

On the Quantumdynamics of Measurement

By Leon Hardy \& Mohamed Elhamdadi

Topics

- Introduction to Geometric Algebra
- Spacetime Algebra
- Measurements in Quantum Mechanics
- Proper Time Observable, Proper Spin \& Bell's Inequality
- Questions \& Conclusions

Geometric Algebra I - Complex Numbers

Any complex number can be written as, $x+i y$, where x, y are real numbers and the imaginary unit i has the property $i^{2}=-1$.
\square How can the square of a quantity be negative?
\square The question troubled many good Mathematicians for many years.
\square The work of Hamilton, Grassmann and Clifford addresses the question with a surprising geometrical approach.

Development of Geometric Algebra

\square Hamilton (1805-1865) discovered the quaternions and their relations $r^{2}=j^{2}=k^{2}=i j k=-1$.
\square Grassmann (1809-1877) was a German schoolteacher who was disappointed in lack of interest in his mathematical ideas - turned to Sanskrit (dictionary still used).
\square Clifford (1845-1879)
Cambridge mathematician and philosopher who united Grassmann's ideas with the quaternions of Hamilton.

Hermann
Grassmann

William Clifford

\qquad

William Hamilton

The Language of Geometric

 AlgebraOne of the major advantages of this new approach is that it provides a simple language:
"words" \leftrightarrow "geometrical objects"
"sentences" \leftrightarrow "relations between the objects"
where one can carry out representation free computations, and it yields new geometric insights that are not available with other methods.

Geometric Algebra II -Vectors

Let two directions in space be represented by the vectors \boldsymbol{a} and \boldsymbol{b}. Then if we had a language where we could string together vectors, can we make sense of sentences such as aaba and bbabbb?

Geometric Algebra III - Two Rules

We introduce the two rules:
\square If \mathbf{a} and \boldsymbol{b} are perpendicular then $\mathbf{a b}=-\boldsymbol{b} \mathbf{a}$.
\square If \mathbf{a} and \boldsymbol{b} are parallel then $\mathbf{a b}=|\boldsymbol{a}||\boldsymbol{b}|$, where $|\cdot|$ denotes the length of a vector.
\square With two orthogonal basis vectors \mathbf{e}_{1} and \mathbf{e}_{2}, the rules says: $\mathbf{e}_{1}{ }^{2}=\mathbf{e}_{1} \mathbf{e}_{1}=1, \mathbf{e}_{2}{ }^{2}=\mathbf{e}_{2} \mathbf{e}_{2}=1$, and $e_{1} e_{2}=-e_{2} e_{1}$

Geometric Algebra IV - Bivectors

\square Compute $\left(\mathbf{e}_{1} \boldsymbol{e}_{2}\right)^{2}$.
$\square\left(e_{1} e_{2}\right)^{2}=e_{1} e_{2} e_{1} e_{2}=-e_{1} e_{1} e_{2} e_{2}=-1$. We have produced an object whose square is -1 , which is like the complex number $x+\left(\mathbf{e}_{1} \mathbf{e}_{2}\right) y$.
\square The object $\mathbf{e}_{1} \mathbf{e}_{2}$, sometimes written as the wedge product $\mathbf{e}_{1} \wedge \mathbf{e}_{2}$, is called a bivector, which is represented as the oriented area of the parallelogram of the basis vectors.

Geometric Algebra V - Wedge Products

\square Given k vectors, we define the wedge product, called a k-blade, as $\mathbf{e}_{1} \wedge \cdots \wedge \boldsymbol{e}_{\boldsymbol{k}}$,where k is called the grade.
\square Each k-blade can be viewed as a k-dimensional volume with orientation, i.e. a 0-blade is a scalar, a 1-blade is a vector, a 2-blade is a bivector, a 3blade is a trivector, each respectively viewed as a length, directed length, directed area and directed volume.

Spacetime Algebra

 Let the vector space M^{4} denote the standard model for Minkowski spacetime. Then the spacetime algebra is generated by the set of standard basis $\left\{1, Y_{\mu}, Y_{\mu} \wedge Y_{\nu}\right.$, $\left.\gamma_{\mu} i, i\right\}, \mu=1, \ldots, 4$, along with a geometric product of the vectors x and y defined by$$
x y=x \cdot y+x \wedge y,
$$

where • and \wedge denote the inner product and the wedge product.

The Spacetime Split

A spacetime split, denoted by γ_{0}-split for an inertial observer γ_{0} in the direction of the forward light cone, is defined as the geometric product

$$
x y_{0}=t+x
$$

where the inner product is $t=x \cdot \gamma_{0}$ and the wedge product is $\boldsymbol{x}=x \wedge \gamma_{0}$.

The Reverse of the Spacetime Split

A reverse spacetime split for an inertial observer γ_{0}, is defined as the geometric product

$$
Y_{0} x=t-\boldsymbol{x} .
$$

The Spacetime Invariant

Using the spacetime split, the spacetime invariant is defined as

$$
x Y_{0} Y_{0} x=(t+\boldsymbol{x})(t-\boldsymbol{x})=t^{2}-\boldsymbol{x}^{2}
$$

which can be spacelike, lightlike or timelike when the spacetime invariant is negative, vanishing or positive.

Equivalence of Observers

The inertial observers γ_{0} and γ_{0}^{\prime} are said to be equivalent if

$$
t^{2}-x^{2}=t^{\prime 2}-x^{\prime 2}
$$

where equivalence is formally the relation $\left\{\left(\gamma_{0}, \gamma_{0}^{\prime}\right) \mid t^{2}-\boldsymbol{x}^{2}=t^{\prime 2}-\boldsymbol{x}^{\prime 2}\right\}$, and we write equivalent observers as $\gamma_{0} \sim \gamma_{0}^{\prime}$.

Introduction to Quantum Mechanics

The equation of motion for quantum phenomenon is Schrödinger's equation

$$
i \hbar \partial \Psi / \partial t=-\hbar^{2} / 2 m \partial^{2} \Psi / \partial x^{2}+V(x) \Psi
$$

whose solutions are the wavefunctions $|\psi\rangle$, which provide expectation values yielding the measurement of physical quantities.

Measurement of Position

Let $|\psi\rangle$ denote the wavefunction of a quantum event for an inertial quantum observer γ_{0}. During the course of an experiment, a measurement of the position of a free particle is performed, which is assigned the (expectation) value $\langle X\rangle$ from within Quantum Mechanics.

$$
\langle X\rangle=\int \psi^{*} \mathrm{x} \psi \mathrm{dx}
$$

Measurement of Time

For an inertial quantum observer γ_{0}, the measurement of momentum of a free particle must be made over some time interval. From the velocity of the particle given by $v=x / t$, we obtain the time observable

$$
T=\left(\mathrm{XP}^{-1}+\mathrm{P}^{-1} \mathrm{X}\right) / 2=\{X, P\} / 2|\mathrm{P}|^{2}
$$

which is assigned the expectation value of the time of $\langle T\rangle$ by Quantum Mechanics.

Proper Time Observable

For an inertial quantum observer γ_{0}, the proper time observable is defined as

$$
\left.\left\langle\Delta^{2}\right\rangle=\left.\left\langle\{X, P\}^{2} / 4\right| P\right|^{4}\right\rangle-\left\langle X^{2}\right\rangle
$$

where we remark that time is now viewed as a manifestation of the position and its rate of change!

Equivalence of Quantum Observers

The inertial quantum observers γ_{0} and γ_{o}^{\prime} are said to be equivalent if
$\left.\left.\left.\left\langle\{X, P\}^{2} / 4\right| P\right|^{4}\right\rangle-\left\langle X^{2}\right\rangle=\left.\left\langle\left\{X^{\prime}, P\right\}^{2} / 4\right| P^{\prime}\right|^{4}\right\rangle-\left\langle X^{2}\right\rangle$,
where equivalence is formally the relation $\left\{\left(\gamma_{o}, Y_{0}^{\prime}\right) \mid\left.\left\langle\{X, P\}^{2} / 4\right| P\right|^{4}\right\rangle-\left\langle X^{2}\right\rangle=\left\langle\left\{X^{\prime}, P\right\}^{2} / 4\right|$ $\left.\left.\left.P^{\prime}\right|^{4}\right\rangle-\left\langle X^{R}\right\rangle\right\}$, and we write equivalent observers as $\gamma_{0} \sim \gamma_{0}^{\prime}$.

Local Realism of Intrinsic Spin

Consider two particles that can be in one of two quantum states: spin-up or spin-down. Suppose that one particle is measured by one quantum observers as spin-up. Since the total spin vanishes, the other quantum observer must measure spin-down without regard to the separation of observers. How can one observer's measurement effect the another observer's outcome?

Questions

- Can it be true that one quantum observers measurements effect another quantum observers experimental outcomes?
- Is Quantum Mechanics a non-local or local theory?
- Does Bell's inequality imply that no local theory of Quantum Mechanics is possible?

Intrinsic Spin of a Particle

Let σ_{z} denote the Pauli spin matrix. Then the equation of motion for the z-component of the intrinsic $\operatorname{spin} S_{z}=\hbar \sigma_{z} / 2$ is

$$
d S_{z} / d t=\left[S_{z}, H\right] / 2 i \hbar+\partial S_{z} / \partial t
$$

where $\left[S_{z}, H\right] / 2=S_{z} \wedge H$.

Proper Spin

The proper spin is defined as

$$
\left.\left\langle\Delta^{2}\right\rangle=\left\langle\left\{S_{z^{\prime}}, d S_{z} / d t\right\}^{2} / 4\right| d S_{z} /\left.d t\right|^{4}\right\rangle-\left\langle S_{z}^{2}\right\rangle,
$$

which can be spacelike, lightlike or timelike when the proper spin observable can be negative, vanishing or positive.

Reformulation of the Proper Spin

Using the identity $(\sigma \cdot a)(\sigma \cdot b)=a \cdot b+i \sigma \cdot(a \times b)$ from geometric algebra, the proper spin observable can be written as

$$
\left.\left\langle\Delta^{2}\right\rangle=\left\langle\left(d S_{z} / d t \cdot d S_{z} / d t\right) / 4\right| d S_{z} /\left.d t\right|^{4}\right\rangle-\left\langle S_{z}^{2}\right\rangle .
$$

Conclusions

- The proper observable provides a local description of the experiments conducted by quantum observers and a notion of equivalence in the spirit of local realism.
- In doing so, one replaces the absolute description of a quantum event for a representation expressed as a relative wavefunction.
- Time is a manifestation of an observable and its rate of change. Time is an illusion!

