
Chapter 4

One Fluid MHD

A. Heuristic Considerations

In the preceding two chapters we have derived the Vlasov equation as the lowest (first order)
approximation to the microscopic kinetic equation and then obtained the two-fluid equations
by taking velocity moments of the Vlasov equation and invoking the Maxwellian closeure
approximation. We also showed how the Vlasov and fluid equations can be heuristcially “de-
rived” directly from conservation of particles in the six dimensional phase space and from
mass, momentum, and energy conservation, respectively. The equations of magnetohydrody-
namics (MHD) can also be obtained either deductively, from first principles, or heuristically.
In this chapter we shall first use an heuristic approach to anticipate the form to be expected
for one fluid MHS and then show that equations of this character can, indeed, be derived
from the two fluid MHD formulation of Chapter 3 with suitable approximations.

For a neutral fluid, with mass density ρm, velocity u and scalar pressure p, conservation
of mass, momentum and energy give equations similar to those obtained from a single species
in Chapter 3, i.e., (3.5), (3.14), and (3.21) with one difference: for a neutral fluid there is, of
course, no force corresponding to the nqE term of (3.14). However, if the fluid is electrically
conducting, then its motion may give rise to an electrical current density, j, and a consequent
force density j×B/c in the presence of a magnetic field. Thus, we expect equations of the
form

∂ρm

∂t
+∇ · (ρmu) = 0 (4.1)

ρm

(
∂u

∂t
+ u · ∇u

)
+∇p =

1

c
j×B (4.2)

pρ−γ
m = constant. (4.3)

As usual, we adjoin to these dynamic equations the Maxwell equations (for a neutral fluid)

∇ · E = 0, (4.4a)

∇ ·B = 0, (4.4b)

∇× E +
1

c

∂B

∂t
= 0, (4.4c)

∇×B =
4π

c
j +

1

c

∂E

∂t
. (4.4d)
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Since MHD is valid for low frequencies, the displacement current term is often a small
correction and many treatments of MHD omit it altogether. We shall retain it in general,
but drop it when appropriate.

Considering Eqs. (4.1) through (4.4) as a description of the temporal evolution of the
system, we see that they are incomplete. The evolution of ρm (in terms of ρm and u) is
determined by (4.1) and that of u (in terms of ρm, u, p, j, and B) is given by (4.2). From
(4.3) we can solve for p in terms of ρm, and Ampere’s Law (omitting the displacement current)
gives j in terms of B, but the evolution of B according to Faraday’s Law depends on E, so
some further relation involving E is required to close the system of equations. (Alternatively,
if we retain the displacement current term, Ampere’s Law serves to determine the evolution
of E in terms of j and B, but we then lack an equation to determine j.) The missing link
is supplied by a “constitutive” equation expressing j in terms of E and B, introduced in an
ad hoc or phenomenological basis similar to that used for the dielectric constant ε in the
electrodynamics of uniform continuous media. The simplest assumption is that of scalar
conductivity: we assume that in the local rest frame of the fluid the current density j̃ and
the field Ẽ are proportional, j̃ = σẼ. The corresponding quantities in the lab frame then
satisfy

j = j̃ = σẼ = σ
(
E +

1

c
u×B

)
. (4.5)

Equations (4.1) through (4.5) constitute the simplest form of conventional, one-fluid MHD.
In the next section, we show how to derive, from two fluid MHD, a set of equations similar
to (4.1) through (4.5) which have been obtained here by macroscopic and phenomenological
considerations.

B. Derivation from Two Fluid MHD

We start from the equations n the from [3.14] through [3.16] and define ρm and u

ρm ≡ nem + niM, (4.6)

ρmu ≡ nemue + niMui. (4.7)

Our first simplifying approximation is to assume charge neutrality

ne = ni = n (4.8)

so that
ρm ≈ nM (4.9)

and
u = ui +

m

M
ue. (4.10)

As usual, we neglect corrections of order m/M . In the absence of external sources, we have

j = en(ui − ue). (4.11)

Then (4.10) and (4.11) can be solved for

ui = u + δw (4.12)
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and
ue = u−w (4.13)

where w ≡ j/ne and δ ≡ m/M .1

We now take linear combinations of [3.14] through [3.16] for the two species. We shall
retain the collisional momentum transfer terms, P, even though we have not derived them
in a rigorous way, since only then do we obtain the conventional form of one-fluid MHD.
We shall assume that only electron-ion collisions are involved and these give rise to a simple
“frictional” drag force,

Pe = −Pi = nmeν(ui − ue) (4.14)

where ν is an electron-ion collision frequency. (In a subsequent chapter [which one?] we shall
derive the collisional terms in a rigorous way, discuss the circumstances under which this
simple form is valid, and show how ν can be computed.) Adding the continuity equations,
(3.23), for each species, weighted by the respective masses, gives the expected continuity
equation (4.1), or equivalently,

∂n

∂t
+∇ · (nu) = 0. (4.15)

Similarly, it follows from the energy equations (3.25) for each species that

pn−γ = constant, (4.16)

where p = pe +pi and we have assumed γe = γi = γ. (In general, γ has the value appropriate
to a three-dimensional, monatomic gas, γ = 5/3.) Note that (4.15) and (4.16) are formally
the same as the continuity and energy equations (3.5) and (3.22). However, in the latter
case n, u and p refer to a particular species (the species label having been suppressed for
notational convenience), whereas here p denotes total pressure; u is defined by (4.7); and
n = ne = ni.

There remain only the momentum equations. Taking their sum and using (4.12) and
(4.13) to simplify the convective term yields

nM

(
∂u

∂t
+ u · ∇u

)
+∇p− 1

c
j×B =

(
m

e2

)
j · ∇

(
j

n

)
. (4.17)

The right side of (4.17) can be neglected, and we recover the conventional form (4.2) if we
make the very reasonable assumption that Mu2 À m(j/ne)2, i.e., that the kinetic energy
of fluid flow is much greater than that associated with current flow. (We also assume that
the scale lengths associated with the spatial variations of these two quantities are not so
disparate as to reverse the sense of this inequality.)

Finally, we take the difference of the momentum equations for each species, multiplied by
e and divided by the respective masses. Some terms cancel while others are of order m/M
and can be dropped. A term proportional to j ×B appears and it can be eliminated using
(4.2). The result is

(
m

ne2

)
∂j

∂t
+
∇pi

ne
+

(
M

e

)
du

dt
+

(
mν

ne2

)
j −

(
E +

1

c
u×B

)
=

1Of course, strictly speaking (4.12) and (4.13) should be (1 + δ)ui = u + δw and (1 + δ)ue = u−w, but
we neglect δ compared with unity.
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(
m

e

)
[w · ∇w − w · ∇u− u · ∇w−

(
w

n

)
∇ · (nu)

]
.(4.18)

The approximations conventionally made in deriving the MHD equations are that

wτ

L
¿ 1 and

uτ

L
¿ 1 (4.19)

where L is a typical scale length for n, u, and j, L ∼ u/|∇u| ∼ n/|∇n| ∼ j/|∇j|, and τ is
the time scale on which j varies, τ ∼ j/|∂j/∂t|. Then the right hand side of (4.18) can be
neglected compared to ∂j/∂t. [If ντ À 1, we justify the neglect of these terms by comparing
them to νj, i.e., by replacing τ by ν−1 in (4.19).] This gives the “Generalized Ohm’s Law,”

(
E +

1

c
u×B

)
= ηj +

(
m

ne2

)
∂j

∂t
+

(
M

e

)
du

dt
+
∇pi

ne
, (4.20)

where we have defined the resistivity η and its reciprocal, the electrical conductivity σ, as

η =
1

σ
=

mν

ne2
=

4πν

ω2
p

. (4.21)

In many cases of physical interest, we can neglect some of the terms on the right hand
side of (4.20). Keeping only the first term gives the Simple Ohm’s Law (4.5) with electrical
conductivity, σ, given by (4.21). Thus the first term on the right side of (4.20) is associated
with ohmic resistivity. The second arises from electron inertia; the third, from ion inertia;
and the last from non-zero ion pressure. Neglecting all terms on the right gives what is called
the “infinite conductivity” approximation

(
E +

1

c
u×B

)
= 0. (4.22)

In this particularly simple limit, the one-fluid MHD equations become reasonably tractable
and their consequences have been explored in considerable detail.

To summarize this section, the simplest form of MHD, sometimes termed “ideal MHD,”
is described by the equations

dρm

dt
+ ρm∇ · u =

∂ρm

∂t
+∇ · (ρmu) = 0 (4.23a)

ρm

(
∂u

∂t
+ u · ∇u

)
+∇p =

1

c
j×B (4.23b)

d

dt

(
pρ−γ

m

)
= 0 (4.23c)

∇×B =
4π

c
j +

1

c

∂E

∂t
(4.23d)

∂B

∂t
= −c∇× E (4.23e)

E +
1

c
u×B = 0 (4.23f)

42



(In most applications, the displacement current can be dropped, implying closed current
circuits ∇ · j = 0.) Of course, the assumption of infinite conductivity inevitably excludes
important physical phenomena, so it is often necessary to consider “resistive MHD,” meaning
the equations (4.23) with the last equation replaced by

E +
1

c
u×B = ηj. (4.24)

Still more accurate versions of MHD have also been studied, e.g., those obtained by using
some of the additional terms in the generalized Ohm’s law (4.20) or by allowing a pressure
tensor p rather than the scalar pressure resulting from Maxwellian closure. While these more
complicated versions of MHD can be useful, it is often easier to deal with the physics omitted
from the ideal or resistive MHD by going back to the two fluid equations or to the Vlasov
equation, at least for the ions, rather than patching up the MHD equations. In any case, it
is useful to express the results in terms of connections to the simpler ideal or resistive MHD
formulations.

At present, a large body of MHD literature, including many developments of considerable
mathematical elegance, exists. As can be seen from the block diagram in Fig. 2.1, one-fluid
MHD is quite far “down the line” of approximations, but it forms an indispensable guide to
the physics of complex magnetic geometries, like those found in controlled fusion experiments
(e.g., tokamaks, mirrors and pinches) or in astrophysical and geophysical problems (e.g.,
the solar wind, planetary magnetospheres and pulsars). In Section C we discuss a few
simple consequences of the MHD equations and in Section D we explore some of the physics
contained in these equations using the same device as in the previous chapter, i.e., the
linearization about simple equilibrium solutions.

C. Elementary General Properties of the MHD Equa-

tions

For resistive MHD (i.e., using 4.24) we have from Faraday’s Law (4.4c) and Ampere’s Law
(4.4d)

∂B

∂t
= −c∇×

(
j

σ
− 1

c
u×B

)
=

(
c2

4πσ

)
∇2B +∇× (u×B) . (4.25)

In the absence of flow, this reduces to a classical diffusion equation with a diffusion coefficient

D =
c2

4πσ
. (4.26)

It follows that an initial magnetic field, and the currents which support it, will decay due to
Ohmic dissipation on a time scale τ = L2/D, where L is a typical scale length.

For u 6= 0, the relative magnitude of the two terms on the right side of (4.25) will be of
order

Rm =
4πσuL

c2
, (4.27)
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which, by analogy with the Reynolds number encountered in viscous flow of a neutral gas, is
called the magnetic Reynolds number. When Rm ¿ 1, diffusion dominates. When Rm À 1,
then (4.25) can be approximated by

∂B

∂t
= ∇× (u×B) , (4.28)

the equation of “frozen-in magnetic flux.” The reason for this appellation becomes clear
when we consider an arbitrary closed curve, C, moving with the fluid and the rate of change
of magnetic flux, φ, through any surface, S, bounded by C

dφ

dt
=

d

dt

∫

S
B · d~σ =

∫

S
d~σ ·

(
∂B

∂t

)
+

∫

C
B · (u× ds) , (4.29)

where the last term takes into account the motion of C.2 Stoke’s law gives

dφ

dt
=

∫

S
d~σ ·

[
∂B

∂t
+∇× (B× u)

]
, (4.30)

which, according to Eq. (4.28), vanishes. The physical reason is clear: motion of the fluid
induces electric fields, and the resultant currents, in the infinite conductivity limit, generate
a magnetic field just sufficient to keep φ constant as C moves. If we represent the magnetic
field by lines of magnetic flux, then the picture of magnetic field lines moving with (“frozen
into”) the fluid is certainly consistent with dφ/dt = 0, and can be useful in providing a
physical understanding of complex MHD phenomena.

As a simple example of the use of the frozen-in concept we give a heuristic discussion of
Alfven waves in a magnetized plasma, a phenomenon we will examine more formally, and
in more detail, in Section D. The Lorentz force term, j × B/c, can, with neglect of the
displacement current, be written as

1

c
j×B =

1

4π
(∇×B)×B = ∇ ·

(
BB

4π
− B2

8π
I

)
, (4.31)

i.e., as the divergence of the magnetic portion of the usual Maxwell stress tensor S =
BB/4π − (B2/8π)I, corresponding to an isotropic magnetic pressure, B2/8π, and a ten-
sion along the lines, of magnitude B2/4π per unit area. If the field lines are frozen to the
fluid, and vice versa, then a flux tube of area A will experience a tension force T = AB2/4π
and the plasma “frozen” to it will endow it with a mass per-unit-length ρmA. Thus, we
might expect the field lines to behave like a stretched string or wire, in that a perturbation
transverse to B0 would propagate along the line with phase velociy

cA =

√
T

ρmA
=

√
B2

4πρm

. (4.32)

This expectation is confirmed, by both experiments and by a systematic theoretical analysis
(given in Section D.). The velocity cA is the Alfven velocity and the waves are known as
Alfven waves, after Hannes Alfven who first predicted them.

2This is known as the Liebniz integral rule. —ed.
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Another general an important property of the ideal MHD equations (4.23) is the energy
conservation law. To derive it, we take the dot product of u with the momentum equation
and show that each term can be expressed as the sum of a time derivative and a divergence.
For the first term we have

u · ρm
du

dt
=

ρm

2

∂u2

∂t
+ ρmu ·

(∇u2

2

)
=

∂

∂t

(
ρmu2

2

)
+∇ ·

(
ρmuu2

2

)
, (4.33)

where we have made use of the continuity equation; the second term gives

u · ∇p =
dp

dt
− ∂p

∂t
=

(
γp

ρm

)
dρm

dt
− ∂p

∂t

= −γp∇ · u− ∂p

∂t
(4.34)

= −γ∇ · (pu) + γu · ∇p− ∂p

∂t

=
1

γ − 1

(
∂p

∂t
+ γ∇ · (pu)

)
,

where we have again used the energy equation and the continuity equation (and, in the last
step, collected the u · ∇p terms on one side of the equation and solved for u · ∇p); and from
the third term we obtain

u · 1

c
j×B = −1

c
j · u×B (4.35)

=
(

c

4π

)
∇×B · E (4.36)

It follows immediately that

u ·
(
ρm

du

dt
+∇p− 1

c
j×B

)
=

∂U

∂t
+∇ · S = 0, (4.37)

where

U =
ρmu2

2
+

p

γ − 1
+

B2

8π
(4.38)

is the energy density (kinetic plus compressional plus magnetic) and

S =
ρmu2

2
u +

pγu

γ − 1
+

c

4π
E×B (4.39)

is the energy flux, the last term being just the Poynting flux. For a volume V enclosed by a
surface on which S vanishes (e.g., because the surface recedes to infinity), we have

d

dt

∫

V
U dτ = 0. (4.40)
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D. Linearized Ideal MHD

The simplest equilibrium (i.e., time-independent) solution of the MHD equations (4.23) is
that corresponding to a uniform stationary plasma (n = n0 = constant, p = p0 = constant,
u = 0) in a uniform magnetic field (B = B0 = constant). We shall use the technique of
simple-minded plane wave substitution (cf. Chapter 3, Section D) to find the dispersion
equation for the resulting system of equations; from our discussion in Chapter 3, it is clear
the results may be extended to more physically posed problems with external sources or
specified initial values. Thus, we set

n = n0 + n1e
i(k·x−ωt) (4.41a)

u = u1e
i(k·x−ωt) (4.41b)

Suppressing the subscript 1 where it is not needed, i.e., on u1 and E1 (since u0 = E0 = 0)
we obtain from (4.23)

−ωn1 + n0k · u = 0 (4.42a)

−n0Mωu + Mc2
sn1k =

−ij×B0

c
(4.42b)

c2
s =

γp0

n0M
(4.42c)

k×B1 =
−4πi

c
j− ωE

c
(4.42d)

k× E =
ωB1

c
(4.42e)

E +
1

c
u×B0 = 0 (4.42f)

Before examining the general solutions of this set of equations, we consider the simplest
case: waves propagating along the magnetic field B0 in the ideal MHD limit and with the dis-
placement current neglected. For the transverse component of u, i.e., the one perpendicular
to k and B0, we have from the momentum equation (4.42b)

ut = i
j×B0

ρ0ωc
(4.43)

where ρ0 = n0M . Using Ampere’s law (4.42d) and Faraday’s law (4.42e) we have

ut = − kB0c

4πρ0ω2
k× E, (4.44)

and substituting for E from (4.42f) gives

ut


1−

(
kcA

ω

)2

 = 0 (4.45)
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where

cA =

√√√√ B2
0

4πρ0

(4.46)

is the Alfven speed defined earlier. Thus, waves with ut 6= 0 are possible only if (ω/k)2 = c2
A

and they are transverse (E, B, and u are all normal to B0). A physical picture of these
Alfven waves in terms of stretched field lines with plasma “frozen” to them was given in
Section C..

We now return to the full set of linearized MHD equations (4.42). It is easy to see that
when ω/kc ¿ 1 (phase velocity small compared to c) we can neglect the displacement current
in (4.42d):

−4πij =
k× (k× E)c2

ω
+ ωE =

(ω2 − k2c2)E

ω
≈ −k2c2E

ω
. (4.47)

We can then substitute (4.42a) and (4.42d) into (4.42b), obtaining an equation involving u
and B1

ω2u− c2
s(k · u) k =

iωj×B0

ρ0c
=
−ω(k×B1)×B0

4πρ0

. (4.48)

Taking the scalar product of this with k gives

k · u =

[
k2ω(ω2 − k2c2)

4πρ0

]
B1 ·B0 (4.49)

and hence an explicit expression for u in terms of B1

u =
ω2(B0 ·B1) k− (ω2 − k2c2

s)(k ·B0) B1

4πρ0ω(ω2 − k2c2
s)

. (4.50)

An expression for B1 in terms of u follows immediately from (4.42e) and (4.42f)

B1 =
−k× (u×B0)

ω
. (4.51)

Finally, substituting (4.50) into (4.51) gives

B1


1−

(
kcA cos θ

ω

)2

 = b̂ ·B1

(b̂− k̂ cos θ)k2c2
A

(ω2 − k2c2
s)

(4.52)

where we have set

k̂ =
k

k
b̂ =

B0

B0

cos θ = k̂ · b̂ (4.53)

Introducing the phase velocity of the waves, V = ω/k, we have

B1


1−

(
cA cos θ

V

)2

 = (b̂ ·B1)c

2
A

(b̂− k̂ cos θ)

(V 2 − c2
s)

. (4.54)
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1. Shear Alfven Wave

One solution of (4.54) is obtained when B1 · b̂ = 0 (i.e., the perturbed magnetic field B1 is
perpendicular to B0) and

V 2 = c2
A cos2 θ. (4.55)

It follows from (4.50) and (4.51) that b̂ ·B1 = 0 implies k · u = 0 and hence a fluid motion
that is incompressible (n1 = 0) but has finite shear [e.g., uy(x) or uz(x) if k = kx̂]. This
solution is therefore called the shear Alfven wave. The dispersion relation (4.55) can be
written

ω2 = k2
‖c

2
A (4.56)

showing that the frequency is independent of

k⊥ = b̂× (k× b̂). (4.57)

This means that any superposition of k⊥ with given kz will have the same frequency. In
particular, the wave can be localized to a single field line or flux tube, which can be thought
of as oscillating independently of any others. We also see that the group velocity is always
equal to cA and directed along B0

vg =
∂ω

∂k
=

∂(k · b̂ cA)

∂k
= cAb̂. (4.58)

2. Fast and Slow Alfven Waves

If B1 · b̂ 6= 0, then taking the dot product of (4.54) with V 2b̂ gives

(B1 · b̂)F (V ) ≡ B1 · b̂
[
(V 2 − c2

A cos2 θ)(V 2 − c2
s)− V 2c2

A sin2 θ
]

= 0 (4.59)

and hence the dispersion relation F (V ) = 0 whose solutions are

V 2 =
1

2

{
c2
s + c2

A ±
√

(c2
s + c2

A)2 − 4c2
sc

2
A cos2 θ

}
. (4.60)

These solutions are called the fast wave (+ sign) and the slow wave (− sign) and a
discussion of their properties is conveniently divided into two cases:

a) low β; cs ≤ cA

We note that
c2
s

c2
A

=
4πnγ(Te + Ti)

B2
=

γ

2
(βe + βi), (4.61)

where the quantity

β =
nT

B2/8π
, (4.62)

the ratio of kinetic to magnetic pressure for each species, is one of the basic MHD parameters.
Thus, this case is referred to as “low β.” For θ = 0, (4.60) gives

V 2 =
1

2

{
c2
s + c2

A ± (c2
s − c2

A)
}

(4.63)
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Figure 4.1: Polar plot of V versus θ for slow, intermediate, and fast MHD waves at low β.
Here, cs/cA = 0.8.

so the fast wave has velocity cA, and the slow wave has velocity cs. For θ = 90◦, the fast
wave has velocity

V 2 = c2
s + c2

A. (4.64)

This speed is called the magnetosonic speed, since the restoring forces are partially magnetic
pressure, B2/8π, and partially acoustic pressure (nT ). The slow wave has V = 0. For other
values of θ, the solutions (4.60) are best represented graphically by a polar plot of V versus
θ as shown in Fig. 4.1. Since

(
c2
s + c2

A

)2 − 4c2
sc

2
A cos2 θ ≥

(
c2
s − c2

A

)2
(4.65)

it follows from (4.60) that, for c2
s < c2

A,

Vs ≤ cs < cA ≤ Vf (4.66)

a property obvious from Fig. 4.1. We have also shown in Fig. 4.1 the shear wave solution
(4.55); it is sometimes called the intermediate wave because, denoting the speeds of the
three solutions by Vs, Vi, and Vf , we have the relation

Vs < Vi < Vf , (4.67)

a relation valid for all θ. [To prove this, we substitute V = Vi = cA cos θ into the function
F (V ) defined in (4.59)

F (Vi) = V 4
i − (c2

s + c2
A)V 2

i + c2
sc

2
A cos2 θ = (V 2

i − V 2
s )(V 2

i − V 2
f ). (4.68)

Since F (Vi) = −c4
a cos2 θ sin2 θ ≤ 0, it follows that (Vi − Vs)(Vi − Vf ) ≤ 0, which proves

(4.67). (The other possibility, Vf < Vi < Vs, is ruled out since (4.66) requires Vs ≤ Vf .)].
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Figure 4.2: Polar plot of V versus θ for slow, intermediate, and fast MHD waves at high β.
Here, cs/cA = 1.2.

b) high β; cA ≤ cs

The polar plot for this case is shown in Fig. 4.2. Since (4.60) is symmetric under the
interchange cs ↔ cA, arguments like those of the preceding paragraph show that in this case,
Vs ≤ cA < cs ≤ Vf , and that (4.67) is still valid.

For the intermediate or shear wave, it follows from (4.50) that u is parallel to B1 and
both are perpendicular to the plane spanned by k and b̂. If k is not parallel to b̂, then
E = −(u × B0)/c will have components both parallel and perpendicular to k, resulting in
mixed polarization, neither electrostatic (k×E = 0) nor purely electromagnetic (k ·E = 0).
For the fast and slow waves, it follows from (4.50) and (4.51) that u lies in the plane of k
and b̂. Then E is parallel to k× b̂ so k ·E = 0 and the waves are purely electromagnetic. In
contrast to the shear wave they are compressional, n1 6= 0, since k ·u 6= 0. In the cold plasma
limit, cs → 0, there are only two waves, the fast (compressible) wave and the intermediate
(shear) wave. In this situation, the latter is very often referred to as the “slow” wave but it
would be preferable to use the terms intermediate or shear wave to avoid confusion with the
slow wave which is present when cs 6= 0.

It is to be emphasized that ideal MHD gives correctly only the very low frequency, long
wavelength behavior of the plasma. Many important wave phenomena are totally absent
from this approximation and it is only when we consider the two-fluid description of waves
in a magnetized plasma (Chapter 8) that we get a satisfactory perspective.
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