. The E−region spans ∼90-140 km and peaks near 110 km.

3. The F−region begins near 140 km and extends upwards
in altitude until it merges with the magnetosphere.

As seen in Figure 7.6, there is no real peak to the D−region and it appears
as a mere “shoulder” on the E−region that lies above it. The F−region
is broken into two subregions: the F1−region and the F2−region with the
F1−region appearing as a shoulder on the above-lying F2−region.
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Figure 7.6: Typical IRI model output of the electron density profile above
Daytona Beach, FL. The logarithmic scale reveals several ionospheric layers.
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Given the prediction from Chapman theory of a single ionospheric layer,
we may well ask why there are these several ionospheric layers rather than
a single one. The answer is essentially that nature is more complicated than
Chapman theory and its several simplifying assumptions. Indeed, nature is
so complicated that an entire course (or lifetime!) could be dedicated to the
physics involved in the generation of the several layers. Here we will give
a brief overview of the variations that are observed in the layers and of the
physical processes responsible for their formations. We do this first for the
quiet-time9 ionosphere and then for the disturbed ionosphere.

7.4 Variations in The Quiet-Time Ionosphere

There are many sources and sinks of ionization in the quiet-time ionosphere
and all of them vary with location on Earth. It should then not be suprising
that the quiet-time ionosphere exhibits many systematic variations. This
section will introduce several of the most important or dominant, which
include diurnal, latitudinal, seasonal, and solar cycle variations, and will
introduce some important chemical and transport processes.

Diurnal Variations

Figure 7.7 shows IRI electron density profiles over Daytona Beach at local
midnight and noon on March 15, 2002 and Figure 7.8 shows the maximum
electron densities in the E− and F−regions for each hour on the same day.
Several important features can be noted:

1. Ionospheric electron densities are much higher during the day than
during the night (Figures 7.7 and 7.8).

2. While the F−region decays relatively slowly after sunset at approxi-
mately 1900 LT, the E−region decays much more rapidly and has a
larger fractional change (Figure 7.8).

3. While the D−region is not observed at midnight, both the E− and
F−regions are clearly present throughout the night (Figure 7.7).

9By quiet-time, we mean during average conditions in the absence of any enhanced
solar, magnetospheric, or auroral activity.
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4. Both the E− and the F−regions reappear suddenly at sunrise at ap-
proximately 0500 LT (Figure 7.8).

5. The F1−region, while present at noon as a shoulder below the F2−region,
has disappeared by midnight (Figure 7.7).

6. The altitude of the F−region maximum is somewhat lower in altitude
at noon compared to its altitude at midnight (Figure 7.7).
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Figure 7.7: IRI electron density profiles above Daytona Beach, FL at local
noon and midnight on March 15, 2002.

The first and last of these items are consistent with Chapman theory from
which we learned that, as the Sun sets and the solar zenith angle increases,
the ionosphere both decays and lifts. Item number four suggests that solar
EUV is a dominant daytime source of ionization but item number 3 suggests
that there may be other sources active at night. In fact there are a great
number of ionoziation sources active during both daytime and nighttime and
Table 7.1 lists the most dominant.
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Figure 7.8: The maximum electron densities in the E− and F−regions versus
local time on March 15, 2002 (from IRI).

Region Day Night

Solar Ly-α (1216Å) Scattered Ly-α (Geocorona)
D Galactic X-rays (1-10Å)

Glactic cosmic rays Galactic cosmic rays

Solar Ly-β (1027Å) Scattered Ly-β (Geocorona)
Solar Ly-α (1216Å) Scattered Ly-α (Geocorona)

E Solar EUV (911-1027Å)
Galactic X-rays (10-170Å)

Solar He+ (304Å), He (584Å) Scattered He (Geocorona)
F Solar EUV (170-911Å) Conjugate photoelectrons

Table 7.1: Dominant day and nigh quiet-time ionospheric ionization sources.
The sources are listed in decreasing order of dominance.

With the single exception of conjugate photoelectrons, each of the listed
sources ionizes neutral constituents and produces a photoelectron. As we
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have mentioned before, an equilibrium balance between the sources and losses
due primarily to recombination results in the electron density profile. Speak-
ing generally, we can say that differences in ionization sources, atmospheric
constituents, densities, and chemistry account for the formation of the dif-
ferent ionospheric layers.

Ionization in the quiet-time ionosphere is generally accomplished through
photoionization, the process whereby a photon (EUV, X-ray, gamma ray, etc)
imparts enough energy to an atom or molecule to free an electron. Photoion-
ization processes have the general form

X + hν(λ < 100nm)→ X+ + e−

where X is a neutral atom or molecule. This reaction indicates than a photon
with sufficient energy may ionize the neutral, resulting in an ion and a free
electron.

Once the ion and free electron have been created, a variety of chemical
processes take place that determine, in the end, which ion species are the
most numerous. The most important of these chemical processes are charge
exchanges wherein colliding neutral and ionized species exchange charge, pos-
sibly dissociating in the process. Examples of charge exchange reactions are

N+
2 +O2 → N2 +O+

2 (non− dissociative)

and
O+ +N2 → NO+ +N (dissociative).

Given the variety of atomic and molecular species present in Earth’s at-
mosphere, the student should not be suprised to read that many dozens of
possible reactions could be identified and that each of the reactions are more
or less likely to occur as quantified by an associated reaction rate.

The dominant loss mechanism in the ionosphere is recombination that
generally takes two forms:

1. Radiative recombination wherein an ion and electron combine to yield
a neutral and a photon.

2. Dissociative recombination wherein a molecular ion and an electron
combine to yield two (possibly excited) neutral consitutents.

For example,
NO+ + e− → N +O.
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As it turns out, typical reaction rates for dissociative recombination reactions
are very much larger than those for radiative recombination reactions. Thus,
loss mechanisms are much more efficient in the lower ionosphere (D−region)
where there are significant molecular densities than in the F−region that is
dominated by less massive atomic species. It is this difference in loss mech-
anisms that is principally responsible for the F−region existing throughout
the night while the D−region essentially disappears at sunset.

Figure 7.9 shows the principle charged constituents in the IRI ionosphere
over Daytona Beach on March 15, 2002. Note that ion densities in the lower
parts of the ionosphere are dominated by heavy molecular species while the
F−region is dominated by lighter atomic species. As altitude continues to
increase, lighter atoms become more predominant until, above approximately
1000 km, ionized hydrogen is the principle ion. The ionosphere above ap-
proximately 1000 km is therefore often referred to as the protonosphere.
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Figure 7.9: IRI ions and electron densities over Daytona Beach, FL on March
15, 2002.
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The goecorona and conjugate photoelectron sources listed in Table 7.1
deserve more explanation. Geocorona is the “glow” of scattered light (mainly
solar far ultraviolet) that surrounds Earth to a distance of at least 15RE.10

Some of this scattered light reaches Earth’s nightside where it can serve as an
ionization source. Conjugate photoelectrons arrive due to the tilt of Earth’s
magnetic field and the high conductivity along a magnetic field line. As
illustrated in Figure 7.10, photoelectrons produced in the sunlit hemisphere
can easily travel along a field line where they contribute to the electron
density in the nighttime hemisphere.

Figure 7.10: An illustration showing how photoelectrons produced in the
sunlit hemisphere appear in the nighttime hemisphere as conjugate photo-
electrons. The tilt of Earth’s magnetic field is exaggerated for effect.

Latitudinal Variations

There is at least one reason to suspect variations in ionospheric electron
density with latitude: on a given day at a given local time, the solar zenith
angle varies with latitude. Thus we expect a dominant effect to be that
electron densities will be highest at latitudes where the Sun is overhead at

10A quick web search will result in many impressive pictures of the geocorona.
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noon. For example, at the equinoxes, the Sun is overhead at noon on the
equator and it is there that we expect to find the highest noon-time electron
densities. Equinoctal electron densities at noon should generally decrease
with increasing distance from the equator.

Figure 7.11 shows the maximum IRI F−region electron densities on March
15, 2002 as a function of geomagnetic latitude. The general effect mentioned
above is clearly evident with electron densities generally increasing towards
the equator. But there are two major departures from this general trend.
First, notice the equatorial anomaly which is a decrease in the electron density
at the magnetic equator and an apparent increase on either side extending
to about ∼ ±20◦ magnetic latitude. Second, a mid-latitude trough appears
at night as a region of depressed electron density centered at just under 60◦

magnetic latitude.
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Figure 7.11: The noon and midnight maximum F−region electron densities
versus geomagnetic latitude on March 15, 2002 (from IRI).

The equatorial anomaly results from the so-called fountain effect that es-
sentially acts to eject F−region ionization from the magnetic equator and
deposit it at ∼ ±20◦ magnetic latitude. A detailed explanation of the foun-
tain effect is beyond the scope of this text but it may be noted here that it
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is due to the E × B drift of equatorial plasma where the electric field is an
F−region eastward-directed field11 and the magnetic field is the horizontal,
northward-pointing equatorial geomagnetic field. Figure 7.12 illustrates the
resulting drift. Once the ionization has been ejected, it settles along mag-
netic field lines to approximately ±20◦ magnetic latitude under the influence
of gravity and pressure gradient forces.

To Sun
20  N

o 20  S
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Plasma
Settling

Plasma

B

E

Figure 7.12: The equatorial anomaly and plasma fountain.

A mid-latitude trough is commonly observed on the nightside at subauro-
ral latitudes on magnetic field lines mapping to the plasmapause that marks
the boundary between the plasmasphere and the plasmasheet. It is due to
stagnation of convection in the high-latitude ionosphere (disucssed in §7.9).
This convection provides a source of ionization to the high-latitude nightside
ionosphere but does not extend to plasmaspheric latitudes. The termina-
tion of of this additional nightside ionization source results in a decrease (or
trough) in electron density.

11This electric field results from collisional coupling of atmospheric winds with the
E−region plasma. A short and not-very-precise explanation is as follows: High solar heat-
ing at the equator tends to drive −∇p winds away from the equator. These north/south
winds drag the local E−region plasma with them that, given the northern- and southern-
hemisphere magnetic field geometry, result in an eastward-directed electric field (from
Equation 3.5). This electric field maps up in altitude along the nearly equipotential mag-
netic field lines where a eastward F−region electric field acts with the local geomagnetic
field to result in an upward E×B drift.
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Solar Cycle Variations

As we have seen in Chapter 3, solar activity varies on an 11-year cycle. While
the sunspot number may be the most familiar parameter that varies over the
cycle, many other quantities vary as well. In particular, the flux of ionizing
X-rays and EUV vary in concert with the sunspot number. As a result,
Earth’s ionospheric densities also vary with the solar cycle and both daytime
and nighttime electron densities tend to be higher during solar max than
during solar min. Figure 7.13 shows the sunspot number12 and maximum IRI
ionospheric F−region electron densities (nmF) over Daytona Beach for the
past three solar cycles. The high degree of correlation is obvious. Although
the maximum D− and E−region densities are not shown in this figure, they
are also correlated with sunspot number although the magnitude of their
relative fluctuations are less than for the F−layer.
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Figure 7.13: Average monthly sunspot numbers (bottom panel) and max-
imum IRI F−region electron densities (top panel) for the past three solar
cycles.

12From: http://www.ngdc.noaa.gov/stp/SOLAR/ftpsunspotnumber.html#international
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Figure 7.14 shows IRI electron density profiles over Daytona Beach at
noon and midnight during solar max (March 15, 2002) and solar min (March
15, 2008) conditions. Note that the maximum F−region electron densities at
solar max are increased by nearly a factor of 10 over their values at solar min.
In fact, for some altitudes the midnight solar max electron densities in the
F−region exceed those at noon during solar min! It can also be seen in this
plot that, as was mentioned in the previous paragraph, relative variations in
the D− and E− regions over the solar cycle are much less significant.
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Figure 7.14: IRI electron density profiles over Daytona Beach, FL at noon
and midnight during solar max (March 15, 2002) and solar min (March 15,
2008) conditions.

Another feature in the electron density data shown in Figure 7.13 can be
detected by the discerning eye. Superposed on the solar-cycle variation is a
seasonal variation in nmF known as the seasonal anomaly wherein electron
densities are higher in the winter than in the summer.13 Main causes of
this anomaly are related to seasonal variations in the neutral atmsopheric
chemical composition and temperature. As the chemical composition varies

13By a factor of 2 or so.



182 CHAPTER 7. EARTH’S IONOSPHERE

with season and as reaction rates vary with temperature, the ionospheric
density varies in response.

7.5 Vertical Sounding of the Ionosphere

Instruments known as ionosondes and the data they produce are nearly ubiq-
uitous in ionospheric studies and it is no exaggeration to say that they have
contributed significantly to a large fraction of our understanding of iono-
spheric structure and variability. In their most basic form, ionosondes are
essentially radars that transmit short-duration pulses over a broad range of
frequencies and measure the time delay required for each pulse to return to
the instrument. These time delays are then processed to obtain a profile of
the ionospheric electron density.

Before discussing this instrument and the data it produces, it will be
helpful to introduce a major result from magnetoionic theory, the theory
that describes how electromagnetic waves propagate through a magnetized
plasma. This result is the index of refraction for a wave of frequency ω.
Let us first review and introduce some new notation and terminology. The
electron plasma frequency given in Equation 2.12 defines an unmagnetized
plasma’s natural oscillation frequency when perturbed from equilibrium and
the electron gyrofrequency given by ωce = eB

me
defines the frequency with

which an electron gyrates around a magnetic field line. If we then let the
electron/neutral collision frequency be νen, we may define the following di-
mensionless quantities:

1. X =
ω2
pe

ω2

2. Y = ωce
ω

3. Z = νen
w

where ω is the electromagnetic wave frequency.

The reasons for making these definitions is that the index of refraction we
require is a complicated expression and these definitions are used to simplify
its appearance somewhat. First obtained by E. V. Appleton and known
as the Appleton-Hartree dispersion relation, the index of refraction of an
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electromagnetic wave in a magnetized plasma is

n2 = (µ− iχ)2 = 1− X

1− iZ −
(

Y 2
T

2(1−X−iZ)

)
±
(

Y 4
T

4(1−X−iZ)2
+ Y 2

L

) 1
2

(7.8)

where µ and χ14 are the real and imaginary parts of n, respectively, YL =
Y cos θ, YT = Y sin θ, θ is the angle between the wave normal and the mag-
netic field and the ± allows for different wave polarizations. For perpen-
dicular propagation (that is, for propagation in a direction perpendicular to
the magnetic field), the ‘+’ sign represents the ordinary mode in which the
polarization is linear and along the magnetic field and the ‘-’ sign represents
the extraordinary mode in which the polarization is linear and perpendic-
ular to the magnetic field. For parallel propagation, the ‘+’ and ‘-’ signs
refer to left- and right-hand circularly polarized signals, respectively. The
ordinary mode is so-named because waves with this polarization propagate
through the plasma as if it were unmagnetized since electrons are acceler-
ated along the magnetic field and are therefore unaffected by its presence. In
the extraordinary mode, however, electrons are accelerated in the direction
perpendicular to the magnetic field and are therefore affected by both the
electric and magnetic terms in the Lorentz force equation.

Equation 7.8 is complex, complicated and unwieldy and we seek simplifi-
cations to aid in our understanding of wave propagation through a plasma.
Ignoring electron/neutral collisions (by setting Z = 0) and any effects due to
the magnetic field (by setting Y = 0), we obtain a much simplified result:

µ2 = 1−X = 1−
(ωpe
ω

)2

(7.9)

and χ = =(n) = 0 where =(n) deontes the imaginary part of n.
There are several points of interest here. First, note that µ2 is always less

than 1 and must be real for the wave to propagate. Since the phase speed vp
is given by vp = c/<(n) = c/µ where c is the speed of light in a vacuum, we
find that the phase speed of an electromagnetic wave in a plasma is always
greater than c. This is not a violation of special relativity since information
does not travel at the phase speed but at the group speed vg that, for the

14Here we are using standard notation that is often, and unfortunately, redundant. It
should be carefully noted that µ and χ, when used in this context, bear no relation to the
magnetic moment, first adiabatic invariant or the solar zenith angle.
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cases we will treat, is given by vg = <(n)c = µc. We see then that vg is
always less than c. Next, note that µ in this approximation depends only on
the ratio of the plasma frequency to the wave frequency. That is, the index
of refraction depends only on the wave frequency and the plasma’s electron
density. Third, note that µ can be real or imaginary. For ω > ωpe, µ is real
and the wave propagates undamped through the plasma, but if ω < ωpe, µ
is imaginary. Under these conditions, the wave is evanescent, its amplitude
decreases exponentially and the wave packet will be reflected.

Let us now consider the propagation of an electromagnetic wave pulse
launched from a transmitter (specifically, an ionosonde) vertically into the
ionosphere. The ionosphere does not extend to ground level where the
ionosonde is located, so below the ionosphere we have ne = 0 and, given
Equation 7.9, µ = 1. The wave’s phase and group speeds equal the speed
of light in vacuum. As the pulse enters the bottomside of the ionosphere
and the electron density begins to increase, ωpe increases and both µ and the
group speed decrease - the wave pulse slows down. As the wave continues to
propagate upward into the increasingly more dense plasma of the ionosphere,
the pulse will continue to slow down as µ decreases and one of two possi-
bilities will eventually result. On one hand, the pulse may eventually reach
an altitude where ω = ωpe at which the group speed goes to zero. At this
point the wave becomes evanescent and the pulse will be reflected. The trip
down will be the revese of the trip up in that the group speed will increase as
the wave descends into regions of lower electron density until it finally exits
the bottomside of the ionosphere from where it will propagate at speed c to
the ionosonde for reception. On the other hand, the wave frequency may be
higher than the maximum value of ωpe in the ionosphere in which case the
group speed will never equal zero and wave pulse will not be reflected but
will penetrate the ionosphere and be lost.

Given this understanding, a few points may be noted. First, it is clear
that if we could measure the time between the launch of a pulse at some
frequency ω and its return, we could obtain a measure of the altitude at
which ω = ωpe. Second, transmissions at increasingly higher frequencies
will penetrate increasingly farther into the ionosphere (and thus take longer
to return) until the frequency matches the maximum ionospheric plasma
frequency. All higher frequencies will penetrate the ionosphere and will not
return. There will be no reflections from the topside15 of the ionosphere.

15The term topside refers to altitudes above the peak of the F-region.
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Last, sweeping the wave frequency and measuring the time-of-flight for each
pulse would then provide a profile of ωpe and from it, a profile of ne as a
function of altitude.

Figure 7.15 illustrates this basic operating principle of the ionosonde.
This figure shows the same IRI data as Figure 7.6 but the horizontal axis
includes both the electron density and the corresponding electron plasma
frequency fpe = ωpe/2π. Ionosonde transmissions at varying frequencies are
indicated as either reflecting from altitudes where the wave frequency equals
the plasma frequency or as penetrating the ionosphere for wave frequencies
greater than the maximum plasma frequency.
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Figure 7.15: An ionospheric profile plotted as functions of electron density
and electron plasma frequency. Ionosonde transmissions at frequencies that
both reflect and penetrate the ionosphere are shown.

Suppose the time delay between transmission and reception of each trans-
mitted ionosonde pulse shown in Figure 7.15 was measured. The virtual
height of each corresponding reflection point can then be defined as half the
distance travelled at speed c during the delay (since the pulse is travelling
vertically upward during only half of the delay). These virtual heights can
then be plotted as a function of transmitted frequency to obtain a so-called
ionogram. Figure 7.16 shows a simulated ionogram obtained by ray-tracing
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an ordinary mode signal into the same IRI density profile shown in Figure
7.15. In essence, the ray-tracing code evaluates the integral

∆t = 2

∫ hr

0

dh

vg(h)

to obatain the delay time and virtual height of the reflection point for each
transmitted frequency where, in the above expression, ∆t is the time delay
between transmission and reception and hr is the reflection altitude.
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Figure 7.16: A simulated ionogram obtained by ray-tracing an ordinary mode
wave into a model ionosphere.

Notice that the virtial heights are all higher than the actual reflection
altitudes (or true heights) that occur where ω = ωpe or, equivalently, where
f = fpe. The reason for this is that the pulse does not travel at c as assumed
in the calculation of virtial height but rather at the group speed that is always
less than c in the ionosphere. Thus, the true heights will always be less than
the virtual heights. While it is a relatively straightforward task to create a
simulated ionogram from an ionospheric electron density profile, in practice
the reverse operation must be performed: Ionsondes obtain ionograms from
which the true height ionospheric profile must be obtained. This process
of obtaining ionospheric profiles from virtual height ionograms is known as
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inverting an ionogram and can be achieved by evaluating for each transmitted
frequency the true height given by

htrue =
1

2

∫ ∆t

0

vgdt =
1

2

∫ ∆t

0

n(t)cdt.

Ionogram iversion is routinely performed by software in real-time and reduces
the virtual heights to the true heights that represent the ionospheric profile.

One other feature of the simulated ionogram shown in Figure 7.16 de-
serves discussion at this point. At frequencies corresponding to the E− and
F−region peaks, the ionogram displays vertical asymptotes in the virtual
heights. These asymptotes appear due to the presence of local maxima in
electron density (and thus in plasma frequency) at those altitudes. Trans-
missions at frequencies equal to the local maximum must travel through a
range of altitudes just below the peak where the plasma frequency is very
close to, but just less than, the transmitted frequency. Thus, over that range
of altitudes the index of refraction and group speed will be very small and
the pulse will take a very long time to reach the reflection altitude. The
corresponding virtual height will asympotically approach infinity.

There are a large number of ionosondes (perhaps many dozens) operat-
ing around the word for the purpose of obtaining ionospheric profiles and
monitoring ionospheric conditions and variability and many of the produced
ionograms are available in on-line databases. Such databases make avail-
able a wealth of information that can be used to diagnose and understand
ionospheric contitions.

7.6 The Disturbed Ionosphere

We discussed in §7.4 several systematic vaiations in ionospheric parameters
with latitude, local time, season and solar cycle. In addition to these vari-
ations, the ionosphere also responds to conditions in the Earth and space
environments that vary on much shorter time scales. As a single example
among a great many possibilities, the arrival at Earth of a solar flare may sud-
denly and dramatically alter the structure of the ionosphere and so we now
turn our attention to the disturbed ionosphere. That is, we will investigate
and consider the consequences of several important departures from quiet-
time conditions. We will begin at the lowest altitudes (in the D−region) and
proceed upward to the E− and F−regions.
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7.6.1 D−region absorption and PCA Events

Broadly categorized, radiowaves are that portion of the electromagnetic spec-
trum from 3 kHz to 300 GHz and transmissions at these frequencies are often
used for communications. Indeed, the GPS, AM, FM, television, aviation and
marine bands all lie within the radio band and any ionospheric impacts on
these transmission are of significant technological importance.

In our ionosonde discussion, the Appleton-Hartree dispersion relation was
introduced and we may recall that the index of refraction of an electromag-
netic wave propagating through a plasma such as the ionosphere depends on
three quantities, each relative to the wave frequency: the electron plasma fre-
quency ratio X, the electron gyrofrequency ratio Y , and the electron/neutral
collision frequency ratio Z. To simplify the full expression, we assumed there
was no magnetic field so that Y = 0 and no collisions so that Z = 0. Let us
now consider the effect of the collisional term Z that, as can be seen from
Equation 7.8, makes the index of refraction n complex.

Suppose the wave (specifically the radiowave) under consideration is a
plane wave with with an electric field amplitude given by E = Eme

i(ωt−kz)

where k is the wavevector. Now,

k =
2π

λ
= 2π

f

v
= n

ω

c

so that if n is real (Z = 0) we have

E = Eme
i(ωt−µω

c
z)

and the wave propagates with an undamped amplitude. However, if n is
complex (Z 6= 0) then

E = Eme
i(ωt− (µ−iχ)ω

c
z) = Eme

−χω
c
zei(ωt−

µω
c
z)

and the wave propagates with the same speed and amplitude as before but
its amplitude is damped exponentially. To gain physical insight into the rea-
son for this damping, consider the result of a collision between a neutral and
an electron or ion that has been accelerated by the wave’s electric field. In
accelerating the charged particle, the wave has done work and transferred
some of its energy to it. If the charged particle then suffers a collision with
a neutral, at least some of this energy will be immediately lost or, at best,
transferred to the neutral. In either case, the energy will not be transferred
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back to the wave and it therefore suffers damping. We see then that ra-
diowaves propagating through the ionospheric plasma that is embedded in
the neutral atmosphere will suffer damping to an extent dependent on the
number density of charged and neutral particles.

Neutral densities in the D−region are several orders of magnitude higher
than at the peak of the E−region and many order of magnitude higher than
in the F−region. We should therefore expect that a significant amount of
D−region ionization would lead to radiowave absorption, and indeed it does.
Viewed in this light, we realize it is quite convenient that the D−region
normally has very low electron densities. Tyically, there are very few elec-
trons in the D−region to be accelerated and to loose their energy through
electron/neutral collisions. This is, however, not always the case. Auroral
substorms or solar storms such as flares and coronal mass ejections may tem-
porarily elevate D−region charged particle densities to several times their
normal levels and during such events, radiowave propagation is very signifi-
cantly degraded.

At the onset of an auroral substorm, large numbers of electrons precipi-
tate into the lower ionosphere and radiowave absorption increases in response.
Figure 7.17 shows approximately one hour of radiowave data16 collected by
a broadband ground-based radio receiver stationed at Arviat in northern
Canada’s Nunavut Territory. In this figure, radiowave intensity is plotted as
a function of frequency and time with darker pixels indicating higher inten-
tities. Many shortwave fixed-frequency transmissions are clearly visible as is
the AM broadcast band from ∼ 500 − 1600 kHz. On this day, an auroral
substorm occured at about 0652 UT, and the intensity of radiowaves over
much of the plot is greatly diminished due to ionospheric absorption. This
absorption is most evident in the near disappearance of the AM broadcast
band. It is interesting and the subject of much research that the substorm
onset was accompanied by the generation of auroral radio waves (in addition
to visible auroral emissions), three examples of which can be seen here. Au-
roral roar occurs at ∼ 3000 kHz, begins before onset and continues through
the expansion phase. MF burst and auroral hiss are the broadband emissions
first visible at substorm onset.

More dramatic and long-lasting than auroral absorption, Polar Cap Ab-
sorption (PCA) events result when intense solar flares produce large fluxes
of energetic protons ( 10 MeV) that are guided by Earth’s geomagnetic field

16Courtesy of Dr. J. LaBelle, Dartmouth College
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Figure 7.17: Intensity of radiowave signals received at Arviat, Nunavut on
April 24, 1995.

lines directly into the polar cap. These highly energetic protons penetrate to
D−region altitudes and the associated increases in ionization and radiowave
absorption last for hours or even days. These dramatic events are detected
with, among other instruments, riomenters (discussed below), ionosondes
(which show an absence of reflected signals during the event) and radio re-
ceiers.

Figure 7.18 shows radiowave data17 recorded during a 22-day period dur-
ing which two solar flares occured. The top panel shows radiowave intensity
in the same format as Figure 7.17 where the blank (white) intervals represent
times during which the receiver was turned off for housekeeping. The bottom
panel shows the radiowave intensity integrated over the band relative to the
maximum value observed during the period. The times of two solar flares are
indicated and the resultant PCA with its decrease in radiowave intensity is
obvious and dramatic, reaching a minimum value of more than 30 dB below
pre-event levels. This unusually long-lasting PCA event lasted for nearly 2
weeks and, at it height, increased radiowave absorption by more than a factor
of 1000.

It is a true saying that “One man’s noise is another man’s signal” and
here we may change the wording a bit to read, “One instrument’s absorption

17Courtesy of Dr. J. LaBelle, Dartmouth College
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Figure 7.18: Intensity of radiowave signals received at Arviat, Nunavut over
a 22 day period containing two solar flares and an intense PCA event. The
top panel shows the broadband spectrum and the bottom panel shows the
radiowave power integrated over the band relative to the maximum value
observed during the period.

is another instrument’s signal.” Relative Ionospheric Opacity meters, or ri-
ometers are essentially very sensitive ground-based radio receivers tuned to
a portion of the radio band (typically near 30-40 MHz) unused by man but
populated with broadband signals from stellar and galactic sources. The in-
tensity of these signals is known very precisely and variations from expected
levels can be attributed to absorption by the intervening ionosphere. Riome-
ter data are central to a great number of space environment studies and can
reveal, for example, times and loations where energetic charged particles are
precipitating into the lower ionosphere.

7.6.2 Sporadic-E

Phenomena known as sporadic-E, or Es for short, are observed on ionograms
as E−layer echoes that extend to higher frequencies than usual. They are
thus layers of higher than usual E − layer charge densities and both rocket
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and radar observations reveal that they can be very thin, sometimes perhaps
less than a kilometer thick. There are actually many different phenomena
that, in the end, are classified as sporadic-E and there are accordingly many
different causes for the effect. In this section, we will introduce three causes
for Es, one each for low, middle, and high latitudes.

Es is very common at low latitudes during daytime hours when it can
be present more than 90% of the time near the geomagnetic equator. A
principle cause of low latitude Es is instabilities in the equatorial electrojet
but a detailed discussion of this point is beyond the scope of this text. The
interested reader is referred to Kelley [1989, pp.154ff] for more information.

At middle latitudes, the combined effects of a continuous flux of meteoric
metallic ions into the ionosphere and wind shears driven by gravity waves and
tides result in Es that occurs near 110 km in altitude and is most prevalent in
summer during the daytime. To understand how the meteoric ions becomes
concentrated into Es, consider their response to a gravity wave or tide with a
wavelength such that a strong zonal shear in the wind field is produced. The
meteoric ions, which tend to drift with the wind field, will be subjected to a
force F = q(U×B) where U is the wind velocity and B is the geomagnetic
field. At certain altitudes, this force will tend to make the ions converge
from above and below, increasing the charge density. E−region electrons,
on the other hand, are strongly tied to the geomagnetic field lines due to
their higher gyrofrequencies and do not respond significantly to the wind
shear. The electrons will, however, move up or down a field line into regions
of higher ion density so that charge neutrality is approximately maintained.
Thus, in regions of high wind shear, significant increases in plasma density
are possible.

At high latitudes, prepipitation of auroral electrons with energies in the
range of 1-10 keV also leads to the production of Es. In this case, a precipitat-
ing high-energy electron may ionize many neutral atmospheric constituents
along its path before its energy is low enough to produce the excitation re-
sponsible for visible emissions. Thus, precipitating electrons can produce a
flood of ionization over a range of altitudes and result in either thin or thick
layers of Es. Auroral Es tends to occur, as one would expect, during the
nighttime hours and is correlated with geomagnetic activity.
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7.6.3 Spread-F

7.7 TEC

7.8 Currents and Conductivities in the Iono-

sphere

7.8.1 Qualitative Introduction

In an ordinary electric circuit consisting of, for example, a voltage source,
some lengths of wire, capacitors, resistors, and other circuit elements, molecular-
scale collisions between charge carriers (electrons) and the bulk material im-
pede the flow of current and result in resistance. Except when thinking of
actual resistors, we are typically conditioned to think badly of these collisions
as they add resistance to otherwise ideal circuit elements. Simply put, in an
ordinary electric circuit, it would be ideal if there were no unintended colli-
sions between electrons and the bulk material as current is flowing through
a circuit.

As we will see in this section, we must disabuse ourselves of this condition-
ing if we are to appreciate the processes by which the ionosphere supports the
flows of its many important currents. In the ionosphere, collisions between
current-carriers (electrons and ions) and the “bulk material” (the neutral at-
mosphere) are, perhaps surprisingly, often absolutely essential to its ability
to conduct current. The reason for this is tied to the forces that drive those
currents. Electric and magnetic fields are the dominant current drivers in the
ionospheric plasma, far outweighing the influence of, for example, pressure
gradient and gravitational forces. To glimpse the importance of collisions
to ionospheric conductivity, let us first consider the ionosphere’s response to
these current drivers in the absence of collisions.

The ionosphere is embedded in Earth’s magnetic field and, when acted
upon by only this magnetic field and an electric field, we recall from §2.2.2
that all charged particles (electrons and ions) will drift at the E×B velocity
in the same direction at the same speed. Thus, an applied electric field will
produce no current if the E ×B drift is the only effect. In order to drive a
current, it must somehow be arranged that electrons and ions do not drift
together at the same speed in the same direction. As it will turn out, this
arrangement can be effected by electron/neutral and ion/neutral collisions.
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Before deriving the ionospheric conductivity and discussing the altitudes
over which the ionosphere can most readily support the flow of current, let
us consider qualitatively the physics behind the process. As our system, we
will take crossed electric and magnetic fields embedded in the ionospheric
plasma and the neutral atmosphere. The electric and magnetic fields will
accelerate the charged particles and the neutral atmosphere will produce
collisions between charged and neutral particles.

Recall that electrons and ions E × B drifing in the absence of collisions
are executing two superposed motions: gyration around magnetic field lines
and drift of the “guiding center” at the E × B velocity. For a charged
particle starting from rest, the E × B drift takes effect in two stages: first
the electric force acts to accelerate the particle in the direction of qE and
then the full Lorentz force causes gyration and drift in the E×B direction.
The introduction of collisions with neutrals at a frequency νc complicates this
process and we consider two extremes. First, νc may be much smaller than
the gyrofrequency. That is, a charged particle may execute many gyrations
between collisions. In this case we expect the particle’s average motion to
be in the same direction as the E × B drift, but perhaps at a somewhat
lower speed due to the impeding collisions. Second, νc may be larger than
the gyrofrequency. That is, there may be several or many collisions during a
gyroperiod. In this case, if we assume the charged particle is brought to rest
after each collision, we see that the particle will spend more time moving in
the direction of qE than gyrating since its velocity is often zero.

It seems clear then that the ratio ωc/νc where ωc is the gyrofrequency will
play an important role in determining the direction a charged particle moves
in response to an applied electric field. If ωc/νc >> 1, we expect the particle
to generally move in the E × B direction but if ωc/νc << 1 we expect it
to move in the direction of qE. Gyrofrequencies vary relatively little in the
ionosphere but the collision frequency varies over many orders of magnitude
since it is essentially proportional to the neutral density and we will find
that each of the two extremes (and, of course, intermdediate values) hold for
electrons and/or ions over some range of altitudes.

Our job at this point is twofold. First, we must develop Ohm’s law for a
magnetized plasma18. Second, we will examine the ionosphere’s conductivity

18While we are perhaps most used to thinking of Ohm’s law as V = IR, a relation
between voltage and current, physicists often use the form j = σ̃ ·E where j is the current
density and σ̃ is the conductivity tensor. See §3.6.1 for an introduction to Ohm’s law.
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profile to determine at which altitudes currents may be expected to flow.
The first job will be done using the momentum equation and the second will
be done by incorporating observational data.

A general momentum equation accounting for electric and magnetic fields
and collisions between charged particles of species s and neutrals is

ms
dvs
dt

= qs (E + vs ×B)−msνc (vs − u) (7.10)

where the last term quantifies the momentum loss per second due to collisions
of the charged particle with a neutral moving with velocity u.

7.8.2 Conductivity of an Unmagnetized Plasma

As a starting point, we first consider electron current under a number of
simplifying assumptions: the electrons are in steady state (so that dve

dt
= 0),

B = 0, both the ions and neutrals are stationary (u = 0) and Coulomb
collisions are ignored. Equation 7.10 then reduces to

E = −meνe
e

ve (7.11)

where νe is the electron/neutral collision frequency and we wish to use this
relation to obtain Ohm’s law. Since, in this case, there is no magnetic field,
all charged particles will move in the direction of qE and Ohm’s law will be
given by j = σE or, alternatively, by E = ηj where η = 1/σ is the resistivity
and σ is the conductivity.

The electron current density is

je = −eneve

and we obtain Ohm’s law for electrons by solving Equation 7.11 for the
electron velocity and substituting into the above relation to obtain

je =
nee

2

meνe
E = σE. (7.12)

Ions, of course, also contribute to the current and, since there are typically
several ion species in the ionosphere (see, for example, Figure 7.9) their
contribution must be summed over species. This can be done by applying
Equation 7.10 to each species, solving for the velocity and substituting the
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result into Ohm’s law. Adding the current density contributions from each
species (electrons and ions) results in the total current density

j =
∑
s

qsnsvs = je +
∑
i

ji =

(
nee

2

meνe
+
∑
i

nie
2

miνi

)
E = σ0E

where σ0 is the unmagnetized conductivity and mi and νi are the ion mass
and collision frequency, respectively.

Note that the conductivity

σ0 =
nee

2

meνe
+
∑
i

nie
2

miνi
=
ε0ω

2
pe

νe
+
∑
i

ε0ω
2
pi

νi
(7.13)

is generally dominated by the electron term since the more massive ions con-
tribute very little to the current due to their comparatively small velocities.
A useful approximation is then

σ0 ≈ σ0e =
nee

2

meνe
=
ε0ω

2
pe

νe
. (7.14)

The conductivity of an unmagnetized plasma varies as we might expect with
electron density and collision frequency. For a fixed electric field, the con-
ductivity and thus the current density decreases with increasing collision
frequency and increases with increasing electron density. As in the case of
an ordinary circuit with current flowing through wires, collisions in an un-
magnetized plasma impede the motion of the current-carriers and decrease
the conductivity. Space plasmas are, however, generally magnetized and to
obtain the conductivity in this case, we must use the full Lorentz force in the
momentum equation.

7.8.3 Conductivity of a Magnetized Plasma

As with the previous case, we begin by assuming the electrons are moving in
steady state so that dve

dt
= 0, that both the ions are neutrals are stationary,

and that there are no Coulomb collisions. Equation 7.10 then reduces to

E + ve ×B = −meνe
e

ve (7.15)

which must be solved for velocity to obtain the electron current density and
the conductivity in Ohm’s law. In this magnetized case, it is convenient at
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first to adopt a coordinate system aligned with the magnetic field so that
B = Bẑ and separately solve for each component of velocity and current
density in Ohm’s law.

The field-aligned component of Equation 7.15 is

Ez + vex�
��

0
By − vey��>

0
Bx = −meνe

e
vez

and can be directly solved for the parallel component of velocity and substi-
tuted into the z-component of Ohm’s law to find that

jez = σ‖eEz

where the parallel conductivity σ‖e is given by

σ‖e =
nee

2

meνe
=
ε0ω

2
pe

νe

and is identical under our assumptions to the electron conductivity of an
unmagnetized plasma. This is to be expected since, if the electric field has
a component Ez along the direction of the magnetic field, the motion of
charged particles in that direction is not at all affected by the magnetic field.
Charged particles flow along the magnetic field as accelerated by the parallel
component of E and impeded only by collisions. Including ion motion as in
the unmagnetized case results in

jz = σ‖Ez (7.16)

where σ‖ is identical to σ0 given by Equation 7.13. The parallel current in
a magnetized plasma is driven by the parallel component of the electric field
with conductivity σ‖ = σ0 ≈ σ0e .

The x−component of Equation 7.10 is

Ex + veyBz − vez���
0

By = −meνe
e

vex

that, following the procedure we have used in the previous cases, can be
solved for the velocity to find that

vex = − e

meνe
Ex −

eBz

meνe
vey
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and

jex = −enevex =
e2ne
meνe

Ex +
eBz

meνe
enevey .

Using σ‖e = nee2

meνe
and ωce = eB

me
this relation can be rewritten as

jex = σ‖eEx −
ωce
νe
jey (7.17)

and in the very same way the y−component of the current is

jey = σ‖eEy +
ωce
νe
jex . (7.18)

Notice that the current in one of the perpendicular directions (x or y)
depends on the current in the other perpendicular direction. The current
densities are coupled and since we wish to express the current je as a con-
ductivity multiplied by the E, it must be that the conductivity is a tensor
so that j = σ̃ ·E. To see this, let us decouple Equations 7.17 and 7.18 in the
usual way of solving two equations for two unknowns. Substituting Equation
7.18 into Equation 7.17 and solving for jex and then jey yields

jex =
ν2
e

ν2
e + ω2

ce

σ‖eEx −
νeωce

ν2
e + ω2

ce

σ‖eEy

and

jey =
ν2
e

ν2
e + ω2

ce

σ‖eEy +
νeωce

ν2
e + ω2

ce

σ‖eEx.

If we now make the definitions

σPe =
ν2
e

ν2
e + ω2

ce

σ‖e and σHe =
νeωce

ν2
e + ω2

ce

σ‖e

the current densities become

jex = σPeEx − σHeEy and jey = σHeEx + σPeEy

where σPe and σHe are the Pedersen and Hall electron conductivites, respec-
tively, associated with the Pedersen and Hall electron currents. The electron
current density is then je = σ̃e · E where

σ̃e =

 σPe −σHe 0
σHe σPe 0
0 0 σ‖e

 .
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To gain insight into the current and these conductivities, let us consider
the magnitude and direction of current that flows in response to electric
fields directed along each of the three axes. First, let us take E = Eẑ
which is parallel to the magnetic field. In this case, the current je = σ̃e ·
Eẑ = σ‖eEẑ is along the magnetic field and has a magnitude determined
by the electron parallel conductivity. If E = Ex̂ then je = σPeEx̂ + σHeEŷ
and has components along E with a magnitude determined by the Pedersen
conductivity (thus, the Pedersen current) and perpendicular to E with a
magnitude determined by the Hall conductivity (thus, the Hall current).
Note that the Pedersen current is parallel to E but perpendicular to B while
the Hall current is perpendicular to both E and B. Finally, if E = Eŷ, the
electron current is je = −σHeEx̂+σPeEŷ and we again see that the Pedersen
current is parallel to E but perpendicular to B while the Hall current is
perpendicular to both E and B.

In this derivation we have assumed the ions are stationary and we have
therefore ignored their contribution to the current density. This contribution
can be included to find the total current density j = je + ji by performing
the same algebra as above but with ions instead of electrons to obtain

jix =
∑
i

(
ν2
i

ν2
i + ω2

ci

σ‖iEx −
νiωci

ν2
i + ω2

ci

σ‖iEy

)

and

jiy =
∑
i

(
ν2
i

ν2
i + ω2

ci

σ‖iEy +
νiωci

ν2
i + ω2

ci

σ‖iEx

)

where, as before, the summation is over ion species so that

jx = jex + jix

=

(
ν2
e

ν2
e + ω2

ce

σ‖e +
∑
i

ν2
i

ν2
i + ω2

ci

σ‖i

)
Ex −(

νeωce
ν2
e + ω2

ce

σ‖e +
∑
i

νiωci
ν2
i + ω2

ci

σ‖i

)
Ey
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and

jy = jey + jiy

=

(
ν2
e

ν2
e + ω2

ce

σ‖e +
∑
i

ν2
i

ν2
i + ω2

ci

σ‖i

)
Ey +(

νeωce
ν2
e + ω2

ce

σ‖e +
νiωci

ν2
i + ω2

ci

σ‖i

)
Ex.

Defining Pedersen and Hall conductivities as

σP =
ν2
e

ν2
e + ω2

ce

σ‖e +
∑
i

ν2
i

ν2
i + ω2

ci

σ‖i (7.19)

and
σH =

νeωce
ν2
e + ω2

ce

σ‖e −
∑
i

νiωci
ν2
i + ω2

ci

σ‖i (7.20)

the total current density may be written as

j = σ̃ · E (7.21)

where the conductivity tensor of a magnetized plasma is

σ̃ =

 σP −σH 0
σH σP 0
0 0 σ‖

 . (7.22)

As with the electron currents, the Pedersen conductivity is associated with
the Pedersen current that flows in a direction parallel to E but perpendicular
to B and the Hall conductivity is accosicated with the Hall current that flows
in a direction perpendicular to both E and B.

Given this understanding of the parallel, Pedersen and Hall conductivities
and currents, we can easily generalize Equation 7.21 for an arbitrary magnetic
field B not necessarily aligned with the z−axis. The result is

j = σ‖E‖ + σPE⊥ − σH
E⊥ ×B

B

where E‖ is the component of E along B given by E‖ = (E · B)B/B2 and
E⊥ is the component of E perpendicular to B given by E⊥ = E × B/B.
Parallel currents flow along the direction of E‖, Pedersen currents flow along
the direction of E⊥ and Hall currents flow along the direction of −E⊥ ×B.
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7.8.4 Ionospheric Conductivity Profile

Let us now investigate the altitude ranges in Earth’s ionosphere over which
these currents may be expected to flow. To do this, notice first that the
Pedersen and Hall conductivities are proportional to the parallel conductiv-
ity that is a function of electron density, electron and ion masses, and the
collision frequencies. Figure 7.19 shows the contributions to the Pedersen
and Hall conductivities from a single species (either an electrons or an ion
species) normalized by the corresponding parallel conductivity. The hori-
zontal axis shows the ratio of the gyrofrequency to the collision frequency
so that for ωc/νc >> 1 the particle experiences many gyrations per collision
while for ωc/νc << 1 the particle experiences many collisions per gyration.
In agreement with our initial qualitative discussion, we see that when there
are many gyrations per collision, the Hall conductivity dominates so that the
current flows in the qE×B direction while the Pedersen conductivity dom-
inates when the particle experiences many collisions per gyration, in which
case the current flows in the direction of E⊥.
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Figure 7.19: Pedersen and Hall conductivities of a single species relative to
the corresponding parallel conductivity.

To obtain conductivity profiles, we must first determine the cyclotron,
plasma and collision frequency profiles. Electron and ion cyclotron profiles
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can be obtained for a species s using ωcs = |qs|B/ms where qs is the species
charge (assumed to be equal to the electron charge for both ions and elec-
trons), B is the magnitude of the geomagnetic field that can be obtained
from the DGRF/IGRF magnetic field model, and ms is the species mass.
For ions, ms can be taken to be the average ion mass obtained from the IRI
model. Plasma frequency profiles can be obtained in a similar way. The
collision frequencies are more complicated.

The ion collision frequency is the frequency with which ions collide with
neutrals and this, as derived by Chapman [1956] is given by

νi = νin = (2.6× 10−9(nn + ni)A
−1/2 s−1

where nn and ni are the neutral and ion densities per cubic centimeter and A
is the mean molecular weight of the neutrals and ions. Following Kelley [1989,
p.460], we take these two weights to be equal to the mean molecular weight
and obtain the values from the MSIS atmospheric model. Coulomb collisions
between ions and electrons are not included in this expression for νi since
they impart a neglibible change to the massive ion’s momentum. Coulomb
collisions do, however, significantly alter the electron’s momentum and their
effect must be included in the electron collision frequency that becomes νe =
νen + νei. Where νen is the electron/neutral collision frequency and νei is
the Coulomb collision frequency. Electron/neutral collisions will dominate
at lower altitudes where the neutral density is lowest and electron density
is highest but Coulomb collision will make a significant contribution in the
F−region where neutral densities are relativily low and electron densities are
relatively high. Nicolet [1953] gives the collision frequencies as

νe = νen + νei = (5.4× 10−10)nnT
1/2
e + [34 + 4.18 ln(T 3

e /ne)]neT
−3/2
e s−1

where Te is the electron temperature which can be obtained from the IRI
model.

With profiles of the plasma, gyro, and colision frequencies in hand, the
parallel, Pedersen and Hall conductivities given in Equations 7.13, 7.19 and
7.20 can be determined. Figure 7.20a) shows the electron and ion gyro and
collision frequency profiles obtained using the MSIS, IRI and DGRF/IGRF
models for March 15, 2002 at 00UT. Note that three distinct regions roughly
corresponding to the D−, E− and F−regions may be identified as deliniated
by the two horizontal lines. The lower horizontal line indicates the altitude



7.8. CURRENTS AND CONDUCTIVITIES IN THE IONOSPHERE 203

for which the electron cyclotron frequency equals the electron collision fre-
quency and the upper horizontal line indicates the altitude for which the ion
cyclotron frequency equals the ion collision frequency.

In region 1 below about 90 km (roughly corresponding to the D−region),
the electron and ion collision frequencies both exceed the corresponding gy-
rofrequencies and we expect all conductivities in this region to be low due to
the combined effect of the high collision frequencies and low D−region elec-
tron densities. In region 1, there are not many charged particles available to
carry current and the motion of the these particles is severely impeded by
collisions.

In region 3 (roughly corresponding to the F−region), the neutral density
is low enough that both the electron and ion collision frequencies are smaller
than the respective gyrofrequencies and both electrons and ions gyrate many
times between collisions. We therefore expect that the Hall conductivity will
be low in this region since both electrons and ions will be predominantly E×B
drifting together. The parallel conductivity in region 3 is expected to be large
since electron and ion densities are highest in the F−region (i.e., there are
many charged particles to carry current) and the collision frequencies are low
due to the small neutral densities. Any perpendicular currents in this region
should be Pedersen currents carried by ions since ωci/νi << ωce/νe here.
That is, since the ions gyrate fewer times per collision than do electrons,
the ion contribution to the Pedersen conductivity should exceed the electron
contribution.

In region 2 (roughly corresponding to the E−region, the electron cy-
clotron frequency exceeds the collision frequency and we therfore expect that
electrons will predominantly move in the direction of E×B and significantly
contribute to the Hall conductivity. Ions on the other hand, suffer many
collisions per gyration in this region since the collision frequency exceeds the
gyrofrequency and we expect that they will contribute negligibly to the Hall
but significantly to the Pedersen conductivities. In region 2 then, we expect
electron Hall currents and ion Pedersen currents. The Hall conductivity typ-
ically exceeds the Pedersen conductivity and so important electrojet currents
that flow in the E−region are typically Hall currents carried by electrons.

In agreement with these expectations, Figure 7.20b) shows parallel, Ped-
ersen and Hall conductivity profiles. The main plot shows the combined
conductivities given by Equations 7.13, 7.19 and 7.20 while the inset plots
show electron and ion contributions to each conductivity.
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Figure 7.20: a) Electron and Ion collision- and gyro-frequencies. b) Parallel,
Pedersen and Hall conductivity profiles. The inset plots show contributions
to the total conductivities from electrons and ions. Panels a) and b) represent
nighttime solar-max conditions.

7.9 Ionospheric Convection

In this section we consider the ionospheric counterpart to magnetospheric
convection that, as we saw in §?? for the case of southward IMF, is the process
wherein magnetic flux from the magnetopause is transported, after merging
with the IMF, over the polar cap into the magnetotail. This depletion of
dayside flux is replenished by the sunward flow of plasma (with its frozen-in
magnetic field) from the magnetotail around the magnetosphere at a rate
that is dependent on the existing conditions and state of the magnetosphere-
ionosphere system. The high-latitude ionosphere acts as a sort of film upon
which the global-scale process of magnetospheric convection is imaged. Ob-
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servations of ionospheric convection are therefore of significant importance
since they can be used to determine the strength of magnetospheric conection
and the amount of solar wind energy and momentum being coupled into the
magnetosphere.

Figure 7.21 illustrates the high-latitude electric fields that are responsible
for driving ionospheric convection. In Figure 7.21a, the Sun is located into
the page and the solar wind flows out of the page across the open polar
cap magnetic field lines. As it flows past these open field lines, an electric
field Epc = −vsw × B is present as required by the generalized Ohm’s Law
(Equation ??) to maintain a finite current density in the highly conductive
solar wind. This electric field maps down the essentially equipotential polar
cap field lines into the ionosphere where the E×B drift drives the ionospheric
plasma in the antisunward direction. This antisunward drift of ionospheric
plasma is the ionospheric image of that portion of magnetospheric convection
resulting in the movement of magnetopause field lines from the dayside, over
the polar cap and into the magnetotail. The strength of this polar cap electric
field Epc and its associated potential (which often exceeds 60 kV) is therefore
related to the strength of magnetospheric convection and thus to the rate at
which magnetopause field lines are being loaded into the tail.

The viscous interaction of the solar wind with the magnetopause makes
an An alternate and self-consistent view of this process can be gained by
considering the region 1 currents shown in Figure 7.21b. Recall from §4.4.4
the region 1 currents that flow near the poleward edge of the auroral oval and
close part of the dayside magnetopause current by flowing into the ionosphere
in the morning sector and out of the ionosphere in the evening sector. This
flow of current results in regions of excess positive and negative charge as
indicted by the plus and minus signs in Figure 7.21b. The resulting polar
cap electric field is the same field Epc discussed in the previous paragraph.

The region 2 currents that partially close the ring current flow near the
equatorward edge of the auroral oval and are, in general, of opposite polarity
to the region 1 currents. These currents also result in regions of excess
positive and negative charges as indicated in the same figure and result in
an auroral zone electric field that, in the dawn and dusk sectors, is directed
opposite to polar cap electric field. The E × B drift driven by this auroral
zone electric field is in the sunward direction and is the ionospheric image
of the magnetospheric sunward flow of plasma from the tail to the dayside.
A typical 2-cell pattern of ionospheric convection typically results (during
southward IMF) as indicted in Figure 7.21b. The region of highly sheared
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Figure 7.21: a) Three-dimensional representation of the high-latitude electric
fields that drive ionospheric convection. b) A representation of the high-
latitude Birkeland currents, electric fields and resulting plasma flows.

flow in the premidnight sector is known as the Harang discontinuity that
results from the overlapping of the region 1 and 2 currents as shown.

Returning to a Figure 7.21a, an alternate and self-consistent view of the
auroral zone electric field can be seen. As the process of magnetospheric con-
vection returns tail plasma to the dayside, it flows across the closed auroral
zone magnetic field lines where the auroral zone electric field Ea = −vmag×B
is present, again as required by the generalized Ohm’s Law. This electric field
maps along the equipotential magnetic field lines and presents itself in the
auroral zone as the electric field shown in Figure 7.21b.

additional, small contribution to the polar cap potential and the entire
ionospheric convection pattern is observed to vary significantly on the time
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scale of minutes in response to changing conditions including the solar wind
density and velocity, the orientation of the IMF and the state of the mag-
netosphere. The two-cell pattern described above is most common during
southward IMF but distorted patterns are often observed, as are, for exam-
ple, four-cell patterns during periods of northward IMF.
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Appendix A

Electrodynamics Review

A.1 Some fundamental constants

https://www.youtube.com/watch?v=Fo3DudOzV4k

Physical constants appear frequently in electromagnetic theory:

µ0 = 4π × 10−7 H/m (permeability of free space)

ε0 ≈ 8.854× 10−12 F/m (permittivity of free space)

c =
1

µ0ε0
≈ 3× 108 m/s (speed of light in free space)

me ≈ 9.109× 10−31 kg (electron mass)

mp ≈ 1.672× 10−27 kg (proton mass)

e ≈ 1.6× 10−19 C (elementary charge)

qe = −e (electron charge)

qp = e (proton charge)

A.2 Some useful results from basic electricity

and magnetism

Electromagnetic theory is structured as a field theory in which electromag-
netic fields, produced by source charges and currents, exert forces on other
nearby test charges and currents. The force law which encodes the interaction
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of the fields with test charges is the Lorentz force law:

F = q(E + v ×B), (A.1)

where F is the force (both electric and magnetic) experienced by test charge
q moving at velocity v through a region of space containing electric field E
and magnetic field B.

Electromagnetic fields are generated by source charges and currents. The
complete set of equations describing the connection between sources and
fields is the Maxwell equations, reviewed below in a form similar to that
used by most introductory textbooks.

Gauss’s Law for E

Gauss’s law is a quantitative statement linking the electric fields to one of
their sources - electric charges:∮

∂V

E · da =
qenc
ε0
. (A.2)

In this equation ∂V represents a closed surface on the boundary of volume
V and qenc is the charge enclosed inside that surface. The enclosed charge is
often represented in terms of a charge density (ρc, units C/m3) by integration
of this density over the enclosed volume V so that

qenc =

∫
V

ρcdV. (A.3)

Gauss’s Law for B

A type of Gauss’s law also exists for the magnetic field:∮
∂V

B · da = 0. (A.4)

This formula indicates that the total amount of magnetic field piercing any
closed surface ∂V is always zero. This gemoetric interpretation means that
magnetic field lines always form closed loops, which, in turn, implies there
are no point sources of magnetic field.1

1The point source of magnetic field, or magnetic monopole, has been predicted by
theory but has never been observed and, for this reason, the RHS of Gauss’s law for B
equals zero. If magnetic monopoles are ever observed, Gauss’s law for B will become∮
∂V

B · da = µ0qmag,enc where qmag,enc is the magnetic charge enclosed by volume V .
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Faraday’s Law

Point charges are not the only source of electric field. Time-varying magnetic
fields also produce electric fields, a behavior accounted for by Faraday’s law
of induction: ∮

∂S

E · d` = −dΦB

dt
. (A.5)

The contour of integration on the left hand side of this equation is around
the closed loop ∂S which forms the boundary of surface S. ΦB is the mag-
netic flux through surface S, which must be an open surface (one that does
not divide space into two disconnected regions) for this equation to be non-
degenerate. In terms of the magnetic field, this flux is defined by the integral

ΦB =

∫
S

B · da. (A.6)

Ampere’s Law

The final Maxwell equation is Ampere’s law, which outlines the connection
between electric currents and the magnetic fields that they produce:∮

∂S

B · d` = µ0Ienc. (A.7)

The current enclosed by the loop ∂S comprises two contributions: the con-
duction current Ic formed by moving charges and the displacement current Id
which is related to local electric field fluctuations (produced by remote charge
density fluctuations). The (enclosed) conduction current is often written in
terms of the current density J (units of A/m2) as

Ic =

∫
S

J · da. (A.8)

The displacement current belies another source of magnetic field other than
moving charges - namely time-varying electric fields, i.e.:

Id = ε0
dΦE

dt
. (A.9)

ΦE is the electric flux defined in a manner analogous to magnetic flux (equa-
tion A.6) above:

ΦE =

∫
S

E · da. (A.10)
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A.3 Integral forms of Maxwell’s equations

The four Maxwell equations (the two Gauss’s laws, Faraday’s law, and Am-
pere’s law) outlined above provide a means to calculate the electric and
magnetic fields from given charge and current distributions. These equations
may be written out in full integral form by substituting the field expressions
for all fluxes and the integral expressions for enclosed current and charge:∮

∂V

ε0E · da =

∫
V

ρcdV (A.11)∮
∂S

E · d` = − d

dt

[∫
S

B · da
]

(A.12)∮
∂V

B · da = 0 (A.13)∮
∂S

B

µ0

· d` =

∫
S

J · da +
d

dt

[∫
S

ε0E · da
]

(A.14)

These forms of Maxwell’s equations, known as the integral forms, are usually
not the most convenient way of calculating electromagnetic fields. Instead
they are a useful means for introducing electromagnetic theory and providing
a conceptual tool for understanding the physical meaning behind Maxwell’s
equations. However, certain, very specific, types of problems (those involving
discontinuities or a high degree of symmetry) may be most easily analyzed
through these forms (cf. Griffiths, Cheng). All of the familiar results (e.g.
Coulomb’s Law, Biot-Savart Law, etc.) from electromagnetic theory may be
derived from these equations or equivalent forms. See Cheng’s book for a
particularly well-organized presentation of this idea and derivations linking
most electromagnetic formulae to Maxwell’s equations.

A.4 Differential forms of Maxwell’s equations

Two results from vector analysis, which are useful for manipulating the
Maxwell equations above, are the Divergence theorem and Stokes’ theorem.
These theorems may be written, for a vector field A, as:∮

∂V

A · da =

∫
V

(∇ ·A) dV (A.15)∮
∂S

A · d` =

∫
S

(∇×A) · da, (A.16)
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respectively. In these equations the notation ∂V indicates a boundary surface
for volume V and ∂S indicates a bounding contour for surface S. Surface
∂V and contour ∂S are both closed in the sense that ∂V separates space
into unconnected ’inside’ and ’outside’ volumes and ∂S is a closed loop.
The left hand sides of these theorems bear obvious resemblance to the left
hand sides of the integral Maxwell equations. These theorems can be used
to convert the integral forms of Maxwell’s equations to the, generally more
useful, differential forms.

Conversion of the integral forms of Maxwell’s equations to differential
forms is illustrated with Gauss’s Law and Faraday’s law. The remaining
conversions follow from identical logic and mathematical steps. The left
hand side of Gauss’s law may be rewritten using the divergence theorem,
which yields: ∫

V

∇ · (ε0E) dV =

∫
V

ρcdV. (A.17)

Consolidating all quantities onto the left hand side of the equation, we find:∫
V

[∇ · (ε0E)− ρc] dV = 0. (A.18)

Note that the two, previously distinct, integrals have been combined since
they were over the same volume V . It may not have been obvious in the
previous discussion, but V has the additional property that it is arbitrary
in the sense that the integral Maxwell equation is valid for any choice of
V . Because of this, for equation A.18 to be valid for all possible integration
volumes V , the left hand side integrand must be identically zero, hence

∇ · (ε0E)− ρc = 0. (A.19)

This result is the differential form of Gauss’s law. As with the rest of the
Maxwell equations it is most often written with the causative field source
(charge, in this case) on the right hand side and the resulting field on the
left hand side:

∇ · (ε0E) = ρc. (A.20)

Conversion of Faraday’s law, proceeds by first transforming the left hand
side of equation A.12 with Stokes’ theorem:∮

S

(∇× E) · da = − d

dt

[∫
S

B · da
]
. (A.21)
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Similar to the previous derivation, we will attempt to combine the two inte-
grals, which are over the same surface. In order to do this we must first pull
the time derivative through the surface integral operation. At first glance,
this appears straightforward because time (which we differentiate with re-
spect to) and space (which we integrate over) are independent. However,
one must take care since the surface integral limits could, in principle, change
with time (as with a surface that is ‘elastic’ and freely distorts with time).2

Thus, in order to bring the time derivative under the integral without intro-
ducing an additional complicating term, we must stipulate that the surface
S does not change with time. Bringing the derivative under the integral,
then causes it to directly operate on the magnetic field, which is a function
of both space and time. Hence, the time derivative may be interpreted as a
partial derivative with respect to time (provided that S also does not move).
This renders the following form of Faraday’s law:∮

S

[
∇× E +

∂B

∂t

]
· da. (A.22)

As with Gauss’s law, this integral equation is valid for all choices of the
surface S. For the above relation to be true, it must be the case that the
integrand is zero. Hence, the differential form of Faraday’s law:

∇× E = −∂B

∂t
. (A.23)

Transforming the remaining equations (generalized Ampere’s law and
Gauss’s law for magnetic fields) involves similar manipulations and ideas
to the derivations for Gauss’s law and Faraday’s law. The resulting set of
differential equations (the differential forms of Maxwell’s equations) is listed
below:

∇ · (ε0E) = ρc (A.24)

∇× E = −∂B

∂t
(A.25)

∇ ·B = 0 (A.26)

∇×
(

B

µ0

)
= J +

∂

∂t
(ε0E) (A.27)

These are the primary electromagnetic laws (along with the Lorentz force)
used in this text.

2See the discussion surrounding footnote 37 on p. 85.
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A.5 Potentials in electromagnetic theory

Maxwell’s equations may be reformulated in terms of the scalar potential Φ
and the vector potential A. For many (perhaps most) problems it is easier
to solve the potential forms of these equations instead of the set A.24 - A.27.
That this reformulation is possible may be seen by combining Gauss’s law
for the magnetic field with the vector identity ∇· (∇×A) = 0 (valid for any
vector field A). These two facts together imply that we may to introduce a
magnetic vector potential A which is related to the magnetic field through
the relation:

B = ∇×A. (A.28)

To invoke this definition does not violate Gauss’s law (for mag. field), and
so, it is permitted.

The connection between the electric field and the potentials Φ and A is
derived from Faraday’s law by substituting in the magnetic vector potential.

∇× E = − ∂

∂t
(∇×A) (A.29)

Interchanging the order of the time and space derivatives and combining all
terms under a single curl operator on the left hand side gives:

∇×
(

E +
∂A

∂t

)
= 0. (A.30)

This equation may be combined with the vector identity ∇×∇Φ = 0 (valid
for all scalar fields Φ). Together these two pieces of information imply that
we may introduce a scalar potential Φ related to the electric field and vector
potential by:

E +
∂A

∂t
= ±∇Φ. (A.31)

This mathematical relation is valid for either a positive or negative sign on
the right-hand side. The negative sign is chosen for the potential convention,
which, it turns out, preserves the interpretation of potential at some field
point as being work per unit charge required to bring a test charge from very
far away to that point. Hence we find the electric field is:

E = −∇Φ− ∂A

∂t
. (A.32)
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The development above has shown consistency of our potential defini-
tions, equations A.28 and A.32, with Gauss’s law for mag. fields and Fara-
day’s law. It does not provide a means to solve for the potentials. Fortu-
nately, when equations A.28 and A.32 are substituted for the electric and
magnetic fields in the remaining Maxwell equations, Gauss’s Law and Am-
pere’s law, a set of equations which fully specify the potentials, and hence
the fields, results. This process involves quite a bit of detailed algebra, along
with some assumptions about ∇·A (which one can actually specify arbitrar-
ily - see Griffiths text). In the end it produces a set of inhomogeneous wave
equations. These, however are not directly used in this book, so we relegate
further discussion on this point to a full course in electrodynamics.

A.6 Simplified forms of the Maxwell equa-

tions

One of the most common simplifications of the Maxwell’s equations is the
so called electrostatic approximation. This approximation is obtained by
neglecting fluctuations in the magnetic field, i.e. ∂B/∂t = 0. From this
assumption and Faraday’s law, it is seen that the electric field is curl free;
hence it is the gradient of some scalar potential function:

E = −∇Φ. (A.33)

The inverted form of this equation (Φ in terms of E, assuming Φ(r→∞) =
0) can be derived from the fundamental theorem of gradients (see Griffiths
text) and is often useful:

Φ(r) = −
∫ r

∞
E · d`. (A.34)

If we combine equation A.33 with Gauss’s law, an equation specifying the
electrostatic potential results:

−∇ · (ε0 (∇Φ)) = ρc

∇2Φ = −ρc
ε0
.

(A.35)

This equation is known as the Poisson equation. The solution for finite dis-
tributions of source charge in unbounded space with the boundary conditions
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Φ(r→∞) = 0 can be calculated by evaluating the particular integral:

Φ(r) =
1

4πε0

∫
ρc(r

′)

|r− r′|dV
′, (A.36)

where the integral is assumed to be over some volume containing all of the
charge distribution of interest ρc(r

′). In the equations describing the po-
tential solutions (e.g. equation A.36), the primed variables represent source
locations and the unprimed variable represent field points.

Another approximate form of Maxwell’s equations, very often used in
magnetospheric and solar physics, is the quasistatic form. This simplifica-
tion results from neglecting the displacement current from the generalized
Ampere’s law (equation A.27):

∇×
(

B

µ0

)
= J. (A.37)

The system of Maxwell’s equations with this simplification can be reduced
into one equation if we invoke the vector potential and substitute it into
equation A.37:

∇× (∇×A) = µ0J. (A.38)

Invoking a vector identity to expand the double curl operation yields

∇ (∇ ·A)−∇2A = µ0J. (A.39)

Finally we take ∇ · A = 0 (gauge freedom, see Griffiths book for details),
which reduces the equation to a vector Poisson equation:

∇2A = −µ0J. (A.40)

By analogy with the electrostatic Poisson equation, we may simply write
down the integral solution (compare with equation A.36):

A(r) =
µ0

4π

∫
J(r′)

|r− r′|dV
′. (A.41)

Note, again, that this type of solution is valid for finite current distributions
and A(r→∞) = 0.
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A.7 Dipole approximations

The integral solutions in equations A.36 and A.41 for vector potentials find
wide use in solving static problems. In general, they are very difficult to
evaluate exactly, except in circumstances of (perhaps unreasonably) simple
geometry. Fortunately, there exist systematic simplifications for these inte-
grals based off of series expansions of the inverse distance |r− r′|−1 part of the
integrand. The most commonly invoked expansion is the so-called multipole
expansion in which the contributions to the total potential are represented
as a superposition of monopole, dipole, quadrupole, etc. terms. The utility
of this approach is that, if the field point r is somewhat far from the source
distribution of charge or current which creates the potential, then the poten-
tial near that field point can be represented accurately with only a few series
terms. More precisely, the higher order contributions (quadrupole, etc.) to
the potentials at large distances from their sources are ‘usually’ negligible.
Here we present, without derivation, the results for the potential of a pure
electric or magnetic dipole for later use (e.g. describing the Earth’s magnetic
field in the inner magnetosphere):

Φ(r) =
1

4πε0

p · (r− r′)

|r− r′|3 (A.42)

A(r) =
µ0

4π

m× (r− r′)

|r− r′|3 . (A.43)

The parameters p and m are the electric and magnetic dipole moments,
respectively, which have fixed values for a particular charge/current distrub-
tion. These formulas are also good approximations for non-ideal sources,
provided that we are ‘far enough’ away from the source.

A.8 Wave solutions and conventions

The full set of Maxwell’s equations (i.e. that including the displacement
current) admit wave solutions, and, indeed, wave solutions, in general, are
extraordinarily common in other branches of physics (e.g. hydrodynamics,
solid mechanics, etc.). The easiest way to prove the existence of electro-
magnetic waves from Maxwell’s equations is to neglect the field sources and
examine the interplay between induction as a source of the electric field and
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the displacement current as a source of magnetic field. Omitting charge and
current density from the Maxwell equations leaves:

∇ · (ε0E) = 0 (A.44)

∇× E = −∂B

∂t
(A.45)

∇ ·B = 0 (A.46)

∇×
(

B

µ0

)
=

∂

∂t
(ε0E) . (A.47)

If we take the curl of Faraday’s law from this set we can generate a recogniz-
able wave equation in just a few steps:

∇× (∇× E) = −∇×
(
∂B

∂t

)
= − ∂

∂t
(∇×B) .

(A.48)

Next, Ampere’s law is used to rewrite the ∇ × B terms in the far right
expression in the above statement:

∇× (∇× E) = − ∂

∂t

(
µ0ε0

∂E

∂t

)
= − 1

c2

∂2E

∂t2
.

(A.49)

A vector identity may be used to simplify the double curl term on the left
hand side of the above expression, namely:

∇× (∇× E) = ∇ (∇ · E)−∇2E. (A.50)

Combining this identity with equation A.49 gives

∇ (∇ · E)−∇2E = − 1

c2

∂2E

∂t2
. (A.51)

Invoking Gauss’s law (recall that we have assumed zero charge density) al-
lows us to remove the ∇ · E term. Rearranging the remainder then gives a
homogeneous vector wave eqauation:

∇2E− 1

c2

∂2E

∂t2
= 0. (A.52)
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An identical equation for the magnetic field may be derived by apply the same
procedure above to the source-free Ampere’s law. Note that these equations
do not tell us about how the waves were generated (the radiation process),
merely how they behave as they propagate away from their sources.

A completely general treatment of the process of electromagnetic radia-
tion and wave solutions to Maxwell’s equations is well beyond the scope of
this course. However, it is useful to point out a certain type of solution that
satisfies equation A.52 - the uniform plane wave, mathematically represented
in the following form:

E(r, t) = Ẽeik·r−iωt. (A.53)

In this formula, Ẽ is a complex vector constant, k is the wavenumber, i =√
−1, and ω is the angular frequency. For our purposes, when discussing

this type of wave, all quantities in equations A.53 and A.52 (derivative and
position vectors) should be represented in Cartesian coordinates, e.g. k · r =
kxx + kyy + kzz. The usefulness of representing wave solutions in the form
of equation A.53 is that they can be almost easily differentiated, i.e.

∂E

∂t
= −iωE

∇ · E = ik · E
∇× E = ik× E

∇Φ = ikΦ,

(A.54)

when E and Φ are plane waves. These properties are helpful when we look for
characteristics of wave solutions in other systems of equations. Specifically,
a useful approach to systems of equations is often to guess that plane wave
solutions exist and then to substitute in the general form of the plane waves
(equation A.53) to this system to derive the properties of those waves, e.g.
wavenumber frequency relation, phase and group speeds, etc. This process
is equivalent to a Fourier decomposition of the solutions to whatever system
of equations is being analyzed.

A.9 Electromagnetic field energy and momen-

tum

One of the key features of electromagnetic fields is that they are able to
store and transport both energy and momentum. This result comes from
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electromagnetic conservation laws derived from Maxwell’s equations and the
Lorentz force law. The algebra is involved (see Griffiths), and we merely
document the results here for later use:

∂w

∂t
+∇ · S = −J · E (A.55)

∂g

∂t
−∇ · T = − (ρcE + J×B) . (A.56)

Equation A.55 is known as the Poynting theorem and is statement of conser-
vation of energy for the electromagnetic fields. Equation A.56 is a statement
of conservation of field momentum. The symbol w in equation A.55 repre-
sents the energy density (units J/m3) stored in the fields and can be separated
into electric and magnetic contributions,

w = wE + wB, (A.57)

where wE and wB represent the electric field energy and the magnetic energy,
respectively. These are defined, in a vacuum, by:

wE =
1

2
ε0E

2

wB =
B2

2µ0

.
(A.58)

Transport of the field energy is quantified by the Poynting flux:

S =
1

µ0

E×B, (A.59)

which measures amount of energy passing through unit surface area in unit
time, i.e. S · dadt is the total energy (in joules) passing through area da in
time interval dt.

In equation A.56, the quantity g is the field momentum density, defined
by:

g =
E×B

µ0c2
=

S

c2
. (A.60)

The Maxwell stress, T represents the transport of electromagnetic (linear)
momentum, and is defined by:

T = ε0

[
EE + c2BB− 1

2

(
E2 + c2B2

)]
. (A.61)
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The Maxwell stress is a way of quantifying the amount of momentum passing
through unit surface area in unit time, i.e. the quantity T · dadt is the total
momentum (in kg m/s) passing through area da in time interval dt.

With the definitions and concepts of field energy, Poynting flux, field
momentum, and Maxwell stress one can construct an intuitive picture of the
conservation laws of equations A.55 and A.56. The left hand sides of these
equations both have two terms: one representing intrinsic change in energy
or momentum and one representing flow of energy or momentum. These two
terms describing energy or momentum variation are balanced against local
source of energy or momentum on the right hand sides of the equations. In
the Poynting theorem, −J ·E represents the energy density transferred from
charges to the fields - a local (i.e. existing at each point in space) source
of field energy. Likewise in equation A.56 − (ρcE + J×B) is recognizeable
as a force (density, compare to the Lorentz force law) - which is a source
of momentum (density) for the fields (being the opposite the force density
exerted on the particles)

Those familiar with fluid mechanics will recognize these equations as be-
ing similar to fluid conservation laws like the Euler equations. While we do
not directly use these equations in this course, they are still important as
a way to succintly define, from a classical standpoint, the concept of field
energy, energy transport, momentum, and momentum transport.
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Exercises
A.1: Discuss the physical interpretation of Maxwell’s equations. For

each law try to write down a single sentence that outlines the meaning of
that law. Take care to not fall into the logical trap of simply naming and ex-
plaining the mathematical symbols - instead you should endeavor to explain
what these laws say about the relationship between electromagnetic fields
and their sources.

A.2: Derive the differential forms of Gauss’s law for the magnetic field
and Ampere’s law from their integral forms in equations A.13 and A.14.

A.3: Derive an equation for the magnetic field of a pure dipole by
directly taking the curl of equation A.43. You are encouraged to follow
these steps: (a) set your system up so that the dipole axis is in the z-
direction, i.e. m = mêz, the dipole is located at r′ = 0. (b) express the field
point in spherical coords as rêr and evaluate the cross product in equation
A.43 (c) Convert/retain the result in spherical coordinates and take the curl.
ANSWER:

B =
µ0m

4πr3
(2 cos θêr + sin θêθ) (A.62)

A.4: Derive a wave equation for the magnetic field by starting from
the source-free Maxwell equations and invoking a procedue similar to that
used to derive the wave electric field equation.

A.5: Verify equations A.54 by directly operating on the uniform plane
expression with each derivative operator (grad, div, curl, time-derivative).
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Adiabatic expansion, 151
Adiabatic invariants, 42–49

First invariant, 42–49
Second invariant, 49
Third invariant, 49

Adiabatic lapse rate, 153–156
Dry air, 155
Saturated air, 156

Albedo, 143
Appleton, Edward, 160
Astronomical unit (AU), 54
Atmosphere, 137

Boundaries
Homopause, 150
Mesopause, 146
Stratopause, 146
Tropopause, 146

Constituents
Argon, 139
Carbon Dioxide, 138
Chlorofluorocarbons, 145
Hydroxyl OH, 145
Methane, 139
Nitric Oxide NO, 145
Nitrogen N2, 138
Oxygen O2, 138
Ozone, see Ozone
Water vapor, 139

Regions
Heterosphere, 149

Homosphere, 149
Mesosphere, 146
Protonosphere, 150
Stratosphere, 146
Thermosphere, 146
Troposphere, 146

Scale height, see Scale height
Standard pressure, see Standard

Atmosphere
Temperature profile, 144–146

Atmospheric drag, 137, 142

Barnett, Miles, 160
Beer’s Law, 163
Birkeland, Kristian, 75, 126
Boltzman distribution, 11
Bond energies, 148
Bouguer, Pierre, 163
Butterfly diagram, 66

Chapman layer, 163–168
Chapman, Sydney, 163
Conservation

of charge, 17–18
of energy, 153
of mass, 117

Continuity equation, 18, 78
Copernicus, Nicolaus, 95
Coronal Mass Ejection, 70
Curvature drift, 34
Curvature plus ∇B drift, 34–35
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Cyclotron frequency, see Gyrofrequency

Debye length, 9–14
Declination, 101
Denali, 142
DGRF/IGRF, see IGRF
DNA, 145
Dst index, 40

E×B drift, 26–29
EUV (Extreme UltraViolet) radiation,
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First law of thermodyanmics, 153
Fraunhofer lines, 57
Frozen-in Flux, 83–86
Fusion, 58

Galileo, Galilei, 95
Gauss, Carl, 96
General drift, 29–30
Geomagnetic field

L-shell, 100
Declination, see Declination
Dipole latitude, 99
Dipole moment, 99
Dipole poles, 98
Dipole tilt, 98
Inclination, see Inclination
Invariant latitude, 100
Magnetic elements, 100
Main field, 98
Models

IGRF, see IGRF
WMM, see WMM (World Mag-

netic Model)
Polarity reversal, 106
Polarity reversals, 97
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Dip poles, 105
Dipole poles, 98
Geomagnetic poles, 105
Magnetic poles, 105

Geophysical Institute, UAF, 163
Geostationary orbit, 4
Gilbert, William, 95
∇B drift, 31–34
Gyrofrequency, 23
Gyroradius, 24

Heat capacity
Constant volume, 154

Heaviside, Oliver, 160
Heliospheric current sheet, 90–91
Helix, 25
Hoffmeister, Cuno, 75
Hubble Space Telescope, 104
Hydrostatic equation, 140

Ideal gas law, 141
IGRF, 102
IGY, see International Geophysical Year
IMF, 87–90

Archimedian spiral, 88
Field strength, 89, 90
Magnetic sectors, 91
Spiral angle, 89

Inclination, 101
International Geophysical Year, 103
Invariant latitude, 100
Ionization efficience, 164
Ionosonde, 160
Ionosphere

Discovery, 159
Regions
E-region, 160
F -region, 160
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Appleton layer, see F -region
Kennelly-Heaviside layer, see E-

region
IRI Ionospheric Model, 162

Kennelly, Arthur, 160
Kepler, Johannes, 95

Larmour radius, see Gyroradius
Lodestones, 95
Lord Rayleigh, 139
Loss cone, 47

Magnetic bottle, 36–38, 44–47
Magnetic declination, see Declination
Magnetic inclination, see Inclination
Magnetic moment, 38
Magnetohydrodynamics, see MHD
Magnetosphere, 107

Currents, 121–122
Birkeland Currents, 125–126
Magnetopause Current, 122–124
Neutral sheet Current, 124–125
Ring Current, 125
Tail Current, 124–125

Regions
Bow shock, 114–117
Cusps, 118
Magnetopause, 109, 118
Magnetosheath, 117–118
Plasmasheet, 119
Plasmasphere, 120
Radiation belts, see Radiation

Belts
Tail, 113, 118–119

Size, 109
Tsyganenko model, 114

Main sequence, 56
Marconi, Guglielmo, 159

Mayer’s relation, 155
MHD, 96

Dynamo, 96
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Mirror ratio, 46
Momentum equation, 17, 78
Morgan-Keenan system, 53
Morse Code, 159
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Mt. Everest, see Mt. Everest
Mt. McKinley, see Denali

MSIS model, 145, 147
Mt. Everest, 142
Mt. McKinley, see Denali
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Ramsay (1904, chemistry), 139
Rayleigh (1904, physics), 139

Ohm’s law, 84
Optical depth, 164
Ozone, 145

Parker, Eugene, 77
Photodissociation, 148
Photoelectrons, 163
Pitch Angle, 44
Plasma definition, 8, 14, 20–21
Plasma Frequency, 14–21
Poisson’s equation, 10
Pressure

Magnetic, 107, 109
Ram, 107, 109, 110
Thermal, 107, 109

Priestly, Joseph, 138
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Ramsay, Sir Willaim, 139
Rankine-Hugoniot relations, 117
Ring current, 40

Scale height, 141–143, 149
Scheele, Carl Wilhelm, 138
SOHO satellite, 66, 70, 73, 74
Solar arrays, 57
Solar constant, 57
Solar Flare, 70, 72
Solar maximum, 64
Solar minimum, 64
Solar Wind, 75

Density, 76
Speed, 76
Vital statistics, 75

South Atlantic Anomaly, 104
Specific Heat

Molar, at constant pressure, 155
Molar, at constant volume, 154

Standard Atmosphere (atm), 139
Stefan-Boltzman law, 144
Sun, 53

Age, 55
Chromosphere, 61
Convection zone, 61
Core, 58
Corona, 61
Filaments, 70
Photosphere, 61
Prominences, 70
Radiative zone, 60
Solar cycle, 63, 64
Spectral irradiance, 57
Sunspots, see Sunspots
Vital statistics, 55

Sunspot number, see Wolf number
Sunspots, 61, 63–67

Taylor expansion, 12
Temperature

Atmospheric profile, 144–146
Earth’s surface, 143–144

Tsyganenko, Nikolai, 114

van Helmont, Jan Baptista, 138
VASIMR engine, 47
Virial theorem, 56

Weber, Wilhelm, 96
WMM (World Magnetic Model), 102
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Physical Constants

Name Symbol Value Unit

Elementary charge e 1.602176565(35)× 10−19 C (measured)
Speed of light in vacuum c 2.99792458× 108 m/s (by def)
Permeability of the vacuum µ0 4π × 10−7 H/m (by def)
Permittivity of the vacuum ε0 ≡ 1

µ0c2
8.854187817...× 10−12 F/m

Molar gas constant R 8.31441 J·mol−1·K−1

Avogadro’s constant NA 6.0221367× 1023 mol−1

Boltzmann’s constant k = R/NA 1.380658× 10−23 J/K
Stefan-Boltzmann constant σ 5.670373(21)× 10−8 W/m2/K4

Electron mass me 9.1093897× 10−31 kg
Proton mass mp 1.6726231× 10−27 kg
Neutron mass mn 1.674954× 10−27 kg
Atomic mass unit amu 1.66053892× 10−27 kg

Radius of the Sun R� 696× 106 m
Mass of the Sun M� 1.989× 1030 kg
Radius of Earth RE 6.378× 106 m
Mass of Earth ME 5.976× 1024 kg
Astronomical unit AU 1.4959787066× 1011 m
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