Chapter 3: Index Notation

The rules of index notation:

(1) Any index may appear once or twice in any term in an equation
(2) A index that appears just once is called a free index.

The free indices must be the same on both sides of the equation.
Free indices take the values 1,2 and 3
(3) A index that appears twice is called a dummy index.

Summation Convention: Dummy indices are summed over from 1 to 3
The name of a dummy index is not important.

$$
\mathbf{a} \cdot \mathbf{b}=a_{j} b_{j}=a_{l} b_{l}=a_{p} b_{p}=a_{1} b_{1}+a_{2} b_{2}+a_{3} b_{3}
$$

(4) The Kronecker Delta:

$$
\delta_{i j}= \begin{cases}1 & \text { if } i=j \\ 0 & \text { if } i \neq j\end{cases}
$$

or

$$
\delta_{i j}=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

The Kronecker Delta is symmetric $\delta_{i j}=\delta_{j i}$. If one index on $\delta_{i j}$ is free and the other dummy then the action of $\delta_{i j}$ is to substitute the dummy index with the free index

$$
\delta_{i j} a_{j}=a_{i}
$$

If both indices are dummies then the $\delta_{i j}$ acts as scalar product.
(5) The Alternating Tensor:

$$
\epsilon_{i j k}= \begin{cases}0 & \text { if any of } i, j \text { or } k \text { are equal, } \\ 1 & \text { if }(i, j, k)=(1,2,3),(2,3,1) \text { or }(3,1,2) \\ -1 & \text { if }(i, j, k)=(1,3,2),(3,2,1) \text { or }(2,1,3)\end{cases}
$$

The Alternating Tensor is antisymmetric:

$$
\epsilon_{i j k}=-\epsilon_{j i k}
$$

The Alternating Tensor is invariant under cyclic permutations of the indices:

$$
\epsilon_{i j k}=\epsilon_{j k i}=\epsilon_{k i j}
$$

(6) The vector product:

$$
(\mathbf{a} \times \mathbf{b})_{i}=\epsilon_{i j k} a_{j} b_{k}
$$

(7) The relation between $\delta_{i j}$ and $\epsilon_{i j k}$:

$$
\epsilon_{i j k} \epsilon_{k l m}=\delta_{i l} \delta_{j m}-\delta_{i m} \delta_{j l}
$$

Grad, Div and Curl and index notation

$$
\begin{gathered}
\operatorname{grad} f=(\boldsymbol{\nabla} f)_{i}=\frac{\partial f}{\partial x_{i}} \\
(\boldsymbol{\nabla})_{i}=\frac{\partial}{\partial x_{i}} \\
\operatorname{div} \boldsymbol{F}=\boldsymbol{\nabla} \cdot \boldsymbol{F}=\frac{\partial F_{j}}{\partial x_{j}} \\
(\operatorname{curl} \boldsymbol{F})_{i}=(\boldsymbol{\nabla} \times \boldsymbol{F})_{i}=\epsilon_{i j k} \frac{\partial F_{k}}{\partial x_{j}} \\
(\boldsymbol{F} \cdot \boldsymbol{\nabla})=F_{j} \frac{\partial}{\partial x_{j}}
\end{gathered}
$$

Note: Here you cannot move the $\frac{\partial}{\partial x_{j}}$ around as it acts on everything that follows it.

Vector Differential Identities.

If \boldsymbol{F} and \boldsymbol{G} are vector fields and f and g are scalar fields then

$$
\begin{gathered}
\boldsymbol{\nabla} \cdot(\boldsymbol{\nabla} f)=\nabla^{2} f \\
\boldsymbol{\nabla} \cdot(\boldsymbol{\nabla} \times \boldsymbol{F})=0 \\
\boldsymbol{\nabla} \times(\boldsymbol{\nabla} f)=\mathbf{0} \\
\boldsymbol{\nabla}(f g)=f \boldsymbol{\nabla} g+g \boldsymbol{\nabla} f \\
\boldsymbol{\nabla} \cdot(f \boldsymbol{F})=f \boldsymbol{\nabla} \cdot \boldsymbol{F}+\boldsymbol{F} \cdot \boldsymbol{\nabla} f \\
\boldsymbol{\nabla} \times(f \boldsymbol{F})=f \boldsymbol{\nabla} \times \boldsymbol{F}+\boldsymbol{\nabla} f \times \boldsymbol{F} \\
\boldsymbol{\nabla} \times(\boldsymbol{\nabla} \times \boldsymbol{F})=\boldsymbol{\nabla}(\boldsymbol{\nabla} \cdot \boldsymbol{F})-\nabla^{2} \boldsymbol{F} \\
\boldsymbol{\nabla}(\boldsymbol{F} \cdot \boldsymbol{G})=\boldsymbol{F} \times(\boldsymbol{\nabla} \times \boldsymbol{G})+\boldsymbol{G} \times(\boldsymbol{\nabla} \times \boldsymbol{F})+(\boldsymbol{F} \cdot \boldsymbol{\nabla}) \boldsymbol{G}+(\boldsymbol{G} \cdot \boldsymbol{\nabla}) \boldsymbol{F} \\
\boldsymbol{\nabla} \cdot(\boldsymbol{F} \times \boldsymbol{G})=\boldsymbol{G} \cdot(\boldsymbol{\nabla} \times \boldsymbol{F})-\boldsymbol{F} \cdot(\boldsymbol{\nabla} \times \boldsymbol{G}) \\
\boldsymbol{\nabla} \times(\boldsymbol{F} \times \boldsymbol{G})=\boldsymbol{F}(\boldsymbol{\nabla} \cdot \boldsymbol{G})-\boldsymbol{G}(\boldsymbol{\nabla} \cdot \boldsymbol{F})+(\boldsymbol{G} \cdot \boldsymbol{\nabla}) \boldsymbol{F}-(\boldsymbol{F} \cdot \boldsymbol{\nabla}) \boldsymbol{G}
\end{gathered}
$$

