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Abstract— In this paper we suggest self-reconfigurable control
for dual-quaternion systems with unknown control direction .
The technique is based on the creation of multiple equilibrium
surfaces for the system in the extended state space. We describe
the mathematical tools of dual quaternions and technique
required to design such system. Examples are presented to
illustrate the proposed method.

I. INTRODUCTION

As it is well known, in application to mechanical systems,
namely in robotics, spacecraft control and others the quater-
nion formulation of the rotational kinematics has certain
advantages. For example, it allows easily design the rota-
tional kinematic part of the control by using the quaternion
error. Further extension of this technique known as dual-
quaternions makes it possible to represent by one dual-
quaternion variable both rotational and translational spatial
rigid body displacements. The dynamics in this case should
be represented via dual-numbers and/or dual-vectors by in-
troducing into the real numbers the dual unit ε satisfying the
property ε2 = 0 . The space of dual-quaternions is actually a
Clifford algebra. The models of mechanical systems that in-
clude many rotational and translational parts as well as actua-
tor and other dynamics in this case have the multidimensional
state space such that each of the dimensions is represented
by dual quaternion. By combining a dual quaternion-based
dynamic representation with sliding-mode control approach,
simultaneous rotation and translation control can be achieved
for spatial rigid body systems, where the dynamics contain
multiple sources of uncertainty and unmodeled effects. In
this work we use dual quaternion models in combination with
self-configurable variable structure/sliding-mode control first
suggested in the work [1].

Classical variable structure approach has been widely used
for the problems of dynamic systems control and observation
due to finite time convergence, robustness to uncertainties,
and insensitivity to external disturbances especially in sliding
mode (for basic ideas see, for example, [2]). The main thrust
of the sliding mode control research for many years has been
in designing an appropriate one-component sliding manifold
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described by the equations

σi(t, x) = 0 (1)

where σ = col(σ1, ..., σm) and the goal of the design was to
make the system reach their intersection

{σ(t, x) = 0} =

m∩
i=1

{σi(t, x)} = 0 (2)

The present work concentrates, instead, on the design of
equilibrium sets in the state space with more complicated
structure than just the intersection of several one-component
manifolds.

Robust control of various classes of uncertain nonlinear
systems has been widely researched in controls literature .

A particularly challenging class of uncertain systems are
those containing uncertainty in the control sign . The control
sign in this context represents the control direction - the con-
trol force or torque direction, for example, under any given
control command. While many of the systems addressed
in previous controls literature concern systems with known
time-varying control direction, control design for systems
with unknown control direction is a much more challenging
task.

The technique [1] was later extended to a larger class
in [3]. The application of this method is especially useful
for the mechanical systems acting in unpredictable uncertain
environment. One of the successful examples is the design of
the ABS system for the ground vehicles and landing aircrafts
[4].

The method that was presented in [1], uses a purely
robust feedback technique to achieve finite-time conver-
gence to a sliding manifold in the presence of unknown
control direction. This robust feedback control design is
much less computationally intensive due to the fact that it
requires no monitoring functions, function approximators,
or online adaptive laws. By applying this computationally
efficient control scheme with a compact dual-quaternion-
based dynamic paramerization, an effective and versatile
control method can be developed to achieve simultaneous
translational and rotational control of a spatial rigid body.

To achieve computationally efficient six degree of freedom
(DOF) control (i.e., simultaneous translational and rotational
control) of a spatial rigid-body system, proper choice of the
position and orientation vector parameterization is critical.



Three-element orientation vectors such as Euler angles can
provide a unified representation of position and orientation;
however, the Euler parameterization has inherent singular-
ities in the parametrization. The unit quaternion has the
benefit that it does not suffer from singularities. However, it
has been shown that quaternion-based controller design can
be complicated by the fact that the position and orientation
errors are calculated separately [5], [6]. To eliminate the need
for control designs using two separate loops for controlling
rotation and translation, dual quaternions are widely regarded
as the most compact and efficient means for simultaneously
representing translational and rotational motion [5], [7], [8].

By utilizing multi component sliding surfaces based on
the dual quaternion norms sliding mode control algorithms
developed in this paper allow to achieve finite-time conver-
gence to a sliding manifold for a class of dual-quaternion-
based systems with unknown control input direction. The
result is a robust control law, which is rigorously proven to
achieve finite-time convergence to a sliding manifold in the
presence of unknown control direction, without the use of
function approximators or online parameter adaptation.

II. MATHEMATICAL PRELIMINARIES

In this section, we present the mathematical concepts
of dual vectors and dual quaternions required to formulate
proper the class of systems and the suggested control algo-
rithm.

As it is known, one can formally extend the set of real
numbers R by adding a dual factor ϵ with nilpotent property
ϵ2 = 0 and considering dual numbers of the form x̂ = x+ϵx′.
The set of such numbers DR is called a set of dual numbers.
In a similar way, we can extend Rn and Cn, thus obtaining
the sets of dual vectors DRn and DCn and dual quaternions
DHn. Namely, dual quaternions are defined as

q̂ = q + ϵq′ (3)

where q ∈ H and q′ ∈ H are quaternions [9]. The product
of dual quaternions is defined as

q̂1 ◦ q̂2 = q1 ◦ q2 + ϵ(q′1 ◦ q2 + q1 ◦ q′2), (4)

where in the right hand side the symbol ◦ is a standard
product of quaternions.

A 6-DOF transformation consisting of a rotation q fol-
lowed by a translation p ∈ R3, expressed in the body frame,
can be represented by a dual quaternion by setting

q′ =
1

2
q ◦ [0,p]. (5)

A dual quaternion defined in this matter has the characteristic
q ·q′ = 0 and is referred to as normalized. A normalized dual
quaternion can also be defined as

q̂ = q + ϵq′ϵγ (6)

where γ = q′/q. Based on (5), γ = 1
2p. The logarithm of a

dual quaternion can then be defined as

log q̂ = log(qeϵ
1
2p) =

1

2
(θn+ ϵps) (7)

where θ ∈ R and n ∈ R3 are respectively the rotational angle
and eigenaxis, and p ∈ R and s ∈ R3 are respectively the
norm and unit direction of p. The dual quaternion Ô ∈ DH
is defined as Ô = (1, 0, 0, 0)+ ϵ(0, 0, 0, 0) and the log (±Ô)
are dull null vectors [10].

Another useful function is sgnρ(x) ∈ Rn defined as [11]:

sgnρ(x) = [|x1|ρsgn(x1)...|xn|ρsgn(xn)]
T (8)

where x ∈ Rn is an arbitrary vector and ρ ∈ R. For a dual
vector x̂ = x1 + ϵx2 ∈ DRn,x1,x2 ∈ Rn [11]:

sgnρ(x̂) = sgnρ(x1) + ϵsgnρ(x2). (9)

III. MODEL

For a single rigid body the kinematic equation describing
simultaneously rotation and translation is

˙̂q =
1

2
q̂ ◦ [0̂, ω̂] (10)

where the dual vector ω̂ ∈ HR3, called a twist, is defined as

ω̂ = ω + ϵv = ω + ϵ(ṗ+ ω × p). (11)

where ω ∈ R3 is the angular velocity in the body frame. The
vectors p and ṗ refer to the position and body-frame time
derivatives in the body frame while the vector v ∈ R3 refers
to the translation velocity in the body frame.

In order to describe the dynamics of dual quaternions, the
dual inertia matrix is defined as

M̂ = m
d

dϵ
I+ ϵJ (12)

=


m d

dϵ + ϵJxx ϵJxy ϵJxz
ϵJxy m d

dϵ + ϵJyy ϵJyz
ϵJxz ϵJyz m d

dϵ + ϵJzz


where m is mass, J ∈ R3×3 is the inertia matrix, and
I ∈ R3×3 the real identity matrix. The operator d

dϵ is
complementary to the element ϵ. The operations ϵ and d

dϵ
are defined as follows

ϵv̂ = ϵ(v + ϵv′) = ϵv (13)
d

dϵ
v̂ =

d

dϵ
(v + ϵv′) = v′.

The inverse of the dual inertia matrix is defined as M̂−1 =
J−1 d

dϵ + ϵ 1
mI.

The dynamics of a rigid body is then defined as

˙̂ω = −M̂−1(ω̂ × M̂ω̂) + M̂−1f̂ (14)



where f̂ = f + ϵ τ ∈ DR3 is a dual vector called the force
motor with f ∈ R3 and τ ∈ R3 being the force and torque
vectors in the body frame. The kinematics and dynamics of
a single rigid body can be expanded on and generalized to
include multiple bodies:

˙̂qi =
1

2
q̂i ◦ [0̂, ω̂i] (15)

˙̂ωi = −M̂−1
i ĝi

(
q̂1, q̂2, ..., q̂n, ŵ1, ŵ2, ..., ŵn, t

)
(16)

+ M̂−1
i ĥi(q̂

1, q̂2, ..., q̂n, ŵ1, ŵ2, ..., ŵn, t)f̂ i

where the integer i represents a single rigid body and n
represents the total number of rigid bodies. In these equations
the functions ĝi and ĥi represent the internal forces/torques
and the direction of the control force f̂ i = ûi, respectively.

Introducing the generalized position dual quaternion vec-
tor Q̂ = [q̂1, q̂2, . . . , q̂n]T ∈ DHn and generalized dual
velocities vector Ω̂ = [ω̂1, ω̂2, . . . , ω̂n]T ∈ DRn the model
can be written as

˙̂
Q =

1

2
Q̂ ◦ [0̂, Ω̂] (17)

˙̂
Ω = −M̂−1ĝ(Q̂, Ω̂, t) + M̂−1ĥ(Q̂, Ω̂, t)û. (18)

If in the equations (15),(17) Ω̂ = [ω̂1, ω̂2, . . . , ω̂n]T is
considered as control the logarithmic feedback law can be
used to solve the kinematic regulation control problem [10]
ω̂i = −2k log λq̂i, k > 0 or

Ω̂ = −2k log λQ̂, (19)

where the log is understood componentwise. The parameter
λ is used to have the controller take the shorter path for the
identical equilibrium positions Ô and −Ô, where [10]

λ =

{
1, if q̂(0) · Ô ≥ 0
−1, otherwise.

(20)

Using (19), the sliding surface is described as

σ̂ = Ω̂+ 2k log λQ̂ = 0. (21)

IV. SELF-RECONFIGURABLE CONTROL

In this section, we present control algorithm to solve
stabilization problem to the sliding manifold

M = {[Q̂, Ω̂] ∈ DHn × DRn|σ̂(Q̂, Ω̂) = 0} (22)

introduced in the previous section. Let us note here, that σ̂
is an n-dimensional dual vector belonging to DRn which is
a linear vector space1. It is assumed that the dynamic model
(17), (18) contains an unknown, state- and time-varying
input gain matrix, which causes unmodeled variations that
manifest themselves as a priori unknown changes in the

1It is also a Banach space with corresponding norms. So that, for
example, if σ̂ = σ + ϵσ′, then this dual vector p-norm is ∥σ̂∥p =[
∥σ∥pp + ∥σ′∥pp

] 1
p =

[∑n
k=1(|σk|p + |σ′

k|p)
] 1
p , (p ≥ 1).

commanded control direction. Once the dual-quaternion-
based dynamic model is expressed in the general form, a
robust sliding mode controller will be presented, which will
be proven to mitigate the unknown control direction based
on the approach suggested in [1], [4] and achieve finite-time
convergence to a sliding surface.

Differentiating (21) we obtain

˙̂σ = B̂(Q̂, Ω̂, t)û+ F̂(Q̂, Ω̂, t) (23)

where B̂ = M̂−1ĥ(Q̂, Ω̂, t) ∈ DRn×n is a matrix defining
direction of the control action in σ-space. Our goal is to
develop a control algorithm that does not require knowledge
of B̂, but we assume that this dual matrix satisfy natural
conditions that follow from mechanical properties of the
controlled system. B̂ is such that (i) it is nonsingular almost
everywhere, and (ii) there exists matrix Û0 such that the
corresponding quadratic form ξT B̂Û0ξ is sign definite. The
matrix B̂Û0 can be state dependent. In this case a manifold
(if such exists ) in DHn × DRn space where this matrix
can become singular does not intersect with the desired
sliding manifold M at least in some area of the state space
DHn × DRn where the system trajectories evolve.

The main idea behind our control is in partitioning the σ̂-
subspace onto a grid comprised of concentric manifolds that
are spheres defined by ∥σ̂∥pp = ∆(t)k, where ∆(t) > 0 is
the variable grid step, k is a nonnegative integer and ∥ · ∥p
is a p-norm. Inside each layer Lk between these manifolds
Lk = {∆(t)k ≤ ∥σ̂∥pp ≤ ∆(t)(k + 1)} the control may be
constant, but its sign alternates from one layer to another.
We show that this control structure under a nonsingularity
condition results in a set of stable equilibrium spheres in
σ̂-subspace. Then we choose the dynamics of ∆(t) so that
eventually all spheres radii converge to zero, thus, stabilizing
σ̂ to the origin of the corresponding dual vector space.

The union of the concentric manifolds forms a switching
manifold:

G =
r∪

k=0,±1,...

Gk =
r∪

k=0,±1,...

{
x : ∥σ̂(x)∥pp = ∆(t)k

}
.

(24)
We pick û as

û = Û0sgn

[
sin

(
π
∥σ̂∥pp
∆(t)

)]
sgn(σ̂), (25)

where Û0 is a dual matrix control gain of the form:

Û0 = Kf
d

dϵ
+ ϵKτ (26)

where Kf and Kτ may be constant diagonal matrixes or
state dependent diagonal matrixes related to the gains for
translation and rotation respectively. The operators d

dϵ and ϵ
are included in the dual matrix control gain so that the real
(force) and dual (torque) components of the force motor f̂ are



associated with the dual (displacement) and real (rotation)
components of the sliding surface σ̂. Let us note that the
term sgn

[
sin

(
π

∥σ̂∥p
p

∆(t)

)]
is a changing sign scalar and the

last term sgn(σ̂) in (25) is a dual vector part of the control
that alternate signs in the quadrants of the corresponding dual
vector space DRn. It is needed to guarantee stability on one
of the sliding manifolds Gk.

The function ∆(t) is the following:

∆(t) = C − µ

∫ t

0

∥σ̂(τ)∥ppdτ, (27)

where C > 0 is chosen from the area of initial conditions
and µ > 0 is a control parameter regulating spheres’ radii
convergence rate.

In the Fig 1 we demonstrate the vector field of velocities
and one possible scenario of convergence toward the sliding
manifold (red line) using control (25). In this simulation
experiment the matrix B and the initial conditions were
chosen randomly.
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Fig. 1. Equilibrium manifolds in σ̂-space (p = 2). Red line shows one of
the actual trajectories converging to the manifold ∥σ̂∥pp = const.

Let us also note, that in (25) we used sin(πx) function
only for convenience and relate this control algorithm to
the one described in [3]. In fact, the main property that is
required from this function is the alternating sign. It does
not even have to be periodic. So the more general form of
the control algorithm is

û = Û0ψ

(∥σ̂∥pp
∆(t)

)
sgn(σ̂), , (28)

where the function ψ(x) is such that, for example, ψ(x) =
sign(x) if |x| ≤ 1, and ψ(x) = −sign(x) otherwise.

Proof: Here we provide the sketch of the proof just to
demonstrate our technique by considering the case of real
B̂. The general situation is treated similarly by considering

separately the real and dual part of the control (25). We will
also take p = 1, and real scalar Û0. The idea behind the
convergence proof is the following: we consider a Lyapunov
function with multiple zeroes:

V =

∣∣∣∣sin(π ∥σ̂∥1∆(t)

)∣∣∣∣ . (29)

V is positive everywhere except it is zero at the points where

∥σ̂∥1 = ∆(t)k (30)

k = 0,±1,±2, . . ..
The derivative of V along the system trajectories is

V̇ = sgn

[
sin

(
π
∥σ̂∥1
∆(t)

)]
cos

(
π
∥σ̂∥1
∆(t)

)
π
d

dt

[
∥σ̂∥1
∆(t)

]
.

(31)
Since the 1-norm can be represented as ∥σ∥1 = (sgnσ)Tσ
the derivative of ∥σ∥1 using (23) can be written as

d∥σ̂∥1
dt

= (sgnσ)T σ̇ = (sgnσ)T B̂û+ (sgnσ)T F̂, (32)

or using (25) we have

d∥σ̂∥1
dt

= (sgnσ)T B̂Û0(sgnσ)sgn

[
sin

(
π
∥σ̂∥1
∆(t)

)]
+ (sgnσ)T F̂. (33)

Combining this with (31) the Lyapunov function derivative
can be written as

V̇ =
π

∆(t)
(sgnσ)T B̂Û0(sgnσ) cos

(
π
∥σ̂∥1
∆(t)

)
+G, (34)

where we combined all terms that don’t depend on the
control in the variable G. By our assumption the quadratic
form with the matrix B̂Û0 in this expression is sign definite.
On the other hand at the points where V = 0 (∥σ̂∥1 = ∆(t)k)
the cos is +1 or −1, so at every other point it is guaranteed
that V̇ < 0 if the norm of Û0 is big enough. This proves the
stability some of the points (30). In fact, sliding mode will
start at one of these points and ∥σ̂∥1 = ∆(t)k will be true
after some moment of time.

Now using the expression for ∆ (27) and (30) we have

∥σ̂∥1 =

[
C − µ

∫ t

0

∥σ̂(τ)∥1dτ
]
k. (35)

The latter is stable equation that guarantees ∥σ̂∥1 → 0
exponentially as t→ ∞.



V. APPLICATION CASE

A. Case I:

In our first numerical example to test the control law (25),
(27) we consider a planar motion of the rigid body:

ẋ = vx

ẏ = vy

θ̇ = ω

v̇x = fx

v̇y = fy

ω̇ = τ (36)

where vx, vy are the velocity in the x and y direction, ω is
the angular velocity, and f̂ = [fx, fy, τ ]

T is the generalized
force vector that depends on the control u ∈ R3. f̂ and u are
related via an unknown 3×3 possibly state dependent matrix
B = B(X) (X = [x, y, vx, vy, θ, ω]

T ) satisfying conditions
listed on the previous page.

f̂ = B(X)u. (37)

Let our sliding surface be σ = [σ1 σ2 σ3]
T , where

σ1 = kxx+ vx

σ2 = kyy + vy

σ3 = kθθ + ω. (38)

The objective is to drive the system (36) to the origin with
an orientation of θ = 0. Differentiating σ we have

σ̇ = B(X)u+G. (39)

We used control (25), (27) with the following values:

[x, y, θ] = [2,−1.5,
π

4
]

C = .3

µ = .04

kx = .12

ky = .12

kθ = .1

U0 = .2I

(40)

In the Fig. 2 and Fig. 3 we demonstrate convergence to
the sliding manifolds and initial part of the convergence for
the variables x, y, θ.

B. Case II:

In our second numerical example we consider the 6-DOF
motion of a rigid body using dual quaternions:

˙̂q =
1

2
q̂ ◦ [0̂, ω̂]

˙̂ω = −M̂−1(ω̂ × M̂ω̂) + M̂−1f̂ (41)
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where q̂ is the dual quaternion, ω̂ is the dual velocity vector
and f̂ = [fx, fy, fz]

T + ϵ[τx, τy, τz]
T is the generalized force

vector that depends on the control û ∈ DR3. Let our sliding
surface be σ̂, where

σ̂ = (ω + kθθn) + ϵ(v + kpp) (42)

The objective is to drive the system (41) to the origin with
an orientation of θ = 0 or q = [1, 0, 0, 0].

In Fig. 4 we show the convergence of to real and dual
components of the sliding manifold. In the Fig. 5 and
Fig. 6 we demonstrate convergence for the rotational and
translational position respectively. For the purpose of this



simulation the following values were used:

q(0) = [.1739, .3392,−.8213, .4244]
p(0) = [2.5, 1.5,−1]

C = .3

µ = .04

kθ = .15

kp = .51

Kf = 5I

Kτ = 5I
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Fig. 4. Convergence of |σ̂|2 to k∆t
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VI. CONCLUSION

A novel sliding mode control law for dual quaternion
representation for a class of system was presented, which
achieve stability under unknown control direction. The al-
gorithm is based on multiple manifolds in dual quaternions

0 5 10 15 20 25 30 35 40

−1

−0.5

0

0.5

1

1.5

2

2.5

t

p

 

 

p
x

p
y

p
z

Fig. 6. Convergence of positions x, y, z

space that were created to adapt to the changing uncertainty
in the control direction. The control algorithm is universal
for a class of systems where the control where only partial
knowledge of B(x, t) is required.
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