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1 The convective derivative

Following a fluid element as it moves, the total time derivative of a property of that element,
say A, is called the convective derivative (also known as the material derivative or the
substantial derivative), and is written

DA

Dt
≡ ∂A

∂t
+ (

⇀
v · ∇)A, (1)

where
⇀
v is the velocity of the fluid element. See Fig. 1. In a given flow field, however, it is

customary to adopt the Eulerian specification where quantities such as A are described as
a field, i.e., a function of space and time, A(

⇀
r, t). This means that any property of a fluid

element changes in time for two reasons: first because the field A is an explicit function of
time, but second because the element is moving in space.

The definition of the convective derivative holds for vector fields as well, and one of the
most important vector fields is the velocity itself,

⇀
v(

⇀
r, t). It is important because D

⇀
v/Dt is

the acceleration of a fluid element and is the quantity needed in expressing Newton’s second
law for the fluid element. (This is the Lagrangian specification, where each fluid element is
followed, and the convective derivative is needed to convert between the two specifications.)
In this case, we have

D
⇀
v

Dt
=
∂

⇀
v

∂t
+ (

⇀
v · ∇)

⇀
v. (2)

This relation holds for any field, vector or scalar.

Example

Consider a point source of fluid with a constant rate of mass entry, Q = dm/dt = constant,
a simple model for the solar wind. A distance r from the point source, conservation of mass
requires

Q = (4πr2)ρvr, (3)

where the quantity ρvr is the “mass flux,” i.e., mass per-unit-area per-unit-time, and
⇀
v = vrr̂

is the time-independent velocity field

vr(r) =
Q

4πρr2
(4)
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Figure 1: Motion of a fluid element.

which in this example is spherically symmetric and is only a function of r. With this spherical
symmetry, the convective derivative of

⇀
v is

D
⇀
v

Dt
= vr

(
∂vr
∂r

)
r̂ = −

(
Q

4πρ

)2
2

r5
r̂ (5)

where I have assumed that the density ρ is constant. This is the acceleration of a fluid
element as a function of position, but we can obtain the acceleration as a function of time
in the following manner. Since vr is only a function of r, we can use separation of variables
to solve the differential equation vr = dr/dt∫ t

t0

dt′ =

∫ r

r0

4πρ

Q
r′2dr′ (6)

and obtain

r(t) =

[
r30 +

3Q

4πρ
(t− t0)

]1/3
. (7)

Taking a time derivative dr/dt gives the radial velocity as a function of time for a fluid
element, and a second time derivative gives the acceleration

ar(t) =
d2r

dt2
= −2

9

(
3Q

4πρ

)2 [
r30 +

3Q

4πρ
(t− t0)

]−5/3
, (8)

where the density ρ is still constant. You can obtain the same answer by inserting the
solution for r sinto the convective derivative of

⇀
v (see Problem 1).

Note that if r0 = 0, i.e., the element starts at the origin, then as t→ t0 the acceleration
becomes singular. This, of course, is a limitation of our simplified model, and the fact that
r0 → 0 is not realistic.
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Problems

1. For a point source of mass with constant Q and a radially symmetric constant ρ, we
obtained

D
⇀
v

Dt
= arr̂ = −

(
Q

4πρ

)2
2

r5
r̂. (9)

Obtain an expression for ar(t) by inserting r(t) into the convective derivative and
compare it to the result obtained by direct differentiation, d2r/dt2.

2. Perform the same analysis as in the Example and in Problem 1, but for the case where
the density depends on the radial position as a power law, i.e., ρ(r) = A/rm, where A
is a constant (Q is still constant). This is more realistic as it allows for the density to
decrease as the fluid element moves away from the source. That is, (a) solve for vr(r)
and then r(t) by integrating dt = dr/vr, and (b) obtain an expression for ar in two
different ways, (1) by differentiating twice and (2) by using the convective derivative.
Compare your two answers.

2 The Euler equation

If we apply Newton’s second law
⇀

F = d
⇀
p/dt to a fluid element of volume V0, we obtain

−(∇P )V0 =
D

Dt
(ρV0

⇀
v) , (10)

where P (
⇀
r, t) is the pressure field. That the left-hand-side is the force can be seen from a one-

dimensional treatment: If the fluid element is a small cube of extent dx with a cross-sectional
area A, then the net force in the x̂ direction due to the pressure difference is [−(P + dP ) +
P ]A = −(dP/dx)V0, where V0 = Adx. Similar treatment of the other dimensions results
in the gradient operator. Since the fluid element has constant mass, the quantity ρV0 is
constant, and we are left with the Euler equation

ρ

(
∂

∂t
⇀
v +

⇀
v · ∇⇀

v

)
= −∇P +

⇀

Fext (11)

where
⇀

Fext are “external” forces (per-unit-volume), which includes not only gravity and
fictitious forces like the Coriolis force, but also “internal” forces like viscosity and surface
tension.

Example

Again consider our point source Q with constant density. We can calculate the pressure
P as a function of radial position r from Eq. (11), whose radial component in spherical
coordinates becomes

−dP
dr

= ρ
D

⇀
v

Dt
= −

(
Q

4π

)2
2

ρr5
. (12)
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Integrating from ∞ to r gives

P (r) = P∞ −
(
Q

4π

)2
1

2ρr4
, (13)

where P∞ = P (r → ∞). Notice that P∞ must be large so that P remains finite near the
origin. This pressure must be high in order to slow down the fluid as it convects outward.
“Note that seemingly innocuous assumptions (constant density and constant mass rate) have
generated a completely unphysical situation...This is how many problems in fluid dynamics
challenge the intuition; the physical implications of many assumptions are often not clear
until an actual calculation is done.”1

If the density varies inversely with r2 (see Problem 3), then you can show that both the
pressure and velocity are independent of r! This still is not a good model for the solar wind,
but at least the pressure is not increasing with r. However, if the fluid is a perfect gas,
the temperature must be increasing with r, and we would be left with including a heating
mechanism in our model.

Problems

3. Solve for the pressure as a function of radius if the density is a power law, as in Problem
2.

4. Show that the Euler equation (with no external forces) can be written in flux conser-
vative form

∂

∂t
(ρ

⇀
v) +∇ · (ρ⇀

v
⇀
v + P I) = 0, (14)

where I is the unit tensor and

P I =

 P 0 0
0 P 0
0 0 P

 (15)

is the pressure tensor for a symmetric, isotropic medium.

5. Find an expression for the pressure as a function of position in a fluid of density ρ at
rest in a constant gravitational field. That is, let

⇀

Fext = ρ
⇀
g = −ρgẑ, which is the force

(per-unit-volume) exerted on a fluid element.

1Stanley M. Flatté, Fluid Dynamics for Natural Scientists, 1987.
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3 The continuity equation

The conservation of mass is expressed via the continuity equation

∂

∂t
(ρ) +∇ · (ρ⇀

v) = 0. (16)

Integrating over a volume V0 and invoking the divergence theorem gives

dm

dt
=

d

dt

∫
V0

ρ dV = −
∫
A0

(ρ
⇀
v) · dÂ, (17)

where A0 is the (closed) area that encloses the volume V0, and m is the mass of the fluid
in that volume. Equation (17) expresses the fact that any change in mass within V0 must
be compensated for by a flux of mass out of V0 through the surface area. Therefore, this
continuity equation expresses the principle of the conservation of mass.

There are other, useful, ways to write the continuity equation, Eq. (16). Expanding the
second term using the product rule,2

∇ · (ρ⇀
v) = ρ∇ · ⇀v +

⇀
v · ∇ρ, (18)

and grouping two terms to form the convective derivative, results in

Dρ

Dt
+ (∇ · ⇀v) ρ = 0. (19)

If the flow in incompressible, that is, the density of each fluid element remains constant as
it flows, then Dρ/Dt = 0. Under these conditions, Eq. (19) says that ∇ · ⇀v = 0. Therefore,
a velocity field that has zero divergence means that the flow is incompressible.

Example

We have already used the concept of mass conservation in Eq. (3). When the flow field is
time stationary and spherically symmetric, i.e., where there is no dependence on t, θ or φ,
and where the velocity has only a radial component,

⇀
v = vrr̂, Eq. (16) becomes

1

r2
∂

∂r

(
r2ρvr

)
= 0, (20)

or
r2ρvr = C, (21)

where C is a constant (i.e., not a function of r). A comparison with Eq. (3) shows that
C = Q/4π.

2In index notation, this reads
∂

∂xi
(ρvi) = ρ

∂vi
∂xi

+ vi
∂ρ

∂xi
.
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4 Stellar models

We now apply these fluid equations to stars and obtain a simple model of a self-gravitating,
spherically symmetric, hot gas. At this point, we won’t explicitly include the energy source
(fusion) that counterbalances gravity and keeps the star from collapsing, but we will include
it indirectly by assuming a temperature profile T (r) that, if maintained, will allow the star
to be in static equilibrium.

Static equilibrium

If we assume that our star is spherically symmetric and in static equilibrium, i.e., there is
no angular variation ∂/∂φ = ∂/∂θ = 0 nor time variation ∂/∂t = 0, and nothing is moving
⇀
v = 0, then the Euler equation is — in spherical coordinates —

dP

dr
= −GMrρ

r2
, (22)

where the right-hand-side is the gravitational force per-unit-volume exerted on a fluid element
a distance r from the center. According to Newton’s shell theorems, Mr is the mass interior
to the radius r,

Mr ≡
∫ r

0

4πr′2ρ(r′) dr′ (23)

which can be written in differential form

dMr

dr
= 4πr2ρ(r). (24)

We now have two (differential) equations for three functions of position, ρ, P , and Mr, so
we need a third, constitutive relationship, and the simplest is the so-called polytropic
relation

P = Kρα, (25)

where α is called the polytropic exponent. The polytropic exponent can be considered a
generalization of the adiabatic exponent.3 For historical reasons, the exponent α is sometimes

3Recall that for an adiabatic process, a fluid system follows a thermodynamic path in the P -V plane that
satisfies

PV γ = constant,

where γ = CP /CV is the ratio of heat capacities. The adiabatic condition can be expressed in terms of the
density ρ in the following way

P ∝ 1

V γ
∝ ργ ,

which has the same form as Eq. (25). A polytropic process (or a polytropic change of state) is one in which
the heat capacity C remains constant. It does not have to be at constant pressure nor constant volume. You
can show (see Problem 8) that the polytropic index can be expressed as

α =
CP − C
CV − C

,

so that α = γ if the heat capacity is zero, which is exactly the case for an adiabatic process.
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expressed as α = 1 + 1
n
, and n is called the polytropic index. The reason is that for ideal

gases the polytropic relation is equivalent to ρ ∝ T n, and the ρ-T plane played a major role
in the early development of thermodynamics.4 The justification for assuming the polytropic
relation is elegantly stated by Arthur Stanley Eddington, England’s premier astrophysicist
in the early 20th century, who stated

In general, whether the gas is perfect or imperfect, any value of the pressure can
be made to correspond to a given density by assigning an appropriate temper-
ature; our procedure thus amounts to imposing a particular temperature distri-
bution on the star. This will only correspond to possible actual conditions if the
temperature distribution is such that it can maintain itself automatically.5

Our three equations that we must solve for the three variables are therefore Eqs. (22),
(24), and (25). These can be expressed more elegantly by making them dimensionless. That
is, making the following change of variables

Mr = qM r = xR ρ = ρ0z
n (26)

where M =
∫ R
0
ρdV is the total mass of the star, R is the radius of the star, z is a dimen-

sionless temperature (see Footnote 4), and ρ0 is some density scale, as yet undetermined.
The pressure can be expressed as

P = Kρα = Kρ1+
1
n = K (ρ0z

n)1+
1
n =

(
Kρ

1+ 1
n

0

)
zn+1, (27)

and we can define P0 ≡ Kρ
1+ 1

n
0 as the central pressure. Using these new variable definitions,

our two differential equations become

dz

dx
= −A q

x2
dq

dx
= Bx2zn, (28)

4The ideal gas law, PV = nRT can be written

P =

(
R

M

)
ρT,

where M is the molar mass. Combining this with Eq. (25) gives ρ ∝ Tn.
5A. S. Eddington, The Internal Constitution of the Stars, Dover 1959; originally published 1926, Cam-

bridge University Press. In practice, the temperature distribution is determined by two more differential
equations. First, the “luminosity” that flows through a sphere of radius r, Lr

dLr
dr

= ε4πr2ρ,

where ε is the energy generated per-unit-mass per-unit-time, or the power generated per-unit-mass at radius
r. The physical mechanism of energy generation must be determined, for example nuclear fusion, before ε(r)
can be chosen. The second equation must determine the temperature gradient, or must express the fact that
the luminosity — because it is energy flow — must be consistent with the temperature gradient. For the
case where radiation (photons) carries the energy, this becomes

Lr = −4πr2
4acT 3

3κρ

dT

dr
,

where a is the Stefan-Boltzmann constant and κ is the absorption coefficient. Note that energy flows in a
direction opposite to the temperature gradient.
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where

A =
GM

KRρ
1/n
0 (n+ 1)

B =
4πρ0R

3

M
. (29)

We are free to choose the two unknowns K and ρ0, and a logical choice is to let both A = 1
and B = 1. We can now eliminate q from these two first-order ODEs which results in one
second-order ODE, known as the Lane-Emden equation for stellar equilibrium

1

x2
d

dx

(
x2
dz

dx

)
= −zn. (30)

Lane-Emden functions

In general, the solutions to the Lane-Emden equation of index n are denoted zn, and are
known as the “Lane-Emden functions of index n.” There are three values of n (n = 0, 1, 5)
for which solutions are known in closed form. They are

z0 = 1− x2

6
z1 =

sinx

x
z5 =

(
1 +

x2

3

)−1/2
Normally, the solution to a second-order ordinary differential equation depends on two ar-
bitrary constants of integration. However, in this case, one of the constants must be set to
zero in order to obtain physically meaningful solutions (i.e., z must be finite at the origin),
and the other constant is determined by setting the boundary condition z = 1 at x = 0.
This is equivalent to defining ρ0 ≡ ρ(r = 0) as the central density.

Case 1: n = 0

For this solution, the (scaled) temperature is z = 1− x2/6, and decreases from z = 1 at the
star’s center to z = 5/6 at the star’s radius x = 1. The density turns out to be constant

ρ = ρ0z
0 = ρ0, (31)

and the (scaled) mass function q can be found from Eq. (28)

dq

dx
= x2z0 = x2, (32)

and integration gives q = x3/3, which is zero at the center — as it must be — and you can
check that after integration this gives the correct value for the total mass of the star.

Problems

6. Starting with the equations for hydrostatic equilibrium

dP

dr
= −ρGMr

r2
dMr

dr
= 4πr2ρ
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and the polytropic relation P = Kρ1+
1
n , Derive the Lane-Emden equation

1

x2
d

dx

(
x2
dz

dx

)
= −zn, (33)

where Mr = qM , r = xR, and ρ = ρ0z
n. NOTE: You will need to set the following

sets of constants to unity

4πρ0R
3

M
= 1

GM

RKρ
1/n
0 (n+ 1)

= 1.

These two equations simply determine the values of the two arbitrary constants ρ0 and
K.

7. Prove, by direct substitution, that the three Lane-Emden functions given above (z0,
z1, and z5) solve the Lane-Emden equation with the appropriate polytropic index n.

8. Show that the polytropic exponent can be written

α =
CP − C
CV − C

.

Use the fact that the first law of thermodynamics, dU = d̄Q− PdV , can be expressed
as CV dT = CdT − PdV because the change in internal energy is always dU = CV dT
and the heat energy absorbed is, for a general process, d̄Q = CdT .
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