
Engineering Notes
Energy-Optimal Solution

to the Lambert Problem

H. Leeghim∗ and B. A. Jaroux†

NASA Ames Research Center,

Moffett Field, California 94035

DOI: 10.2514/1.46606

Introduction

T HE Lambert problem offers a substantial way of determining
theminimumenergy transfer between twoknownpoints along a

Keplerian orbit. Most of the analysis for this problem relies on a
geometrical approach, since the problem’s definition is attuned to the
geometry [1,2]. The main idea of the Lambert minimum-energy
problem starts by defining the length between two position vectors.
Consequently, it states geometrically that the semimajor axis of the
minimum-energy orbit is related to the chord length and length of the
position vectors [1]. Currently, there is no other analytical approach
besides the geometric analysis for solving the problem. In this note,
however, an alternative analytical method for solving the Lambert
minimum-energy problem is proposed. Theminimum velocity at the
initial position is obtained by applying a constrained optimization
tool. As the initial position vector in the problem is fixed, it is
apparent that determining theminimum initial velocity is the same as
obtaining theminimum-energy orbit. Using the alternative technique
could give us new insight into solving various orbital problems.

Problem Formulation

The geometrical concept of solving the Lambert problem is briefly
reviewed in this section. The overall geometrical notations for the
Lambert problem are given in Fig. 1. There are two known position
vectors, r0 and r1, so that the transfer angle between them is denoted
as ��. This figure illustrates how the intersections of the dashed
circles can define the second focus, F0 or F00, of a possible orbit.
Therefore, there are two possible foci for a given value of semimajor
axis a. The minimum-energy orbit can be calculated by minimizing
the value of a. Note that the sum of the distances from the foci to any
point on the orbit is equal to the twice the semimajor axis. It is a well-
known fact that there is only one focus that determines theminimum-
energy orbit, where the two dark circles illustrated in Fig. 1 just
meet [1].

There are many orbital-element sets that describe an object in
orbit. In this note, the f and g expressions are chosen to describe
orbital maneuvers. The following relationship exists regarding two
position vectors and one initial-velocity vector v0 [3]:

r 1 � fr0 � gv0 (1)

where f and g are time-independent variables defined as

f� 1 � r1
p
�1 � cos����� (2)

g� r1r0 sin�����������
�p
p (3)

and the norms of r0 and r1 are expressed as r0 and r1, respectively, p
is the semiparameter, and� denotes the gravitational constant. Next,
note that the orbit energy is given by

E �� �
2a

(4)

Now, the Lambert problem based on the constrained optimization
technique is reformulated. For given r0 and r1, there exists a
semimajor axis that minimizes the performance index defined as

J � E (5)

subject to

fr0 � gv0 � r1 � 0 (6)

It is obvious that the smallest semimajor axis satisfying Eq. (6) is the
optimal Lambert solution. The unknown variables to be obtained in
this optimization problem are selected as x� � vT0 p �T by applying
f and g solutions in Eqs. (2) and (3).

At this point, the orbit energy can be described as

E � v
2
0

2
� �
r0

(7)

Note that because the second term of the right-hand side in Eq. (7) is
known and constant, the performance index can be redefinedwithout
loss of generality as

J �x� � 1

2
vT0v0 (8)

Minimum-Energy Orbit

The problem described in the above section is a well-formulated
optimization problem with equality constraints. By adjoining the
constraint with an undetermined Lagrange-multiplier vector, the
Hamiltonian is defined as

L� 1

2
vT0v0 � �T�fr0 � gv0 � r1� (9)

where � 2 R3 is the Lagrange-multiplier vector. To minimize the
performance index with respect to x constrained by Eq. (6), the
optimality condition is expressed as [4]

@L

@v0
� vT0 � g�T � 0 (10)

@L

@p
� �T

�
r1
p2
�1 � cos�����r0 �

r1r0 sin����
2

���������
�p3

p v0

�
� 0 (11)

From Eqs. (2) and (3), the following two relationships can be readily
obtained:
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r1
p2 �1 � cos����� � 1 � f

p
(12)

r1r0 sin����
2

���������
�p3

p � g

2p
(13)

Then, the second necessary condition in Eq. (11) is rewritten as

� T

�
1 � f
p

r0 �
g

2p
v0

�
� 0 (14)

Next, the Lagrange-multiplier vector from Eq. (10) and the initial-
velocity vector are given by

� T �� 1

g
vT0 (15)

v 0 �
r1 � fr0

g
(16)

Inserting the above twovariables into Eq. (14) andmultiplyingpg on
both sides yields

�rT1 � frT0 �
�
r0 � fr0 �

1

2
�r1 � fr0�

�
� 0 (17)

By manipulating the above equation, one can arrive at the second-
order equation with respect to f, described as

f2 � 2f� 2rT0 r1 � r21
r20

� 0 (18)

It is straightforward to find the solution of the equation, which is

f� 1�

�������������������������������
1� r

2
1 � 2rT0 r1
r20

s
(19)

Because f 	 1 for the case of eccentricity smaller than one, the final
value of f is chosen as

f� 1 �
���������������������������������
r20 � r21 � 2rT0 r1

p
r0

(20)

Now, by equating Eqs. (2) and (20), one can determine the
semiparameter so that

r1
p
�1 � cos����� �

���������������������������������
r20 � r21 � 2rT0 r1

p
r0

(21)

By arranging the above equation for p, the minimum-energy
semiparameter is described as

pmin �
r0r1���������������������������������

r20 � r21 � 2rT0 r1
p �1 � cos����� (22)

Note that the above semiparameter obtained by the optimization
approach is identical to the previously studied geometrical
minimum-energy solution in [2]. Finally, one can readily compute
f and g using Eqs. (2) and (3) so that the minimum initial velocity is
obtained as

v 0 �
�������������
�pmin

p

r0r1 sin����

�
r1 �

�
1 � r1

pmin

�1 � cos�����
�
r0

�
(23)

Summary

The simple approach of computing the minimum-energy orbit
given two position vectors is outlined here. In determining the
transfer angle, one can use both the dot and cross products:

cos���� � r
T
0 r1
r0r1

; sin���� � k r0 
 r1 k
r0r1

(24)

Next, compute the semiparameter using Eq. (22) and the minimum
velocity using Eq. (23). Then, the minimum semimajor axis for the
orbit is given by

amin ��
�

2

��
v20
2
� �
r0

�
(25)

and the eccentricity for the minimum energy is computed as

emin �
������������������
1 � pmin

amin

r
(26)

Conclusions

The Lambert problem was reformulated using an alternative way
that is different from the widely studied geometrical analysis. In this
note, a constrained optimization technique was addressed to solve
the Lambert minimum-energy problem. Finally, it was shown that
the result from the proposed approach matched the solution of the
geometrical approach. Applying the optimization approach to solve
the Lambert problem could provide new insight into solving a variety
of orbital problems.
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Fig. 1 Geometry for the Lambert problem.
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