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The quasilinear fluctuation integral is calculated for a two-dimensional, unmagnetized plasma
(composed of charged rodsand is expressed in terms of Fokker—Planck coefficients. It is found
that in two dimensions, the enhanced fluctuations generated by fast electrons lead to anomalously
large transport coefficients. In particular, the effect of a small population of fast electrons is only
weakly dependent on their density. In three dimensions, the effect of fast electrons is masked by the
dominant approximation, but higher-order terms describe processes similar to those in two
dimensions, and these terms can become significant for weakly stable plasmas. The differences
between two and three dimensions arise from the fact that both emission and damping of plasma
waves are retained to lowest order in two dimensions, while the three-dimensional dominant
approximation effectively includes only wave emission by test particles. An understanding of the
differences between two and three dimensions is crucial to the interpretation of two-dimensional
particle simulations. ©1997 American Institute of Physids$1070-664X97)03605-7

I. INTRODUCTION motivations was to show that the high collision rates associ-
ated with low-density plasma simulations could be lowered
There has recently been renewed interest in plasmawhen the finite particle size was included. This allowed
wave energy transport, as well as the related topic of flucsimulations with a reasonable number of particles to give
tuations due to fast electrons. Warderived a Fokker— meaningful results. The present work, however, is concerned
Planck equation to describe the time evolution of fastwith the intrinsic properties of two-dimensional relaxation
electrons due to wave emission and absorption in a stronglgrocesses, i.e., the relaxation of two-dimensional, point par-
magnetized plasma. This result, which ignores the Coulomiiicles, and the anomalous effects that appear in two dimen-
logarithm term of the dominant approximatfoand focuses sjons.
on the higher-order wave terntg/hich become appreciable Computer simulations do show that wave emission and
for fast electrong is identical in character to the Fokker— damping are important mechanisms in relaxation processes.
Planck coefficients due to enhanced fluctuations in an unbecyk etal® initialized a two-and-a-half-dimensional
magnetized plasma derived by Tidman and Eviatar. particle-in-cell simulation with a “slideaway” electron tail
The present investigation centers on a calculation of thén a narrow, field-aligned region, and investigated the relax-
Fokker—Planck coefficients for a two-dimensional, isotropication. Three of their results are relevant to the present study.
plasma with a low-density component of fast electrons. ThisThe most important finding is that the distribution of fast
scenario sheds light on the role of emission and damping oflectrons relaxes approximately ten times more rapidly than
electrostatic waves in the relaxation of weakly stable plasthe total electron current. That is, the electron distribution
mas. Two dimensions provide a convenient paradigm befunction redistributes itself into two half-Maxwellians with
cause, unlike three dimensions, the transport due to wavedifferent temperatureghence with a net driff and only ex-
dominates collisional effects. No dominant approximation ischanges momentum with the ions more slowly. This suggests
needed since the Coulomb potential in two dimensions ishat something other than classical collisional processes are
logarithmic, and because wave effects are prevalent, there igsponsible. Second, the frequency spectrum of the electric
an enhanced interaction between fast electrons. That is, a fafgld is enhanced over the range of frequencies that satisfies
test electron experiences anomalously large drag and diffus =k v, wherev is the velocity of the particles in the tail.
sion forces due to the enhanced fluctuations generated byThis points explicitly to the fast electrons as wave exciters. A
low-density, fast-electron population. Of course, fast electhird finding is the significant spatial diffusion of current
trons also generate enhanced fluctuations in thre@cross the magnetic field, even though the particles them-
dimensions;® but for plasmas near equilibrium, their effect selves are restricted from crossing field lines and the electron
on transport is largely masked by collisional proceéses.  cyclotron radius is small. These results imply that wave ac-
Similar work related to two-dimensional particle simula- tivity, rather than collisions, is responsible for the velocity
tions was carried out by Okuda and BirdSaihd Langdon relaxation and current transport in this environment.
and Birdsall’ They were primarily interested in the effects This paper is organized as follows. In Sec. Il we describe
that the finite size of the particles had on collisiditssboth  the differences between two and three dimensions, and how
two and three dimensiopand in the unphysicat spectrum  the predominance of wave effects in two dimensions results
generated by the spatial grid. In fact, one of their primaryfrom the form of the Coulomb potential. The two-
dimensional fluctuation integral, derived in the Appendix, is

dPresent address: Beam Physics Branch, Plasma Physics Division, Navgivaluated .in Sec-_ 1l for various velocity distributions. The
Research Laboratory, Washington, D.C. 20375. enhanced interaction between fast electrons, due to the inher-
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ent inclusion of both wave emission and wave damping, ighe three-dimensional dominant approximation. However,
examined in detail, and it is found that the Fokker—Planckwhen nonthermal distributions are considered, especially fast
coefficients for a test electron due to a tail population of fasilectrons, anomalous properties appear in two dimensions
electrons is very weakly dependent on the density of thathat have no counterpart in the dominant approximation of
population. In Sec. IV we compare the two-dimensional rethree dimensions, but are similar to the higher-order térfns.
sults with the higher-order effects in three dimensions. InDecker et al!® reached a similar conclusion when they
Sec. V we evaluate the two-dimensional frequency spectrurehowed that the zero-frequency limit of the electron—ion col-
derived in the Appendix and show an enhancement above tHision frequency is proportional to the well-known Mn)\%
plasma frequency due to the fast electrons. Conclusions aig three dimensionévhereA =n\2, the number of particles

presented in Sec. VI. in a Debye cubg but only 1n\3 in two dimensions. The
predominance of waves eliminates the need for the dominant
Il. TWO-DIMENSIONAL CHARACTER approximation and hence the &

There are two major approaches to the calculation of the
Fokker—Planck coefficients. The collisional approach makes
the same assumption as the kinetic theory of neutral gaseg'- TRANSPORT COEFFICIENTS DUE TO

namely that only binary interactions cause changes in tthUCTUAﬂONS

d|str|put|on function, while t_he ﬂuctuatl_onal approach em- The Fokker—Planck equation can be written in the form
phasizes the role of collective interactions. Each approach

has complementary domains of validigmall distances and 5_f: _ i'(Af)ﬂL } 9 ( 07_f) (1)
large distances, respectivghand the two domains do not ot av 2 0v A

necessarily overlap, but in three dimensions the two metho
give similar results. In two dimensions, however, the conce
of binary collisions is of limited usefulness.

When evaluating the collision integral in three dimen-

%heref(v) is the velocity distributionsf/ 6t represents the
pEon-VIasov change ifi, andA(v) andD(v) are the drag and
diffusion coefficients, respectively. The fluctuation integral

. . . w 'S of Lenard” is rederived in the Appendix for application to
slons, the I/ potential neceSSItates_ a .CUt8 -~ In two di- fewer than three dimensions by considering a quasilinear ex-
mensions, the range of the ipotential is even longer. But, tension of the Vlasov equation. An identical result can be

even thgugh the num3ber of interacting particles increasegy, ineq from a Fokker—Planck calculation, where the fluc-
only asr (rather. t.ha” .)’ the Ipng range makes an analytic tuating field (rather than binary collisionsgives rise to
treatment of collisions impossibfé.This is because the col- changes in velocity. It is found that the form 6f/t, aside
lision approach requires a calculation of the differential Cr0S$om a numerical f(:actor that simply counts the r;umber of
section, which in turn requires a knowledge of the impact

spatial Fourier transforms, is independent of the spatial di-

parameter as a function of the deflection angle. For OPPO; ension. For particles of mass and chargey the result is

s!tely charged p'artlcles, there are no unbound.orb'lts in tWo .o Eqs(A5)]
dimensions, which means that the cross section is not de-

fined. The only possible solution is to eliminate the long of d

range feature of the potential by using the Debye-shielded 5t v IV, (28
potential, and calculate the collisional dynamics numerically.

This approximation is neither easy nor usef(A further Iv)= 1 » fdyv (f(V) It 5(Vy)
approximation, the impulse approximation, reveals that the (2m)" 3% Am, v,

collision integral does not diverge at a large impact param-

eter so that the use of the impulse approximation is _f"(V") @).K (2b)
inconsistent?) However, using the Debye-shielded potential m v ’

is equivalent to taking the limit of static shielding in the 262¢2n S(k-v—k-v,) kk
fluctuational approach. K= o ‘Tf v s
The fluctuational approach incorporates the long- m le(k,k-v)[* k
distance, Debye-shielded behavior correctly, but the smallwhere v is the spatial dimensiofi, 2, or 3, 3, is a sum
distance behavior diverges. In three dimensions, the core @ver all species, ande is the dielectric function. In Eq$2)
the 1t potential is too “hard,” so the divergent integral and the rest of this paper, symbols suchmasq, and n
must also be cut off. The core of inis softer, and no cutoff depend on the spatial dimensien For examplem is the
is needed: the integrals may be evaluated exactly. Howevemass of a particle in three dimensions, but is the npass
cutting off integrals in three dimensions results in the Cou-unit lengthof a particle in two dimensions. Equatio(® are

lomb logarithm, which lumps all kinetic information into one seen to have the Fokker—Planck form, where the coefficients
factor. The convergent behavior of the two-dimensional in-gre

tegral thus includes kinetic information of the background 9 2
plasma. Specifically, characteristics of the dispersion relation 5 () _ 3" 20°0,N,

(209

play a crucial role in determining transport properties. When o mm,(2m)""

the plasma is in thermodynamic equilibrium, the extra ki-

netic information does not significantly affect the behavior of XJ dk d'v S(k-v=kvy) ~9fs(Vo) (33
the transport coefficients, and two dimensions is similar to 7k e(k,k-v)[? Ng
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4q?q3n, 20%95n,

D(v = A(v =

(V)= 2 223 (v)= ; mm(27)"
Jd K o - )kkf wv). (@ Jd . k  afl(v cose) .

V 14
U‘Tk4| (k k V)|2 e x k2= &2 (v cosb) ’ (10
To considerA andD in more detail, the distribution function qzqf, n, kk

first is assumed isotropic so that the velocity integrations are  D(v)= E (2 3f d”kk|k2_§z|2fi(u cos6).

trivial. This reveals why the dominant approximation is
needed in three dimensions but not in two. Second, Maxwell-
ian distributions are used to evalugieandD explicitly. The final step in obtaining the standard form is to make use
of the fact that in an isotropic mediuB must have the form

11

A. Isotropic distributions

When the distribution functions are isotropic, the veloc-
ity integrations are trivial because ti&function takes care
of the component of parallel tok, and the integrations over The parallel component has the same form in all dimensions,
the components of transverse t& are given by the normal-
ization (which has been defined ¢g’v f=1). The velocity
integrations become

D(V)=D(v)W+D, (v)(I=W). (12)

D,(v)=D(Vv):W, (13

while the perpendicular component depends/qdue to the

f1(k-v) fact that Tri=v),

— (42)

Tr D(v)— D‘(v)

D.(v)=———

(14

G(v ) af(k-v)
Sk-v—k-v,)=—"—-, (4
(k-v—=K-v,) ) (4b)

J dv, f(v,)d(k-v—k-v,)=
J d'v, k- Perpendicular diffusion cannot occur in one dimension; cor-
respondingly D, is undefined when=1. Vectors, such as
wheref? is defined as the one-dimensional distribution func-A, can be written in the form
tion for speciess after integrating over the velocities per-

pendicular tok, A(W)=A|(0)V+AL(V), (15
L . but the only nonzero component Afis in the parallel direc-
flog= [ &, ) ® ton,
For isotropic distributions the dielectric function can be writ- A(v)=A(v)- V. (16)
ten as

The perpendicular component oA is proportional to
vxk=v sin6, so the integral ovek vanishes. Using the
relations Trkk =k? andd’k=dQ, dk k"~ (wheredQ, is
the differential solid angle i dimensiong the parallel and
Sperpendlcular components 8f andD can be written in the
standard form as a sum over species,

2
e(k,w)=1—- Ezkz_z" (\/Ekv—g), (6)

where Z is a generalized plasma dispersion function and i
defined as

o o

K-V ﬁf,,(v) . A= A7
kV w av @) 7

a?g2n, af},(u cos 6)

Of course, when the distribution function is Maxwellia@, =2 (2 f dQ, co m
becomeg, the well-known plasma dispersion functibtiro o MMy v
evaluate Eq93), the quantitye(k,k-v) is also needed. It can
be written in terms of £, a complex function of f dKra—22r2 gz 2 (1739
k-v=v cosé (but independent ok),

e(k,k-v)=1— /K2, ® D=2 Df

2
2 @po [V COSH 3 497 q(r o

3 —g T ( Ny 9 Z P dQ, cog6 f1(v cosh)
With the definitions in Eqs(5) and (9), the general form of XJ dk k¥ (17b)
A andD for arbitrary isotropic distributions are [kZ—&7%’

1288 Phys. Plasmas, Vol. 4, No. 5, May 1997 Reynolds, Fried, and Morales



. properties of one-dimensional plasmas were investigated by
Dng DY Dawsort”*® and Eldridge and FeiX? in the 1960s, and
have also recently been reexamirtéd.

49°q5n,
=> mz(zw)y,g(v_l)f dQ, sirf6 fl(v cos)
7 B. Maxwellian distributions
k” A further simplification occurs when the distribution
X | dkrr—=73- (179 . T . .
|k — &7 function of each species is a normalized Maxwellian,
These coefficientsd], D, andD/ , represent the drag and e U2
diffusion experienced by a test particle of mass charge fo(v)= NG (22)
g, and velocityv, due to species. All of the integrals over (V2mv,)
dk in Egs.(17) are identical, whereu,=v/\2v,. The one-dimensional distribution func-
Y tion f1 and its derivative are independent mf
%(f)zf dkir—772s (18 —y?
k*— & 1 e Y
fo(v)= —=——, (23)
and lead explicitly to the dominant approximation in three V2o,
dimensions and an enhanced fast electron interaction in two 1 )
dimensions 9o (v) ve '
: =— . (24
In three dimensions7; diverges logarithmically: for v \/Zwﬁ
plasmas near equilibrium the upper limit of integration is ~ .
approximated by, the inverse of the distance of closest Also, Z£—Z, which means that
approach, and only the largest term is retaiftteé dominant s wfm ,
approximatiof. This results in the usual Coulomb logarithm, £ —>§M:Z“ ﬁz (u, cos ). (25
P k_m= In three dimensions, when the dominant approximation is
Ta~In—=In A, (19 X X )
kp used, the angular integrations can be expressed in terms of

. . . . the error function, and are proportional toAr?? Because of
and is a physically acceptable solution because collectiv

. .~ "this simple proportionality, the coefficients due to each spe-
effects do not apply at small distances. However, while giv-_. ¢ Mo - o
. - : . - ¥ . cies A, D), andDY) are self-similar: their dependence on
ing a finite answer, this technique throws away the klnetlcvelocit is only throughu, . The full coefficients 4, D
information contained ir¢ that is included in higher-order y y g - b=l

terms. Tidman and Eviatashowed that for weakly stable and Di). can be obtamed_by a §|mple scal_ln_g. There are four
roperties of the three-dimensional coefficients that warrant

threg—dlmensmnal plasmas the higher-order terms can be aEi'scussion. First, all the coefficients fall off with large veloc-
proximated as

ity, as expected, because the interaction time with any given

7 Re¢ particle decreases with velocity. The asymptotic depen-
Tg=In A+ = Ime (200 dences on velocity are
o__ 2
Discussion of this result is deferred until Sec. IV. Ay~ g, (269
In two dimensions, because of the soft core of the Cou- DI~ 1/us, (26b)
lomb potential,7, retains information about the distribution 7
function and the dispersion relation through D{~1M,, (260
- which shows that pitch-angle scattering dominates for large
Tp=— m (21 velocities(i.e., D, falls off the slowest Second, there is no

drag whenv~0, but there is diffusion: particles may expe-
This result was first obtained by Abraham-Shradfherho  rience a random walk, but of course feel no frictional drag.
compared the two-dimensional Lenard—Balescu equatioithird, at intermediate velocities, the only structure occurs
with the Landau equation for a Lorentzian velocity distribu-whenv~v,. That is, there is no indication that there are
tion and found significant differences. The disparity at largeother species present. This is a consequence of the fact that
velocity between the two approaches was found to be largesnly the emission of waves by the test particle is included in
than in three dimensions, but this was partly due to the nonthe dominant approximation—the damping due to other spe-
physical distribution used. The coefficients are evaluated irties is of higher order. Fourth, all the coefficients are pro-
Sec. Il B for the more realistic Maxwellian distribution with portional to the species density, . This makes sense physi-
fast electrons and the results are related to wave-driven transally because the interaction with a group of particles is
port. expected to be proportional to the quantity of those particles.
In one dimensior(i.e., a plasma of charged sheets-  The first two of these properties also hold true in two dimen-
netic information is also retained but results in unphysicalsions, because they are consequences of basic physical no-
behavior. For example, stab{but nonequilibrium distribu-  tions of interaction time and conservation of momentum. The
tions do not relax toward equilibrium distributions. The last two, however, are only valid within the dominant ap-
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proximation, and arise because the kinetic information,
which contains the damping of the emitted waves, is ne-

glected.

In two dimensions, the angular integrations are not ex-
pressible in terms of elementary functions because of the

presence of In¢. They are, however, amenable to humerical

computation. Because the results are not self-similar, the
contributions of each species are investigated rather than the

full coefficients. For simplicity, and in order to properly in-

clude the density dependence, the dimensionless equivalents
of Egs.(17), scaled to the corresponding electron quantities,

are displayed. These are defined as

2q2 qgne
Ao A7, 27
I \/;m(z'ﬂ)vs(me;nge ; l ( ED
4q2 QeNe ~No
DY, 27b
V22" 3(kae 2 bi “n
4q2 qgne ~o
_ — 7, 270
\/ﬁmz(Zw)”_s(v—l)<vekDe 2": none
where Kpe = Wyd/ve,
—
0'_ qo’ o meve o
A= kDe( (;z) 9n. u,Ca, (283
) _
_ asng\[ v -
D?Ekoe< o )<qTre1 21 (280
o e’e
— 9o | [ ve |,
Di=kpe| — prmal IS8 (289
U, qene

and in two dimensions the angular integrations are

2
COSZ fe~ uy, cod ¢

o T (2w

ZZ_ZL YN O (299
_ m(2m s g\ o3 0

S=-7 Im &u(6) (29h)

In Egs. (28) the factorkp. appears becausg has units of
inverse length.

To investigate the implications of two dimensions, a

two-species plasmégelectrons and singly charged ignis
thermal equilibrium f.=n; and T,=T,;) and an ion-to-

electron mass ratio of 64 is considered first. This mass ratio
is chosen small in order to emphasize the effect of the ions,
and also because particle simulations often use this value.

Figure 1 showsAT, DI, andD! as functions of the scaled

14.0 T T T T T T T T T
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FIG. 1. Contribution of the ions to the Fokker—Planck coefficients of a test
electron in a two-dimensional plasma in thermal equilibrium. The ion-to-
electron mass ratio is 64.

creased with the size of the particles, but only calculated the
coefficients for a single-species Maxwellian plasma, and
hence did not illustrate the complex multispecies behavior.
Figure 2 reveals a more complicated velocity dependence for
the electron interaction. In addition to the/2v width, all of

the coefficients show structure between the ion thermal ve-
locity v; and the electron thermal velocity,, even though
they represent an interaction with the electrons. The expla-
nation of these effects requires a detailed consideration of
Egs.(29) in specific velocity regimes, which includes careful
approximations tcy, .

1. Small velocities

The regime most similar to three dimensions is that of
small velocities:v<v;,v,, OF Us<U;<1. In this case, the
numerators of botfC and S as well as thez’ function in
&uv can be expanded for small,,

(30

=—Kk2, (3

so that Iméy=—kp. The sign of the square root is chosen
so that Imé<0 (for reasons of causalityBecauset), is no

~
w

g
o

velocity u, for such a plasma, whlle Fig. 2 shows the corre-
sponding electron quantities. For this equilibrium situation
there are interesting effects not present in three dimensions.
Figure 1 reveals that the ion interaction is substantially un-

changed in comparison with three dimensi¢sse Ref. 2P

The only substantial difference from three dimensions is that

the peak height oA, (and the widths oD, andD ) occur

@
=
£
%15 L p
S [2id
S0l 3
i L
05 |
00 1 1 1 1 1 1 1 1 1
oT 05 1 15 2 25 3 35 4 45
v %

nearv ~2+/2v, rather than at/2v (1/2v;=0.125 on the scale
of Fig. 1). Okuda and Birdsdll found that this width in-
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FIG. 2. Contribution of the electrons to the Fokker—Planck coefficients of a
test electron in a two-dimensional plasma in thermal equilibrium. The ion-
to-electron mass ratio is 64.
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longer a function off, the angular integrations are straight-

forward, and to lowest order in, they are constant,
o __ 772

S2 4kp

7~ (32

Except for missing a factor of IA, this behavior is identical
to that in three dimensions, including the fact that

D, (0)=D,(0). This correspondence is expected because at
small velocities the shielding of a test particle is static; the

dynamical corrections are small.
At small velocities, then, particles do not experience th
soft core of the logarithmic potential during collisions, and

(S}

T
Cy~ Takg’ (3738
. e
i w7
2~ 2 kg’ (37h)
. I
i
~2u kp’ (879

which, aside from the difference in numerical factors, leads
to a large-velocity dependence that is identical to that found
in three dimension§Egs. (26)]. This correspondence, how-

the exponential decay of the Debye-shielded potential is suftVer is only true for equilibrium plasmas. For nonequilib-

ficiently similar to three dimensions that the drag and diffu-
sion coefficients behave comparably.

2. Large velocities

_In this regime,v is larger than both thermal velocities:
V>0 ,Ue, OF 1<U.<Uu;. Because the integrands of Egs.

rium plasmas, the weak dynamical shielding of nonthermal
particles becomes important.

3. Intermediate velocities

The intermediate velocity regime correspondsufo-1
butu,<1. The coefficients due to the ions€i) are iden-
tical to those for large velocitiepEqgs. (37)], because the
integrands are again sharply peaked. This fact has an impor-

(29) are sharply peaked, the usual asymptotic evaluation corfant consequence: the coefficients due to the ions have no

sists of approximating (In§y) ! as a constant over the re-
gion of integration,

T 2 2
o _ - —u’ co 6
(034 im £ (60 fo dé cosh e , (339
T w2 2 02
Sy~— WJ do sinfd e Yo oS ¢ (33b
mMUUs)Jo

where co¥.=1/u, and cosd;=0. Strictly speaking, because

the Z' function in &y, has the same argument as the expo-
nential, and because its value varies substantially over the S~ —

width of the exponential, the integrand of E@9b) is not
very sharply peaked. However, E@3b) is the zeroth-order
approximation toS;, and is adequate except for describing

the enhanced tail interaction in Sec. Ill C. The remaining

integrals can be evaluated in terms of Kummer confluen
hypergeometric functions, which in the large-velocity ap-
proximation reduce to powers of,,

w7
27T A0 M g0 (343
w7
o~ — ————————— 34b
5277 20, Im G0y (340
As in the small-velocity regime, In§y(60s)= —kp, but the

value of Imé&y(6.) depends orr. That is, wheno=e, the
electron term in the sum of E¢25) dominates and

2

k
&0~ 72'(1), (35

where Z'(1)~0.15-1.3, so that Iméy(6.)~—0.3&p.
On the other hand, whem=i, both terms are comparable,

kb
€00~ [2'(1)-2], (36
which gives Imé&y(6.)~ —0.7Xp. The final results are
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structure atv,. More generally, it can be shown that the
coefficients due to a slow species have no structure at the
thermal velocity of faster moving species. The converse is
not true. For the coefficients due to the electrons, the ap-
proximation for Imé&,, is still a function of 6,

2

2 kD ’
&m(0)~ - [Z'(u; cos 0)—2], (38)

so that it must be retained in the angular integrations

wawdﬁcog 6(1—u2co ) (393
kpJo " ImyZ'(u; cos6)—2’

2@ (= sir? 6(1—u? cog 6)
R K e e

]Even when the large-argument approximation toZhdéunc-

tion is used, these are complicated functions of hgttand

u;, and the interplay between the thermal velocities creates
structure in the electron coefficients between the two thermal
velocities. This is exactly what is observed in Fig. 2.

The following results hold for plasmas in thermal equi-
librium. At both small and large velocities the Fokker—
Planck coefficients behave similarly in two and three dimen-
sions(aside from numerical factors that are geometrical in
naturg. In two dimensions the coefficients due to the elec-
trons exhibit a complicated structure above the ion thermal
velocity. This interplay between the thermal velocity scales
increases in complexity when a population of energetic elec-
trons is added.

C. Enhanced large-velocity interaction in two
dimensions

We now turn to the most striking two-dimensional ef-
fect: the enhanced large-velocity interaction. This enhance-
ment appears when there is a small, superthermal electron
component. If this component is treated as a separate species,
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FIG. 3. Contribution of the bulk electrons to the Fokker—Planck coefficientsFIG. 5. Contribution of the tail electrons to the Fokker—Planck coefficients
of a test electron in a nonequilibrium two-dimensional plasma. The ion-to-of a test electron in a nonequilibrium two-dimensional plasma, plotted as
electron mass ratio is 64 /n,=0.01, andvZ/v2=16. The contribution of  functions of the logarithntbase 10 of the tail density. The ion-to-electron
the tail electrons to the parallel dragy; , is shown for comparison. mass ratio is 64.="5, andv/vZ=16.

then the drag and diffusion due to these hot electrons arand the wave damping are both proportional to the density of
only weakly dependent on their density, i.e., even a smalthe population, and because both are retained in the two-
population of fast electrons can affect the transport signifi-dimensional description, this density dependence cancels out
cantly. for large velocities. To understand this behavior one must
The choice of stable—but nonequilibrium—distribution examine the large-velocity limits & andS, where now the

is of three species: ions, bulk electrons, and tail electrongvaluation oféy,(6.) and &y (6s) must take into account all
(o=i,e,t), each with Maxwellian distributions characterized three species.

by thermal velocitiesy;, v., andv,, respectively, where As before, the evaluation @fy(6.) depends on the spe-

vi<v.<v;. Each component also has its own densitycies considered. For the tail electrons
(ni,ne,ny) and hence its own plasma frequency,f,

2 . 2 T 2

; T w | Wl  —2—2 W ¢
wpe,wpy). Figures 3 and 4 show the coefficients due to the 20 e P | o [Pt ouia g gt 40
bulk electrons and the tail electrons, respectively, for the Ew(0e) ZUtz 2 U93 Utz . 40

parameters Z/v2= 16 andn,/n.=0.01. Because the ions are herew?— w? + o2 The first term in h " is th
the slowest species, the ion coefficients are unchanged froif ere_wp_dwpi . wtrﬁ' b Elzklrsl etrm n edp?;en esesdls_ t?w
the equilibrium case, and are not shown. The coefficients du amping due fo the bulk electrons, and the second IS the
to the bulk electrons, as can be seen from Fig. 3, are als amping due to the tail electrons. Equati@®) ignores the

virtually unchanged from the equilibrium case, but they are amping due t(.) the ions as we_II as the correction to the
[dispersion relation due to the tail electrons. Whetrve,

the only significant damping arises from the tail electrons so
ethat

shown for comparison with the coefficients due to the tai
electrons.

The most striking aspect of Fig. 4 is the strength of th
tail interaction at large velocities;>v,. This strength is w2
much larger than the density ratio would predict. The physi-  Im &y(6.)~ —0.4(%, (41
cal reason for this behavior is that because the wave emission Ut®p

which is proportional to the tail density. This implies
1

20 T T T T T T T T T
Chox - (42)

Thus, bothA| andD| areindependenbf n,. Of course, this
analysis only applies for large velocities. Aslecreases, the
damping due to the tail electrons increases more rapidly than
the damping due to the bulk electrofieecause),>v., and
both are exponential This continues until the damping due
to the tail saturates near~v,. In this region, the damping
due to the bulk electrons becomes appreciable, and the larg-
est term in Imgf,l(ec) becomes the electron damping term,
which is ignored in Eq(41). Forv~uv,, the bulk damping
dominates the tail damping and the coefficients due to the
FIG. 4. Contribution of the tail electrons to the Fokker—Planck coef‘ficientstaII electrons .revert to scaling linearly Wl-th density. :
of a'te'st electron in a nonequilibrium two-dimensional plasma. The ion-to- The dgnsny dep_end?nce of the .CoefﬁCIems due to the tail
electron mass ratio is 64),/n,=0.01, anduZ/vZ=16. The distribution ~ €lectrons is shown in Fig. 5. This figure shows the strength
function of the tail electronsf,, is shown for comparison. of the coefficients fou,=5 as a function of the tail density,

AD (tail)
5

05

00
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n;. It can be seen that on a logarithmic scaﬂ{zand Dﬁ vary 060
only linearly, while D' exhibits a modicum of exponential
behavior, which implies a stronger density dependence. To
understand the behavior &' , S, must be evaluated. The 040 |
leading approximation, used in the case of thermal equilib-
rium, is to evaluate In€, at 6=65, which gives

Im &u(6s)~—kp. This leads to the expectation tHat has 020
the usual linear dependence op, but in Fig. 5,D! is not
exponential, so it appears that there is some density indepen- 016
dence. This arises because the width of the exponential in

Sis 1iu;, so that some of the behavior elucidated &) is "
included. It is a higher-order effect, however, and implies
that D! is more strongly density dependent thahor D,

but is not proportional t, .

050 |

Qo030 |

FIG. 6. Contribution of the electronéoth bulk and tajl to the parallel
diffusion coefficient of a test electron in a nonequilibrium three-dimensional
magnetized plasma, given by E@7), with vZ/v2=16 andn,/n.=0.01.

IV. COMPARISON WITH THREE DIMENSIONS Compare with the two-dimensional equivalent in Figs. 3 and 4.

Recent work on diffusion in a strongly magnetized,
three-dimensional plasma is closely related to the results pre- 022 02052
. . . . JF e Vi'le e Ui'evt
sented in the previous section. Warderives a Fokker— —=—u| (1= ) — + 7, —
V2mug V2mu;

Planck equation for the parallel distribution function of fast v
MPhe two terms in the square brackets of E4f) represent

(46)

electrons in a three-dimensional, strongly magnetized plas

(wce>wpe) due to wave emission and damping. He Cons'd.'the damping due to the bulk electrons and the damping due

ers only the.h|gh_er-o.rder term; “S“"?‘”V ignored by the (.jor.n"to the tail electrons, respectively, similar in character to the
nant approximation in three dimensions, but that are similal

: ) fmaginary part of Eq(40). For those velocities such that the
in character to the lowest-order term that appears in tW%

i i : cond term in the square brackets of dominates the
dimensions. Although he considers the case of a shearqff q &%)

tic field and tiall i distribution f st, D, is independent of,. In order to compare with the
magnetic field and a spatiafly nohunriorm distnoution TUnc-,,_gimensional resultd), is expressed as the sum of two
tion, the uniform limit of his result can be written as

terms, the diffusion due to the bulk electrons and the tail

of J At 19 ( of 43 electrons,
g——a( I )+§£” 130, (439 Bnet|
2mnet Dy,= T (Df+Dj). (47)
1= 2 (43b) Ve
Ui The dimensionless diffusion coefficients obtained in this
2mne|  F(v)) manner are shown in Fig. 6, for the same parameters used in
Di=——=> ( ) (430  Figs. 3 and 4pZ/vZ=16 andn,/n,=0.01. The enhanced
m-u, 0"F(U||)/(?UH .. e . . . .
large-velocity interaction is independent of the tail density,
where as can be seen from an expansiorDr#ffor large velocities,
2 — [
F(Uu):j dov, f(vy,v,) (44) thzﬁ(;—?e). (48)

is the parallel electron distribution function. Here, the sym-
bols L andll refer to the direction of the magnetic field.
Equationg43) are only applicable to test electrons with large
velocities. While the dragd, is simply the large-velocity
limit of the usual drag, the diffusion coefficied; exhibits
the behavior obtained for the two-dimensional problem. Theror
denominator of Eq(430 is essentially the parallel Landau
damping due to the total electron distribution functlerand

is analogous to the In§ factor found in two dimensions. If
F is expressed as the sum of two Maxwellians, one for th
bulk electrons and one for the tail electrofusing our pre-
vious notation,

This is exactly the same behavior as in two dimensions,
which shows that the enhanced interaction is due to the
wave-driven transport, rather than an anomaly of the choice
of only two dimensions.

The three-dimensional correction tetin Eq. (20) has a
m similar to the total integral in two dimensions: it is
proportional to (Img) ~1. All of the properties elucidated for
two dimensions are therefore properties of the higher-order
term that exists in three dimensions. In addition, Tidman and
%viata? showed that for large test-particle velocitiése.,
v>v,), the correction could be further approximated as

7 Re¢ 1
e s ~ )
=(1—1n) —— + 7, — (45) 2 [Im ¢ 2v?|aF(v)ldv|
NETVe ot which is exactly equivalent in forrfLandau damping in the

where 7, is that fraction of electrons that are in the tail, the denominator to Eq. (430, the three-dimensional strongly
derivative ofF is magnetized result. They also showed that for fast electrons,

7Uﬁ/2v_§ e*uf/Zvﬁl

(49

F=F.+F,
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the 90° deflection time is much shorter than the energy loss 70 . . . .

time, which means that the enhanced fluctuations scatter the ;| ]

fast electrons more quickly than they equilibrate with the ¢

bulk electrons. Because this process is the dominant one in  *° | B
two dimensions, this is the probable explanation for the two- 40 | :
dimensional particle simulation results of Deogkal® s

Li and Petrasst looked at higher-order terms in the W 1

context of three-dimensional binary collisions, but because 20 b 1
they included only static shielding, their results do not con- wk ° ]
tain the anomalous behavior. 4/

00

09 1 11 12 13 14

V. FLUCTUATION SPECTRUM FIG. 7. Contribution of the electronéboth bulk and tail to the two-

Fast electrons, due to their undamped wave emlssmnglmensmnal frequencyfzpectrLSQw) for the same parameters as in Figs. 3
ahd 4,n,/n.=0.01 andv2/v?
contribute significantly to the spectrum of fluctuations in a ' '
plasma It is therefore instructive to consider the fluctuations

in a two-dimensional plasma with fast electrons, and to in-

vestigate the connection between the form of the spectrurf(w)= J W/ (k,w), (549
and the velocity-space transport coefficients. In the Appen-

dix, the fluctuation spectrurr(k, w) for arbitrary dimension 4 ) , f(lr( wlk)

is derived in the same manner as the Fokker—Planck coeffi- :Wﬁ; nUQo’f d km’ (54b)

cients. The result is

B SN, 2L wlk) =2 S'(o). (549
Ak, w)=(327)

Kleka)? (50)

Except for missing a factor df?q%/m?, it is identical with
D, when the substitutiom/k—uv cosé is made. As a func-
tion of w, S(w) exhibits similar properties t®,(v). The
' analysis, however, is complicated by the fact that the inte-
grand overdk cannot be expressed as a simple pole, due to
the complexity of theZ function. Nevertheless, for those
1 (51) regions in K,w) space where the damping due to the tail
e(k,0)’ electrons is larger than the damping due to the bulk elec-
trons, the tail electrons make a density-independent contribu-
which is simply a statement of the fluctuation—dissipationtion to the frequency spectrum. This behavior is clearly seen
theorem. The fluctuation spectrum can be written in terms ofn Fig. 7, where the contributions to the frequency spectrum

which was first obtained by HubbaffiIf each species has a
Maxwellian distribution with a common temperature
T,=T, this spectrum reduces to

87T
Ak, w)— ——Im———
)

Im e~ ' even when the plasma is not in equilibrium, S(w) due to the bulk electrons and the tail electrons are
shown(for the same parameters as Figs. 3 ahd$ is well

y 3272 known, the frequency spectrum for a plasma in thermody-

*ﬂk'“’):( K ) namic equilibrium has a small peak just above the plasma

frequency, due to the electron plasma wateBor a two-
S N2 L(wlk) 1 dimensional plasma with a hot electron component, this peak
nggg[afg(v)/(yv]v ok ImE(k’w), 52 is enhanced, and the strength of the enhancement is due to
(52) the tail electrons and is relatively independent of their den-

and this form shows the Landau damping expression in th&ity: 26 ) ) )
denominator as before. It is well known that the diffusion ~ Maceet al.™ have investigated the fluctuation spectrum

coefficient can be written in terms of the fluctuation spec-for three-dimensional, unmagnetized, isotropic plasmas

trum, whose velocity distribution is a so-called kappa distribution.
Because these distributions have an excess of suprathermal
q d’k dw particles, there is an enhanced level of fluctuations near the
f 2 kk. 7k, w) 8(w—k-Vv), (53)  plasma frequency, in agreement with the present work. Also,

a two-temperature electron distributiqgdue to photoelec-
trong has been used to interpret spectral measurements in

and the insertion of Eq52) into Eq. (53) results in a form the magnetospher&.

for the diffusion coefficient very similar to that found by
Ware?!

The frequency spectrur8(w) is defined as the integral
over k of .”{k,w), and can be expressed as a sum over We have investigated an effect that is inherent to weakly
species, stable plasmas: an enhanced large-velocity interaction. This

VI. CONCLUSION
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behavior is not unique to two dimensions, but is quite similarUnder this approximation, the equations for the fluctuations
to the higher-order terms in a three-dimensional dominanare identical to the linearized Vlasov—Poisson system, where
approximation expansion, as shown in the studies of Waresf and 5E are the first-order quantities aridis the zeroth-
and of Tidman and EviatarThe increased level of fluctua- order distribution function

tions generated by fast electrons is quite similar in both two

and three dimensions. However, because both the emissign/ q_ d 9 J
and absorption of fluctuations by fast electrons is retained by ot V-V B W) SV, 1)= = T SEOGY - 201 (V),
the two-dimensional Fokker—Planck theory to lowest order (A3a)

(no dominant approximation is needethese electrons in-

teract at a significantly higher level than predicted by a _ v

extrapolation based on the usual three-dimensional dominanrﬁ'aE(x’t)_Am; n(,q(,f &' SHxVD. (A3D)
calculation. Small-angle collisions do not dominate in two

dimensions, and the soft core of the logarithmic potentiaiThe distributionf is not a function ofx or t because it is
implies that any enhanced fluctuations affect the transpo@ssumed to be uniform on the scale over whi¢hevolves.
significantly. In three dimensions, a substantial tail would beThe solution to Eqs(A3) is well known, and is found by
necessary before a corresponding effect is obsetv@these  Fourier—Laplace transforming, i.e., in the context of an
results are essential to a complete understanding of twdhnitial-value problem. The solution is algebraic and béth
dimensional particle simulations, especially those of weaklyand 5E are proportional to the initial fluctuations in the sys-
stable plasmas. tem 6f(k,v,t=0). Transforming back to time and taking the
long time limit, t—oo, it is found that the fluctuations are
driven only by the free-streaming termis-{/= w) as long as
the plasma is stable (Ine<<0 for €e=0). Finally, the spatial
Fourier transforms must be inverted to evaluate the quantity
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APPENDIX: CALCULATION OF FLUCTUATIONS _ ( n ) F (V) S(K—K') SV, V)8 (Ad)

(o8

In order to calculate the fluctuation integral properly in

fewer than three dimensions, some care is needed in implevhere the factor of (2)” comes from collapsing the inverse

menting the ensemble average and performing the Fourigransform. The only dependence onis the exponent of
transforms. The specific treatment is due to Ff&dlthough 24, and the answer is

it is formally equivalent to the method of LenaYtiThe start-

ing point is the Klimontovich—Poisson system of equations  &f d

(i.e., electrostaticfor an unmagnetized plasma, which deter- 5t ~ W"](V)’ (AS3)
mine the exact, microscopic distribution functibrand the

exact, microscopic electric fiel, f(v) af ,(v,)

1
W= =S | d(

d q~ J\~ m, JV,
—+v~V+—E~—>f=O, (Ala)
& mo N fo(Vy) 9F(V)
-— K (A5b)
~ ~ m v
V-E=4m), ngqaf d"v f. (Alb)
’ ~ 202020, [ S(k-v—k-v,) kk
The ensemble average of an exact quaniitis defined as K= m f [e(k,k-v)[Z K& (A5c)
A=(A), so that the fluctuation from the ensemble average is
S5A=A—A. The ensemble average bfs the usual one-body This formalism allows the calculation of another quan-

distribution functionf=(f). The ensemble average of Egs. tity Of interest, the fluctuation spectrum(k, ), which is
(A1) results in two systems of equations: those that gO\,er,qieflned as the transform of the fluctuating electric field
the average quantities (and E) and those that govern the Squared,

fluctuations ¢f and S6E). The quasilinear approximation 4"k do

(not to be confused with Quasilinear The®yconsists of (5E(x,t)5E(x,t)>Ef —— (K, ). (AB)
ignoring the higher-order terms when solving for the fluctua- (2m)

tions, and assuming thaf and SE evolve on much faster
temporal and spatial scales tharand E. The fluctuations
drive changes in the average quantities, and the fluctuati
integral can be written as

A o Son, G wlK)
2 E ). (A2) k@) =(E2m) =g

The evaluation of SE SE) proceeds in the same manner as
oihe evaluation of SE &f) above. The inverse transforms are
evaluated with the help of E4A4), and the spectrum 38

ot m ov (A7)
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