|
b 28139k

l 380 I Chapter 11.  Eigensystems j

REFERENCES AND FURTHER READING:
Acton, Forman S. 1970, Numerical Methods That Work (New York:

Harper and Row). ;
Wilkinson, J.H., and Reinsch, C. 1971, Linear Algebra, vol. Il of Handbook

for Automatic Compurtation (New York: Springer-Verlag), p. 418, Chapter 12 Four_ier TI‘&HSfOI‘m

Stoer, J., and Bulirsch, R. 1980, /ntroduction to Numerical Analysis (New
York: Springer-Verlag), p. 356.

Smith, B.T., et al. 1976, Matrix Figensystem Routines — EISPACK SpeCtTa} MethOdS
Guide, 2nd ed., vol. 6 of Lecture Notes in Computer Science (New
York: Springer-Verlag).

12.0 Introduction

A very large class of important computational problems falls under the
general rubric of “Fourier transform methods” or “spectral methods.” For
some of these problems, the Fourier transform is simply an efficient compu-
tational tool for accomplishing certain common manipulations of data. In
other cases, we have problems for which the Fourier transform (or the related
“power spectrum”) is itself of intrinsic interest. These two kinds of problems
share a common methodology.
Largely for historical reasons the literature on Fourier and spectral meth-
ods has been disjoint from the literature on “classical” numerical analysis. In
this day and age there is no justification for such a split. Fourier methods
are commonplace in research and we shall not treat them as specialized or
arcane. At the same time, we realize that many computer users have had
relatively less experience with this field than with, say, differential equations
or numerical integration. Therefore our summary of analytical results will be
more complete. Numerical algorithms, per se, begin in §12.2.
A physical process can be described either in the time domain, by the ‘
values of some quantity h as a function of time ¢, e.g. h(t), or else in the
frequency domain, where the process is specified by giving its amplitude H
(generally a complex number indicating phase also) as a function of frequency
. S, that is H(f), with —co < f < co. For many purposes it is useful to think
of h(t) and H(f) as being two different representations of the same function.
One goes back and forth between these two representations by means of the
Fourier transform equations,

H = [ wremisar
ey (12.0.1)
me)= [ H(pemisty

If ¢ is measured in seconds, then f in equation (12.0.1) is in cycles per
second, or Hertz (the unit of frequency). However, the equations work with
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other units. If k is a function of position z (in meters), H will be a function
of inverse wavelength (cycles per meter), and so on. If you are trained as
a physicist or mathematician, you are probably more used to using angular
frequency w, which is given in radians per sec. The relation between w and
[, H(w) and H(f) is

w=2nf H(w) = [H(f) p—wyan (12.0.2)

and equation (12.0.1) looks like this

Hie) = [ = n)etds

o (12.0.3)
h(t) = 51; /; H(w)e*iwtdw

We were raised on the w-convention, but we changed! There are fewer factors
of 27 to remember if you use the f-convention, especially when we get to
discretely sampled data in §12.1.

From equation (12.0.1) it is evident at once that Fourier transformation
is a lineor operation. The transform of the sum of two functions is equal to
the sum of the transforms. The transform of a constant times a function is
that same constant times the transform of the function.

In the time domain, function A(t) may happen to have one or more spe-
cial symmetries It might be purely real or purely imaginary or it might be
even, h(t) = h(—t), or odd, h(t) = —h(—t). In the frequency domain, these
symmetries lead to relationships between H(f) and H(—f). The following
table gives the correspondence between symmetries in the two domains:

If.. then..

h()lsreal : H(- f)=[ (I

h(t) is imaginary ( ) =-[H(*

h(t) is even (=f)=H(f) [e H(f)is even]
h(t) is odd ( N=-H(f) [Le H(f)isodd]
R(t) is real and even H(f) is real and even

h(t) is real and odd H(f) is imaginary and odd

h(t) is imaginary and even ~ H(f) is imaginary and even

h(t) is imaginary and odd H(f) is real and odd

In subsequent sections we shall see how to use these symmetries to increase
computational efficiency.

Here are some other elementary properties of the Fourier transform.
(We'll use the “<=>" symbol to indicate transform pairs.) If

h(t) <= H([)
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is such a pair, then other transform pairs are

1
h(at) <= mH(g) “time scaling” (12.0.4)
¢
] h(~ ) <> H(bf) “frequency secaling” (12.0.5)
h(t — to) <> H(f) e*™ifto “time shifting” (12.0.6)

h(t) e 2 ot «m H(f — fo) “frequency shifting” {12.0.7)

With two functions A(t) and g(¢), and their corresponding Fourier trans-
forms H(f) and G(f), we can form two combinations of special interest. The
convolution of the two functions, denoted g * h, is defined by

gxh= j;oo g(r)h(@ —7) dr (12.0.8)

Note that g * h is a function in the time domain and that g+ h = h + g. It
turns out that the function g + h is one member of a simple transform pair

g*h <= G(fIH(f) “Convolution Theorem” (12.0.9)

&

In other words, the Fourier transform of the convolution is just the product
of the individual Fourier transforms.
The correlation of two functions, denoted Corr(g, h), is defined by

Corr(g, k) = feo g(r + t}h(r) dr (12.0.10)

—Cco

The fzorrelation is a function of ¢, which is called the lag. It therefore lies in
the time domain, and it turns out to be one member of the transform pair:

Corr(g, h) <= G(f)H*(f) “Correlation Theorem” (12.0.11)

[More generally, the second member of the pair is G (fYH(—f), but we are
restricting ourselves to the usual case in which g and h are real functions,
so we take the liberty of setting H(—f) = H*(f).] This result shows that
multiplying the Fourier transform of one function by the complex conjugate
of the Fourier Transform of the other gives the Fourier transform of their cor-
relation. The correlation of a function with itself is called its autocorrelation.
In this case (12.0.11) becomes the transform pair

Corr(g,g) < |G(f)|2 “Wiener-Khinchin Theorem” (12.0.12)

—4‘+




| 384 } Chapter 12.  Fourier Transform Spectral Methods

The total power In a signal is the same whether we compute it in the
time domain or in the frequency domain. This result is known as Parseval’s
theorem:

o0

() dt = [ \H()? df (12.0.13)

J —oco

oo

Total Power = /

— 00

Frequently one wants to know “how much power” is contained in the
frequency interval between f and f 4+ df. In such circumstances one does not
usually distinguish between positive and negative f, but rather regards f as
varying from 0 (“zero frequency” or D.C.) to +oo. In such cages, one defines
the one-sided power speciral density (PSD) of the function h as

BN = |HNP +H-f  0<f<oo (12.0.14)

so that the total power is just the integral of Py (f) from f = 0 to f = oce.
When the function k(%) is real, then the two terms in (12.0.14) are equal,
so Pr(f) = 2|H( #)|?. Be warned that one occasionally sees PSDs defined
without this factor two. These, strictly speaking, are called two-sided power
spectral densities, but some books are not careful about stating whether one-
or two-sided is to be assumed. We will always use the one-sided density given
by equation (12.0.14). Figure 12.0.1 contrasts the two conventions.

If the function h(¢) goes endlessly from —oo < t < oo, then its total power
and power spectral density will, in general, be infinite. Of interest then is the
(one- or two-sided) power spectral density per unit time. This is computed
by taking a long, but finite, stretch of the function h(t), computing its PSD
[that is, the PSD of a function which equals A(t) in the finite stretch but
is zero everywhere else], and then dividing the resulting PSD by the length
of the stretch used. Parseval's theorem in this case states that the integral
of the one-sided PSD-per-unit-time over positive frequency is equal to the
mean-square amplitude of the signal A(z).

You might well worry about how the PSD-per-unit-time, which is a func-
tion of frequency f, converges as one evaluates it using longer and longer
stretches of data. This interesting question is the content of the subject of
“power spectrum estimation,” and will be considered below in §12.8-§12.9.
A crude answer for now is: the PSD-per-unit-time converges to finite val-
ues at all frequencies ezcept those where h(t) has a discrete sine-wave (or
cosine-wave) component of finite amplitude. At those frequencies, it becomes
a delta-function, i.e. a sharp spike, whose width gets narrower and narrower,
but whose area converges to be the mean-square amplitude of the discrete
sine or cosine component at that frequency.

We have by now stated all of the analytical formalism that we will need
in this chapter with one exception: In computational work, especially with
experimental data, we are almost never given a continuous function h(t) to
work with, but are given, rather, a list of measurements of h(t;) for a discrete
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| A

Py(f) (one-sided)

(b)

W(f) (two-sided)

*f 0 f
(c)

Figure 12.0.1 Normalizations of one- and two-sided power spectra. The area under the
square of the function, (a), equals the area under its one-sided power spectrum at positive
frequencies, (b), and also equals the area under its two-sided power spectrum at positive
and negative frequencies, (c).

set of t;’s. The profound implications of this seemingly unimportant fact are
the subject of the next section.

REFERENCES AND FURTHER READING:

Champeney, D.C. 1973, Fourier Transforms and Their Physical Applica-
tions (New York: Academic Press).

Elliott, D.F., and Rao, K.R. 1982, Fast Transforms: Algorithms, Analy-
ses, Applications (New York: Academic Press).

T



*

| 386 I Chapter 12.  Fourier Transform Spectral Methods

12.1 Fourier Transform of Discretely Sampled
Data

In the most common situations, function A(#) is sampled (i.e., its value is
recorded) at evenly spaced intervals in time. Let A denote the time interval
between consecutive samples, so that the sequence of sampled values is

hp=h(nA) n=..,-3-2-1,01,23,... (12.1.1)

The reciprocal of the time interval A is called the sampling rate; if A is
measured in seconds, for example, then the sampling rate is the number of
samples recorded per second.

Sampling Theorem and Aliasing

For any sampling interval A, there is also a special frequency f., called
the Nyquist critical frequency, given by

Je=5% (12.1.2)

If a sine wave of the Nyquist critical frequency is sampled at its positive peak
value, then the next sample will be at its negative trough value, the sample
after that at the positive peak again, and so on. Expressed otherwise: Critical
sampling of a sine wave is two sample points per cycle. One frequently chooses
to measure time in units of the sampling interval A. In this case the Nyquist
critical frequency is just the constant 1/2.

The Nyquist critical frequency is important for two related, but distinct,
reagsons. Ome is good news, and the other bad news. First the good news.
It is the remarkable fact known as the sampling theorem: If a continuous
function A(t), sampled at an interval A, happens to be band-width limited to
frequencies smaller in magnitude than f., ie., if H(f) = 0 for all |f| > f.,
then the function h(t) is completely determined by its samples h,. In fact,
h(t) is given explicitly by the formula

B(t) = A +Zm o %—T{‘fiﬁﬂ (12.1.3)

n——oo

This is a remarkable theorem for many reasons, among them that it shows
that the “information content” of a band-width limited function is, in some
sense, infinitely smaller than that of a general continuous function. Fairly
often, one is dealing with a signal which is known on physical grounds to
be band-width limited (or at least approximately band-width limited). For
example, the signal may have passed through an amplifier with a known, finite
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frequency response. In this case, the sampling theorem tells us that the entire
information content of the signal can be recorded by sampling it at a rate A~}
equal to twice the maximum frequency passed by the amplifier (cf. 12.1.2).

Now the bad news. The bad news concerns the effect of sampling a
continuous function that is not band-width limited to less than the Nyquist
critical frequency. In that case, it turns out that all of the power spectral
density which lies outside of the frequency range —f. < f < f, is spuriously
moved into that range. This phenomenon is called aliasing. Any frequency
component outside of the frequency range (—f., f.) is aliased (falsely trans-
lated) into that range by the very act of discrete sampling. You can readily
convince yourself that two waves exp(27if1t) and exp(2wi fot) give the same
samples at an interval A if and only if f; and f; differ by a multiple of 1/A,
which is just the width in frequency of the range (—f,, f.). There is little
that you can do to remove aliased power once you have discretely sampled a
signal. The way to overcome aliasing is to (i) know the natural band-width
limit of the signal—or else enforce a known limit by analog filtering of the
continuous signal, and then (ii) sample at a rate sufficiently rapid to give two
points per cycle of the highest frequency present. Iigure 12.1.1 illustrates
these considerations.

To put the best face on this, we can take the alternative point of view:
If a continuous function has been competently sampled, then, when we come
to estimate its Fourier transform from the discrete samples, we can assume
(or rather we might as well assume) that its Fourier transform is equal to
zero outside of the frequency range in between —f, and f,. Then we look to
the Fourier transform to tell whether the continuous function has been com-
petently sampled (aliasing effects- minimized). We do this by looking to see
whether the Fourier transform is already approaching zero as the frequency
approaches f. from below, or —f, from above. If, on the contrary, the trans-
form is going towards some finite value, then chances are that components
outside of the range have been folded back over onto the critical range.

Discrete Fourier Transform

We now estimate the Fourier transform of a function from a finite number
of its sampled points. Suppose that we have N consecutive sampled values

hw = h(ty), te=kdA, k=0,1,2,.. N1 (12.1.4)

s0 that the sampling interval is A. To make things simpler, let us also suppose
that ¥V is even. If the function A(¢) is nonzero only in a finite interval of time,
then that whole interval of time is supposed to be contained in the range of
the N points given. Alternatively, if the function h(t) goes on forever, then
the sampled points are supposed to be at least “typical” of what h(t) looks
like at all other times.

With N numbers of input, we will evidently be able to produce no more
than N independent numbers of output. So, instead of trying to estimate the
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h(t)

A !

V4

(a)

H(f)

(b)

Figure 12.1.1. The continuous function shown in (a) is nonzero only for a finite interval of
time T. Tt follows that its Fourier transform, shown schematically in (b), is not bandwidth
limited but has finite amplitude for all frequencies. If the original function is sampled with
a sampling interval A, as in (a), then the Fourier transform (c) is defined only between
plus and minus the Nyquist critical frequency. Power outside that range is folded over or
“aliased” into the range. The effect can be eliminated only by low-pass filtering the original
function before sampling.

Fourier transform H(f) at all values of f in the range —f; to f., let us seek
estimates only at the discrete values

N
(12.1.5)

The extreme values of n in (12.1.5) correspond exactly to the lower and up-
per limits of the Nyquist critical frequency range. If you are really on the
ball, you will have noticed that there are N + 1, not N, values of n in
(12.1.5); it will turn out that the two extreme values of n are not inde-
pendent (in fact they are equal), but all the others are. This reduces the
count to N,

The remaining step is to approximate the integral in (12.0.1) by a discrete
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sum:
o0 ) N-1 ) N—-1 -
H(fn) :f h(t)e‘?mf”tdt . Z hi e2mf”t"A = Z b e2'rrzkn/N
- k=0 k=0
(12.1.6)

Here equations (12.1.4) and (12.1.5) have been used in the final equality. The
final summation in equation (12.1.6) is called the discrete Fourier transform
of the N points hy. Let us denote it by H,,

N-—-1
Hy= ) by e2mibn/N (12.1.7)
k=0

The discrete Fourier transform maps N complex numbers (the hy’s) into IV
complex numbers (the H,,’s). It does not depend on any dimensional param-
eter, such as the time scale A. The relation (12.1.6) between the discrete
Fourier transform of a set of numbers and their continuous Fourier trans-
form when they are viewed as samples of a continuous function sampled at
an interval A can be rewritten as

H(f,) ~ AH, (12.1.8)

where f, is given by (12.1.5).

Up to now we have taken the view that the index n in (12.1.7) varies
from —N/2 to N/2 (ef. 12.1.5). You can easily see, however, that (12.1.7) is
periodic in n, with period N. Therefore, H_, = Hy_, n=1,2,.... With
this conversion in mind, one generally lets the n in H, vary from 0 to N — 1
(one complete period). Then n and & (in hy) vary exactly over the same
range, so the mapping of N numbers into N numbers is manifest. When this
convention is followed, you must remember that zero frequency corresponds to
n = 0, positive frequencies 0 < f < f, correspond to values 1 <n < N/2 -1,
while negative frequencies —f. < f < 0 correspond to N/2+1<n <N —1.
The value n = V/2 corresponds to both f = f, and f = —f,.

The discrete Fourier transform has symmetry properties almost exactly
the same as the continuous Fourier transform. For example, all the symme-
tries in the table following equation (12.0.3) hold if we read hy for h(t), H,
for H(f), and Hy_,, for H(—f). (Likewise, “even” and “odd” in time refer
to whether the values hy at &k and N — k are identical or the negative of
each other.)

-..——4—‘——
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The formula for the discrete inverse Fourier transform, which recovers
the set of hy's exactly from the H,'s is:

N—-1
hi == > Hy e 2mkn/N (12.1.9)
n=0

1
N

Notice that the only differences between (12.1.9) and (12.1.7) are (i) changing
the sign in the exponential, and (ii) dividing the answer by N. This means
that a routine for calculating discrete Fourier transforms can also, with slight
modification, calculate the inverse transforms.

The discrete form of Parseval’s theorem is

N—1 =
> |l = v > Hal? (12.1.10)
k=0 n=0

There are also discrete analogs to the convolution and correlation theorems
(equations 12.0.9 and 12.0.11), but we shall defer them to §12.4 and §12.5,
respectively.
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12.2 Fast Fourier Transform (FFT)

How much computation is involved in computing the discrete Fourier
transform (12.1.7) of N points? For many years, until the mid-1960s, the
standard answer was this: Define W as the complex number

W = e2mi/N (12.2.1)
Then (12.1.7) can be written as
N-1
Ho= Y, W (12.2.2)
k=0
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In other words, the vector of hy’s is multiplied by a matrix whose (n, k)"
element is the constant W to the power n x k. The matrix multiplication pro-
duces a vector result whose components are the H,,’s. This matrix multipli-
cation evidently requires N? complex multiplications, plus a smaller number
of operations to generate the required powers of W. So, the discrete Fourier
transform appears to be an O(N?) process. These appearances are deceiving!
The discrete Fourier transform can, in fact, be computed in O(N log, N) op-
erations with an algorithm called the Fast Fourier Transform, or FFT. The
difference between NV log, NV and N? is immense. With N = 108, for example,
it is the difference between, roughly, 30 seconds of CPU time and 2 weeks of
CPU time on a microsecond cycle time computer. The existence of an FFT
algorithm became generally known only in the mid-1960s, from the work of
J.W. Cooley and J.W. Tukey, who in turn had been prodded by R.L. Garwin
of IBM Yorktown Heights Research Center. Retrospectively, we now know
that a few clever individuals had independently discovered, and in some cases
implemented, fast Fourler transforms as many as 20 years previously (see
Brigham for references). '

One of the earliest “discoveries” of the FF'T, that of Danielson and Lane-
zos in 1942, still provides one of the clearest derivations of the algorithm.,
Danielson and Lanczos showed that a diserete Fourier transform of length NV
can be rewritten as the sum of two discrete Fourier transforms, each of length
N/2. One of the two is formed from the even-numbered points of the original
N, the other from the odd-numbered points. The proof is simply this:

N-1 B
Fk — Z eEfrmi’c/ij

=0
N/2—1 N/2—1
_ Z e27r'.:k(2j)/Nf2j+ Z e27rzk(23+1)/Nf2j+1
£ — (12.2.3)
N/2—1 Nj2—1
_ Z e2mk3/’(N/2)f2j+Wk Z eIV
— 4=0
=F+WEF?

In the last line, W is the same complex constant as in (12.2.1), Ff denotes
the k** component of the Fourier transform of length N/2 formed from the
even components of the original f;’s, while F is the corresponding transform
of length N/2 formed from the odd components. Notice also that k in the
last line of (12.2.3) varies from 0 to NV, not just to N/2. Nevertheless, the
transforms F and FY are periodic in k& with length N/2. So each is repeated
through two cycles to obtain Fj.

The wonderful thing about the Danielson-Lanczos Lemma is that it can
be used recursively. Having reduced the problem of computing Fy to that of
computing F and Fy, we can do the same reduction of Fy to the problem
of computing the transform of its N/4 even-numbered input data and N/4
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