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The quasilinear fluctuation integral is calculated for a two-dimensional, unmagnetized plasma
~composed of charged rods!, and is expressed in terms of Fokker–Planck coefficients. It is found
that in two dimensions, the enhanced fluctuations generated by fast electrons lead to anomalously
large transport coefficients. In particular, the effect of a small population of fast electrons is only
weakly dependent on their density. In three dimensions, the effect of fast electrons is masked by the
dominant approximation, but higher-order terms describe processes similar to those in two
dimensions, and these terms can become significant for weakly stable plasmas. The differences
between two and three dimensions arise from the fact that both emission and damping of plasma
waves are retained to lowest order in two dimensions, while the three-dimensional dominant
approximation effectively includes only wave emission by test particles. An understanding of the
differences between two and three dimensions is crucial to the interpretation of two-dimensional
particle simulations. ©1997 American Institute of Physics.@S1070-664X~97!03605-7#
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I. INTRODUCTION

There has recently been renewed interest in plas
wave energy transport, as well as the related topic of fl
tuations due to fast electrons. Ware1 derived a Fokker–
Planck equation to describe the time evolution of f
electrons due to wave emission and absorption in a stro
magnetized plasma. This result, which ignores the Coulo
logarithm term of the dominant approximation2 and focuses
on the higher-order wave terms~which become appreciabl
for fast electrons!, is identical in character to the Fokker
Planck coefficients due to enhanced fluctuations in an
magnetized plasma derived by Tidman and Eviatar.3

The present investigation centers on a calculation of
Fokker–Planck coefficients for a two-dimensional, isotro
plasma with a low-density component of fast electrons. T
scenario sheds light on the role of emission and dampin
electrostatic waves in the relaxation of weakly stable pl
mas. Two dimensions provide a convenient paradigm
cause, unlike three dimensions, the transport due to wa
dominates collisional effects. No dominant approximation
needed since the Coulomb potential in two dimensions
logarithmic, and because wave effects are prevalent, the
an enhanced interaction between fast electrons. That is, a
test electron experiences anomalously large drag and d
sion forces due to the enhanced fluctuations generated
low-density, fast-electron population. Of course, fast el
trons also generate enhanced fluctuations in th
dimensions,1,3 but for plasmas near equilibrium, their effe
on transport is largely masked by collisional processes.4,5

Similar work related to two-dimensional particle simul
tions was carried out by Okuda and Birdsall6 and Langdon
and Birdsall.7 They were primarily interested in the effec
that the finite size of the particles had on collisions~in both
two and three dimensions! and in the unphysicalk spectrum
generated by the spatial grid. In fact, one of their prima

a!Present address: Beam Physics Branch, Plasma Physics Division, N
Research Laboratory, Washington, D.C. 20375.
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motivations was to show that the high collision rates asso
ated with low-density plasma simulations could be lower
when the finite particle size was included. This allow
simulations with a reasonable number of particles to g
meaningful results. The present work, however, is concer
with the intrinsic properties of two-dimensional relaxatio
processes, i.e., the relaxation of two-dimensional, point p
ticles, and the anomalous effects that appear in two dim
sions.

Computer simulations do show that wave emission a
damping are important mechanisms in relaxation proces
Decyk et al.8 initialized a two-and-a-half-dimensiona
particle-in-cell simulation with a ‘‘slideaway’’ electron tai
in a narrow, field-aligned region, and investigated the rel
ation. Three of their results are relevant to the present stu
The most important finding is that the distribution of fa
electrons relaxes approximately ten times more rapidly t
the total electron current. That is, the electron distribut
function redistributes itself into two half-Maxwellians wit
different temperatures~hence with a net drift!, and only ex-
changes momentum with the ions more slowly. This sugge
that something other than classical collisional processes
responsible. Second, the frequency spectrum of the ele
field is enhanced over the range of frequencies that satis
v5kiv, wherev is the velocity of the particles in the tail
This points explicitly to the fast electrons as wave exciters
third finding is the significant spatial diffusion of curren
across the magnetic field, even though the particles th
selves are restricted from crossing field lines and the elec
cyclotron radius is small. These results imply that wave
tivity, rather than collisions, is responsible for the veloc
relaxation and current transport in this environment.

This paper is organized as follows. In Sec. II we descr
the differences between two and three dimensions, and
the predominance of wave effects in two dimensions res
from the form of the Coulomb potential. The two
dimensional fluctuation integral, derived in the Appendix,
evaluated in Sec. III for various velocity distributions. Th
enhanced interaction between fast electrons, due to the in
val
5)/1286/11/$10.00 © 1997 American Institute of Physics
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ent inclusion of both wave emission and wave damping
examined in detail, and it is found that the Fokker–Plan
coefficients for a test electron due to a tail population of f
electrons is very weakly dependent on the density of t
population. In Sec. IV we compare the two-dimensional
sults with the higher-order effects in three dimensions.
Sec. V we evaluate the two-dimensional frequency spect
derived in the Appendix and show an enhancement above
plasma frequency due to the fast electrons. Conclusions
presented in Sec. VI.

II. TWO-DIMENSIONAL CHARACTER

There are two major approaches to the calculation of
Fokker–Planck coefficients. The collisional approach ma
the same assumption as the kinetic theory of neutral ga
namely that only binary interactions cause changes in
distribution function, while the fluctuational approach em
phasizes the role of collective interactions. Each appro
has complementary domains of validity~small distances and
large distances, respectively!, and the two domains do no
necessarily overlap, but in three dimensions the two meth
give similar results. In two dimensions, however, the conc
of binary collisions is of limited usefulness.

When evaluating the collision integral in three dime
sions, the 1/r potential necessitates a cutoff.9–11 In two di-
mensions, the range of the lnr potential is even longer. But
even though the number of interacting particles increa
only asr 2 ~rather thanr 3), the long range makes an analyt
treatment of collisions impossible.12 This is because the col
lision approach requires a calculation of the differential cr
section, which in turn requires a knowledge of the imp
parameter as a function of the deflection angle. For op
sitely charged particles, there are no unbound orbits in
dimensions, which means that the cross section is not
fined. The only possible solution is to eliminate the lo
range feature of the potential by using the Debye-shiel
potential, and calculate the collisional dynamics numerica
This approximation is neither easy nor useful.~A further
approximation, the impulse approximation, reveals that
collision integral does not diverge at a large impact para
eter so that the use of the impulse approximation
inconsistent.12! However, using the Debye-shielded potent
is equivalent to taking the limit of static shielding in th
fluctuational approach.

The fluctuational approach incorporates the lon
distance, Debye-shielded behavior correctly, but the sm
distance behavior diverges. In three dimensions, the cor
the 1/r potential is too ‘‘hard,’’ so the divergent integra
must also be cut off. The core of lnr is softer, and no cutoff
is needed: the integrals may be evaluated exactly. Howe
cutting off integrals in three dimensions results in the Co
lomb logarithm, which lumps all kinetic information into on
factor. The convergent behavior of the two-dimensional
tegral thus includes kinetic information of the backgrou
plasma. Specifically, characteristics of the dispersion rela
play a crucial role in determining transport properties. Wh
the plasma is in thermodynamic equilibrium, the extra
netic information does not significantly affect the behavior
the transport coefficients, and two dimensions is similar
Phys. Plasmas, Vol. 4, No. 5, May 1997
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the three-dimensional dominant approximation. Howev
when nonthermal distributions are considered, especially
electrons, anomalous properties appear in two dimens
that have no counterpart in the dominant approximation
three dimensions, but are similar to the higher-order term1,3

Decker et al.13 reached a similar conclusion when the
showed that the zero-frequency limit of the electron–ion c
lision frequency is proportional to the well-known lnL/nlD

3

in three dimensions~whereL5nlD
3 , the number of particles

in a Debye cube!, but only 1/nlD
2 in two dimensions. The

predominance of waves eliminates the need for the domin
approximation and hence the lnL.

III. TRANSPORT COEFFICIENTS DUE TO
FLUCTUATIONS

The Fokker–Planck equation can be written in the fo

d f

dt
52

]

]v
–~A f !1

1

2

]

]v
–SD– ] f

]vD , ~1!

where f (v) is the velocity distribution,d f /dt represents the
non-Vlasov change inf , andA(v) andD(v) are the drag and
diffusion coefficients, respectively. The fluctuation integ
of Lenard14 is rederived in the Appendix for application t
fewer than three dimensions by considering a quasilinear
tension of the Vlasov equation. An identical result can
obtained from a Fokker–Planck calculation, where the fl
tuating field ~rather than binary collisions! gives rise to
changes in velocity. It is found that the form ofd f /dt, aside
from a numerical factor that simply counts the number
spatial Fourier transforms, is independent of the spatial
mension. For particles of massm and chargeq the result is
@see Eqs.~A5!#

d f

dt
52

]

]v
–J~v!, ~2a!

J~v!5
1

~2p!n23(
s

E dnvsS f ~v!

ms

] f s~vs!

]vs

2
f s~vs!

m

] f ~v!

]v D –K, ~2b!

K5
2q2qs

2ns

m E dnk
d~k–v2k•vs!

ue~k,k–v!u2
kk

k4
, ~2c!

wheren is the spatial dimension~1, 2, or 3!, (s is a sum
over all speciess, ande is the dielectric function. In Eqs.~2!
and the rest of this paper, symbols such asm, q, and n
depend on the spatial dimensionn. For example,m is the
mass of a particle in three dimensions, but is the massper
unit lengthof a particle in two dimensions. Equations~2! are
seen to have the Fokker–Planck form, where the coefficie
are

A~v!5(
s

2q2qs
2ns

mms~2p!n23

3E dnk dnvs

d~k–v2k–vs!

k4ue~k,k–v!u2
kk–

] f s~vs!

]vs
, ~3a!
1287Reynolds, Fried, and Morales



a
is
e

c

r
-

c
r-

it-

i

use

ns,

or-
D~v!5(
s

4q2qs
2ns

m2~2p!n23

3E dnk dnvs

d~k–v2k–vs!

k4ue~k,k–v!u2
kk f s~vs!. ~3b!

To considerA andD in more detail, the distribution function
first is assumed isotropic so that the velocity integrations
trivial. This reveals why the dominant approximation
needed in three dimensions but not in two. Second, Maxw
ian distributions are used to evaluateA andD explicitly.

A. Isotropic distributions

When the distribution functions are isotropic, the velo
ity integrations are trivial because thed function takes care
of the component ofv parallel tok, and the integrations ove
the components ofv transverse tok are given by the normal
ization ~which has been defined as*dnv f51). The velocity
integrations become

E dnvs f s~vs!d~k–v2k–vs!5
f s
1~ k̂–v!

k
, ~4a!

E dnvs k–
] f s~vs!

]vs
d~k–v2k–vs!5

] f s
1~ k̂–v!

]~ k̂–v!
, ~4b!

wheref s
1 is defined as the one-dimensional distribution fun

tion for speciess after integrating over the velocities pe
pendicular tok,

f 1~v i![E dn21v' f ~v !. ~5!

For isotropic distributions the dielectric function can be wr
ten as

e~k,v!512(
s

vps
2

2k2v̄s
2
Z8S v

A2kv̄s
D , ~6!

whereZ is a generalized plasma dispersion function and
defined as

Z8[2v̄s
2E dnv

k–v̂

k–v2v

] f s~v !

]v
. ~7!

Of course, when the distribution function is Maxwellian,Z
becomesZ, the well-known plasma dispersion function.15 To
evaluate Eqs.~3!, the quantitye(k,k–v) is also needed. It can
be written in terms of j, a complex function of
k̂–v5v cosu ~but independent ofk),

e~k,k–v!512j2/k2, ~8!

j2[(
s

vps
2

2v̄s
2Z8S v cosu

A2v̄s
D . ~9!

With the definitions in Eqs.~5! and ~9!, the general form of
A andD for arbitrary isotropic distributions are
1288 Phys. Plasmas, Vol. 4, No. 5, May 1997
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A~v!5(
s

2q2qs
2ns

mms~2p!n23

3E dnk
k

uk22j2u2
] f s

1~v cosu!

]~v cosu!
, ~10!

D~v!5(
s

4q2qs
2ns

m2~2p!n23E dnk
kk

kuk22j2u2
f s
1~v cosu!.

~11!

The final step in obtaining the standard form is to make
of the fact that in an isotropic mediumD must have the form

D~v!5D i~v !v̂v̂1D'~v !~ I2 v̂v̂!. ~12!

The parallel component has the same form in all dimensio

D i~v !5D~v!: v̂v̂, ~13!

while the perpendicular component depends onn ~due to the
fact that TrI5n),

D'~v !5
Tr D~v!2D i~v !

n21
. ~14!

Perpendicular diffusion cannot occur in one dimension; c
respondingly,D' is undefined whenn51. Vectors, such as
A, can be written in the form

A~v!5Ai~v !v̂1A'~v!, ~15!

but the only nonzero component ofA is in the parallel direc-
tion,

Ai~v !5A~v!• v̂. ~16!

The perpendicular component ofA is proportional to
v3k̂5v sinu, so the integral overk vanishes. Using the
relations Trkk5k2 anddnk5dVn dk kn21 ~wheredVn is
the differential solid angle inn dimensions!, the parallel and
perpendicular components ofA andD can be written in the
standard form as a sum over species,

Ai5(
s

Ai
s

5(
s

2q2qs
2ns

mms~2p!n23E dVn cosu
] f s

1~v cosu!

]~v cosu!

3E dk
kn

uk22j2u2
, ~17a!

D i5(
s

D i
s

5(
s

4q2qs
2ns

m2~2p!n23E dVn cos
2u f s

1~v cosu!

3E dk
kn

uk22j2u2
, ~17b!
Reynolds, Fried, and Morales
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s

D'
s

5(
s

4q2qs
2ns

m2~2p!n23~n21!
E dVn sin

2u f s
1~v cosu!

3E dk
kn

uk22j2u2
. ~17c!

These coefficients,Ai
s , D i

s , andD'
s , represent the drag an

diffusion experienced by a test particle of massm, charge
q, and velocityv, due to speciess. All of the integrals over
dk in Eqs.~17! are identical,

I n~j![E dk
kn

uk22j2u2
, ~18!

and lead explicitly to the dominant approximation in thr
dimensions and an enhanced fast electron interaction in
dimensions.

In three dimensionsI 3 diverges logarithmically: for
plasmas near equilibrium the upper limit of integration
approximated bykm , the inverse of the distance of close
approach, and only the largest term is retained~the dominant
approximation!. This results in the usual Coulomb logarithm

I 3' ln
km
kD

[ ln L, ~19!

and is a physically acceptable solution because collec
effects do not apply at small distances. However, while g
ing a finite answer, this technique throws away the kine
information contained inj that is included in higher-orde
terms. Tidman and Eviatar3 showed that for weakly stabl
three-dimensional plasmas the higher-order terms can be
proximated as

I 3' ln L1
p

2

Re j

uIm ju
. ~20!

Discussion of this result is deferred until Sec. IV.
In two dimensions, because of the soft core of the C

lomb potential,I 2 retains information about the distributio
function and the dispersion relation throughj,

I 252
p

4 Im j
. ~21!

This result was first obtained by Abraham-Shrauner16 who
compared the two-dimensional Lenard–Balescu equa
with the Landau equation for a Lorentzian velocity distrib
tion and found significant differences. The disparity at lar
velocity between the two approaches was found to be la
than in three dimensions, but this was partly due to the n
physical distribution used. The coefficients are evaluated
Sec. III B for the more realistic Maxwellian distribution wit
fast electrons and the results are related to wave-driven tr
port.

In one dimension~i.e., a plasma of charged sheets!, ki-
netic information is also retained but results in unphysi
behavior. For example, stable~but nonequilibrium! distribu-
tions do not relax toward equilibrium distributions. Th
Phys. Plasmas, Vol. 4, No. 5, May 1997
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properties of one-dimensional plasmas were investigated
Dawson17,18 and Eldridge and Feix19,20 in the 1960s, and
have also recently been reexamined.21

B. Maxwellian distributions

A further simplification occurs when the distributio
function of each species is a normalized Maxwellian,

f s~v !5
e2us

2

~A2p v̄s!n
, ~22!

whereus5v/A2v̄s . The one-dimensional distribution func
tion f s

1 and its derivative are independent ofn,

f s
1~v !5

e2us
2

A2p v̄s

, ~23!

] f s
1~v !

]v
52

ve2us
2

A2p v̄s
3
. ~24!

Also,Z→Z, which means that

j2→jM
2 5(

a

vps
2

2v̄s
2 Z8~us cosu!. ~25!

In three dimensions, when the dominant approximation
used, the angular integrations can be expressed in term
the error function, and are proportional to lnL.22 Because of
this simple proportionality, the coefficients due to each s
cies (Ai

s , D i
s , andD'

s ) are self-similar: their dependence o
velocity is only throughus . The full coefficients (Ai , D i ,
andD') can be obtained by a simple scaling. There are f
properties of the three-dimensional coefficients that warr
discussion. First, all the coefficients fall off with large velo
ity, as expected, because the interaction time with any gi
particle decreases with velocity. The asymptotic dep
dences on velocity are

Ai
s;1/us

2 , ~26a!

D i
s;1/us

3 , ~26b!

D'
s;1/us , ~26c!

which shows that pitch-angle scattering dominates for la
velocities~i.e.,D' falls off the slowest!. Second, there is no
drag whenv'0, but there is diffusion: particles may expe
rience a random walk, but of course feel no frictional dra
Third, at intermediate velocities, the only structure occ
when v' v̄s . That is, there is no indication that there a
other species present. This is a consequence of the fact
only the emission of waves by the test particle is included
the dominant approximation—the damping due to other s
cies is of higher order. Fourth, all the coefficients are p
portional to the species densityns . This makes sense phys
cally because the interaction with a group of particles
expected to be proportional to the quantity of those partic
The first two of these properties also hold true in two dime
sions, because they are consequences of basic physica
tions of interaction time and conservation of momentum. T
last two, however, are only valid within the dominant a
1289Reynolds, Fried, and Morales
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proximation, and arise because the kinetic informati
which contains the damping of the emitted waves, is
glected.

In two dimensions, the angular integrations are not
pressible in terms of elementary functions because of
presence of Imj. They are, however, amenable to numeric
computation. Because the results are not self-similar,
contributions of each species are investigated rather than
full coefficients. For simplicity, and in order to properly in
clude the density dependence, the dimensionless equiva
of Eqs.~17!, scaled to the corresponding electron quantiti
are displayed. These are defined as

Ai52
2q2

Apm~2p!n23 S qe
2ne

mev̄e
2kDe

D(
s

Ai
s , ~27a!

D i5
4q2

A2pm2~2p!n23 S qe
2ne

v̄ekDe
D(

s
D i

s , ~27b!

D'5
4q2

A2pm2~2p!n23~n21!
S qe

2ne

v̄ekDe
D(

s
D'

s , ~27c!

where kDe5wpe/ v̄e,

Ai
s[kDeS qs

2ns

msv̄s
2 D Smev̄e

2

qe
2ne

D usC2
s , ~28a!

D i
s[kDeS qs

2ns

v̄s
D S v̄e

qe
2ne

DC2
s , ~28b!

D'
s[kDeS qs

2ns

v̄s
D S v̄e

qe
2ne

DS2s , ~28c!

and in two dimensions the angular integrations are

C2
s[2

p

4E0
2p

du
cos2 ue2us

2 cos2 u

Im jM~u!
, ~29a!

S2
s[2

p

4E0
2p

du
sin2 ue2us

2 cos2 u

Im jM~u!
. ~29b!

In Eqs. ~28! the factorkDe appears becausej has units of
inverse length.

To investigate the implications of two dimensions,
two-species plasma~electrons and singly charged ions! in
thermal equilibrium (ne5ni and Te5Ti) and an ion-to-
electron mass ratio of 64 is considered first. This mass r
is chosen small in order to emphasize the effect of the io
and also because particle simulations often use this va
Figure 1 showsAi

i , D i
i , andD'

i as functions of the scale
velocity ue for such a plasma, while Fig. 2 shows the cor
sponding electron quantities. For this equilibrium situati
there are interesting effects not present in three dimensi
Figure 1 reveals that the ion interaction is substantially
changed in comparison with three dimensions~see Ref. 22!.
The only substantial difference from three dimensions is t
the peak height ofAi ~and the widths ofD i andD') occur
nearv'2A2v̄, rather than atA2v̄ (A2v̄ i50.125 on the scale
of Fig. 1!. Okuda and Birdsall6 found that this width in-
1290 Phys. Plasmas, Vol. 4, No. 5, May 1997
,
-

-
e
l
e
he

nts
,

io
s,
e.

-

s.
-

t

creased with the size of the particles, but only calculated
coefficients for a single-species Maxwellian plasma, a
hence did not illustrate the complex multispecies behav
Figure 2 reveals a more complicated velocity dependence
the electron interaction. In addition to the 2A2v̄ width, all of
the coefficients show structure between the ion thermal
locity v̄ i and the electron thermal velocityv̄e , even though
they represent an interaction with the electrons. The ex
nation of these effects requires a detailed consideration
Eqs.~29! in specific velocity regimes, which includes caref
approximations tojM .

1. Small velocities

The regime most similar to three dimensions is that
small velocities:v! v̄ i ,v̄e , or ue!ui!1. In this case, the
numerators of bothC andS as well as theZ8 function in
jM can be expanded for smallus ,

jM
2 '2(

s

vps
2

v̄s
2
, ~30!

52kD
2 , ~31!

so that ImjM52kD . The sign of the square root is chose
so that Imj,0 ~for reasons of causality!. BecausejM is no

FIG. 1. Contribution of the ions to the Fokker–Planck coefficients of a t
electron in a two-dimensional plasma in thermal equilibrium. The ion-
electron mass ratio is 64.

FIG. 2. Contribution of the electrons to the Fokker–Planck coefficients o
test electron in a two-dimensional plasma in thermal equilibrium. The i
to-electron mass ratio is 64.
Reynolds, Fried, and Morales
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longer a function ofu, the angular integrations are straigh
forward, and to lowest order inus they are constant,

C2
s'S2

s'
p2

4kD
. ~32!

Except for missing a factor of lnL, this behavior is identica
to that in three dimensions, including the fact th
D'(0)5D i(0). This correspondence is expected becaus
small velocities the shielding of a test particle is static;
dynamical corrections are small.

At small velocities, then, particles do not experience
soft core of the logarithmic potential during collisions, a
the exponential decay of the Debye-shielded potential is
ficiently similar to three dimensions that the drag and dif
sion coefficients behave comparably.

2. Large velocities

In this regime,v is larger than both thermal velocities
v@ v̄ i ,v̄e , or 1!ue!ui . Because the integrands of Eq
~29! are sharply peaked, the usual asymptotic evaluation c
sists of approximating (ImjM)

21 as a constant over the re
gion of integration,

C2
s'2

p

Im jM~uc!
E
0

p/2

du cos2u e2us
2 cos2 u, ~33a!

S2
s'2

p

Im jM~us!
E
0

p/2

du sin2u e2us
2 cos2 u, ~33b!

where cosuc51/us and cosus50. Strictly speaking, becaus
the Z8 function in jM has the same argument as the exp
nential, and because its value varies substantially over
width of the exponential, the integrand of Eq.~29b! is not
very sharply peaked. However, Eq.~33b! is the zeroth-order
approximation toS2

s , and is adequate except for describi
the enhanced tail interaction in Sec. III C. The remain
integrals can be evaluated in terms of Kummer conflu
hypergeometric functions, which in the large-velocity a
proximation reduce to powers ofus ,

C2
s'2

pAp

4us
3 Im jM~uc!

, ~34a!

S2
s'2

pAp

2us Im jM~us!
. ~34b!

As in the small-velocity regime, ImjM(us)52kD , but the
value of ImjM(uc) depends ons. That is, whens5e, the
electron term in the sum of Eq.~25! dominates and

jM
2 ~uc!'

kD
2

4
Z8~1!, ~35!

where Z8(1)'0.1521.3i , so that ImjM(uc)'20.38kD .
On the other hand, whens5 i , both terms are comparable

jM
2 ~uc!'

kD
2

4
@Z8~1!22#, ~36!

which gives ImjM(uc)'20.72kD . The final results are
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C2
e'

pAp

1.5ue
3kD

, ~37a!

C2
i '

pAp

2.9ui
3kD

, ~37b!

S2
s'

pAp

2uskD
, ~37c!

which, aside from the difference in numerical factors, lea
to a large-velocity dependence that is identical to that fou
in three dimensions@Eqs. ~26!#. This correspondence, how
ever, is only true for equilibrium plasmas. For nonequili
rium plasmas, the weak dynamical shielding of nontherm
particles becomes important.

3. Intermediate velocities

The intermediate velocity regime corresponds toui.1
but ue,1. The coefficients due to the ions (s5 i ) are iden-
tical to those for large velocities@Eqs. ~37!#, because the
integrands are again sharply peaked. This fact has an im
tant consequence: the coefficients due to the ions have
structure atv̄e . More generally, it can be shown that th
coefficients due to a slow species have no structure at
thermal velocity of faster moving species. The converse
not true. For the coefficients due to the electrons, the
proximation for ImjM is still a function ofu,

jM
2 ~u!'

kD
2

4
@Z8~ui cosu!22#, ~38!

so that it must be retained in the angular integrations

C2
e'2

2p

kD
E
0

p

du
cos2 u~12ue

2cos2 u!

ImAZ8~ui cosu!22
, ~39a!

S2
e'2

2p

kD
E
0

p

du
sin2 u~12ue

2 cos2 u!

ImAZ8~ui cosu!22
. ~39b!

Even when the large-argument approximation to theZ8 func-
tion is used, these are complicated functions of bothue and
ui , and the interplay between the thermal velocities crea
structure in the electron coefficients between the two ther
velocities. This is exactly what is observed in Fig. 2.

The following results hold for plasmas in thermal equ
librium. At both small and large velocities the Fokker
Planck coefficients behave similarly in two and three dime
sions~aside from numerical factors that are geometrical
nature!. In two dimensions the coefficients due to the ele
trons exhibit a complicated structure above the ion therm
velocity. This interplay between the thermal velocity sca
increases in complexity when a population of energetic e
trons is added.

C. Enhanced large-velocity interaction in two
dimensions

We now turn to the most striking two-dimensional e
fect: the enhanced large-velocity interaction. This enhan
ment appears when there is a small, superthermal elec
component. If this component is treated as a separate spe
1291Reynolds, Fried, and Morales
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then the drag and diffusion due to these hot electrons
only weakly dependent on their density, i.e., even a sm
population of fast electrons can affect the transport sign
cantly.

The choice of stable—but nonequilibrium—distributio
is of three species: ions, bulk electrons, and tail electr
(s5 i ,e,t), each with Maxwellian distributions characterize
by thermal velocitiesv̄ i , v̄e , and v̄ t , respectively, where
v̄ i, v̄e, v̄ t . Each component also has its own dens
(ni ,ne ,nt) and hence its own plasma frequency (vpi ,
vpe ,vpt). Figures 3 and 4 show the coefficients due to
bulk electrons and the tail electrons, respectively, for
parametersv̄ t

2/ v̄e
2516 andnt /ne50.01. Because the ions ar

the slowest species, the ion coefficients are unchanged
the equilibrium case, and are not shown. The coefficients
to the bulk electrons, as can be seen from Fig. 3, are
virtually unchanged from the equilibrium case, but they a
shown for comparison with the coefficients due to the
electrons.

The most striking aspect of Fig. 4 is the strength of t
tail interaction at large velocities,v. v̄ t . This strength is
much larger than the density ratio would predict. The phy
cal reason for this behavior is that because the wave emis

FIG. 3. Contribution of the bulk electrons to the Fokker–Planck coefficie
of a test electron in a nonequilibrium two-dimensional plasma. The ion
electron mass ratio is 64,nt /ne50.01, andv̄ t

2/ v̄e
2516. The contribution of

the tail electrons to the parallel drag,Ai
t , is shown for comparison.

FIG. 4. Contribution of the tail electrons to the Fokker–Planck coefficie
of a test electron in a nonequilibrium two-dimensional plasma. The ion
electron mass ratio is 64,nt /ne50.01, andv̄ t

2/ v̄e
2516. The distribution

function of the tail electrons,f t , is shown for comparison.
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and the wave damping are both proportional to the densit
the population, and because both are retained in the t
dimensional description, this density dependence cancels
for large velocities. To understand this behavior one m
examine the large-velocity limits ofC andS, where now the
evaluation ofjM(uc) andjM(us) must take into account al
three species.

As before, the evaluation ofjM(uc) depends on the spe
cies considered. For the tail electrons

jM
2 ~uc!'

vp
2

2v̄ t
2 2

i

2 S 2Ap
vpe
2 v̄ t

v̄e
3

e2 v̄ t
2/ v̄ e

2
11.3

vpt
2

v̄ t
2 D , ~40!

wherevp
25vpi

2 1vpe
2 . The first term in the parentheses is th

damping due to the bulk electrons, and the second is
damping due to the tail electrons. Equation~40! ignores the
damping due to the ions as well as the correction to
dispersion relation due to the tail electrons. Whenv̄ t@ v̄e ,
the only significant damping arises from the tail electrons
that

Im jM~uc!'20.46
vpt
2

v̄ tvp

, ~41!

which is proportional to the tail density. This implies

C2
t }

1

nt
. ~42!

Thus, bothAi
t andD i

t are independentof nt . Of course, this
analysis only applies for large velocities. Asv decreases, the
damping due to the tail electrons increases more rapidly t
the damping due to the bulk electrons~becausev̄ t. v̄e , and
both are exponential!. This continues until the damping du
to the tail saturates nearv' v̄ t . In this region, the damping
due to the bulk electrons becomes appreciable, and the
est term in ImjM

2 (uc) becomes the electron damping term
which is ignored in Eq.~41!. For v' v̄e , the bulk damping
dominates the tail damping and the coefficients due to
tail electrons revert to scaling linearly with density.

The density dependence of the coefficients due to the
electrons is shown in Fig. 5. This figure shows the stren
of the coefficients forue55 as a function of the tail density

s
-

s
-

FIG. 5. Contribution of the tail electrons to the Fokker–Planck coefficie
of a test electron in a nonequilibrium two-dimensional plasma, plotted
functions of the logarithm~base 10! of the tail density. The ion-to-electron
mass ratio is 64,ue55, andv̄ t

2/ v̄e
2516.
Reynolds, Fried, and Morales
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nt . It can be seen that on a logarithmic scale,Ai
t andD i

t vary
only linearly, whileD'

t exhibits a modicum of exponentia
behavior, which implies a stronger density dependence.
understand the behavior ofD'

t , S2
t must be evaluated. Th

leading approximation, used in the case of thermal equi
rium, is to evaluate ImjM at u5us , which gives
Im jM(us)'2kD . This leads to the expectation thatD'

t has
the usual linear dependence onnt , but in Fig. 5,D'

t is not
exponential, so it appears that there is some density inde
dence. This arises because the width of the exponentia
S is 1/ut , so that some of the behavior elucidated forC2

t is
included. It is a higher-order effect, however, and impl
thatD'

t is more strongly density dependent thanAi
t or D i

t ,
but is not proportional tont .

IV. COMPARISON WITH THREE DIMENSIONS

Recent work on diffusion in a strongly magnetize
three-dimensional plasma is closely related to the results
sented in the previous section. Ware1 derives a Fokker–
Planck equation for the parallel distribution function of fa
electrons in a three-dimensional, strongly magnetized pla
(vce@vpe) due to wave emission and damping. He cons
ers only the higher-order terms usually ignored by the do
nant approximation in three dimensions, but that are sim
in character to the lowest-order term that appears in
dimensions. Although he considers the case of a she
magnetic field and a spatially nonuniform distribution fun
tion, the uniform limit of his result can be written as

d f

dt
52

]

]v i
~Ai f !1

1

2

]

]v i
SD i

] f

]v i
D , ~43a!

Ai52
2pne4

m2v i
2 , ~43b!

D i52
2pne4

m2v i
2 S F~v i!

]F~v i!/]v i
D , ~43c!

where

F~v i!5E d2v' f ~v i ,v'! ~44!

is the parallel electron distribution function. Here, the sy
bols' and i refer to the direction of the magnetic field
Equations~43! are only applicable to test electrons with lar
velocities. While the dragAi is simply the large-velocity
limit of the usual drag, the diffusion coefficientD i exhibits
the behavior obtained for the two-dimensional problem. T
denominator of Eq.~43c! is essentially the parallel Landa
damping due to the total electron distribution functionF and
is analogous to the Imj factor found in two dimensions. I
F is expressed as the sum of two Maxwellians, one for
bulk electrons and one for the tail electrons~using our pre-
vious notation!,

F5Fe1Ft5~12h t!
e2v i

2/2v̄ e
2

A2p v̄e
1h t

e2v i
2/2v̄ t

2

A2p v̄ t
, ~45!

whereh t is that fraction of electrons that are in the tail, th
derivative ofF is
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]F

]v i
52v iS ~12h t!

e2v i
2/2v̄ e

2

A2p v̄e
3

1h t

e2v i
2/2v̄ t

2

A2p v̄ t
3 D . ~46!

The two terms in the square brackets of Eq.~46! represent
the damping due to the bulk electrons and the damping
to the tail electrons, respectively, similar in character to
imaginary part of Eq.~40!. For those velocities such that th
second term in the square brackets of Eq.~46! dominates the
first, D i is independent ofh t . In order to compare with the
two-dimensional results,D i is expressed as the sum of tw
terms, the diffusion due to the bulk electrons and the
electrons,

D iv5S A2pne4

m2v̄e
D ~D i

e1D i
t !. ~47!

The dimensionless diffusion coefficients obtained in t
manner are shown in Fig. 6, for the same parameters use
Figs. 3 and 4,v̄ t

2/ v̄e
2516 andnt /ne50.01. The enhanced

large-velocity interaction is independent of the tail densi
as can be seen from an expansion ofD i

t for large velocities,

D i
t'2A2S v̄ t2v̄ev i

3 D . ~48!

This is exactly the same behavior as in two dimensio
which shows that the enhanced interaction is due to
wave-driven transport, rather than an anomaly of the cho
of only two dimensions.

The three-dimensional correction term3 in Eq. ~20! has a
form similar to the total integral in two dimensions: it
proportional to (Imj)21. All of the properties elucidated fo
two dimensions are therefore properties of the higher-or
term that exists in three dimensions. In addition, Tidman a
Eviatar3 showed that for large test-particle velocities~i.e.,
v. v̄e), the correction could be further approximated as

p

2

Re j

uIm ju
'

1

2v2u]F~v !/]vu
, ~49!

which is exactly equivalent in form~Landau damping in the
denominator! to Eq. ~43c!, the three-dimensional strongl
magnetized result. They also showed that for fast electro

FIG. 6. Contribution of the electrons~both bulk and tail! to the parallel
diffusion coefficient of a test electron in a nonequilibrium three-dimensio
magnetized plasma, given by Eq.~47!, with v̄ t

2/ v̄e
2516 andnt /ne50.01.

Compare with the two-dimensional equivalent in Figs. 3 and 4.
1293Reynolds, Fried, and Morales
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the 90° deflection time is much shorter than the energy
time, which means that the enhanced fluctuations scatte
fast electrons more quickly than they equilibrate with t
bulk electrons. Because this process is the dominant on
two dimensions, this is the probable explanation for the tw
dimensional particle simulation results of Decyket al.8

Li and Petrasso23 looked at higher-order terms in th
context of three-dimensional binary collisions, but beca
they included only static shielding, their results do not co
tain the anomalous behavior.

V. FLUCTUATION SPECTRUM

Fast electrons, due to their undamped wave emissi
contribute significantly to the spectrum of fluctuations in
plasma.4 It is therefore instructive to consider the fluctuatio
in a two-dimensional plasma with fast electrons, and to
vestigate the connection between the form of the spect
and the velocity-space transport coefficients. In the App
dix, the fluctuation spectrumS (k,v) for arbitrary dimension
is derived in the same manner as the Fokker–Planck co
cients. The result is

S ~k,v!5~32p3!
(snsqs

2 f s
1~v/k!

k3ue~k,v!u2
, ~50!

which was first obtained by Hubbard.24 If each species has
Maxwellian distribution with a common temperatur
Ts5T, this spectrum reduces to

S ~k,v!→
8pT

v
Im

1

e~k,v!
, ~51!

which is simply a statement of the fluctuation–dissipat
theorem. The fluctuation spectrum can be written in terms
Im e21 even when the plasma is not in equilibrium,

S ~k,v!5S 32p2

k D
3S (snsqs

2 f s
1~v/k!

(svps
2 @] f s

1~v !/]v#v5v/k
D Im 1

e~k,v!
,
~52!

and this form shows the Landau damping expression in
denominator as before. It is well known that the diffusi
coefficient can be written in terms of the fluctuation spe
trum,

D5
q2

m2E dnk dv

~2p!n kkS ~k,v!d~v2k–v!, ~53!

and the insertion of Eq.~52! into Eq. ~53! results in a form
for the diffusion coefficient very similar to that found b
Ware.1

The frequency spectrumS(v) is defined as the integra
over k of S (k,v), and can be expressed as a sum o
species,
1294 Phys. Plasmas, Vol. 4, No. 5, May 1997
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S~v![E dnk

~2p!nS ~k,v!, ~54a!

5
4

~2p!n23(
s

nsqs
2E dnk

f s
1~v/k!

k3ue~k,v!u2
, ~54b!

[(
s

Ss~v!. ~54c!

Except for missing a factor ofk2q2/m2, it is identical with
D i when the substitutionv/k→v cosu is made. As a func-
tion of v, S(v) exhibits similar properties toD i(v). The
analysis, however, is complicated by the fact that the in
grand overdk cannot be expressed as a simple pole, due
the complexity of theZ function. Nevertheless, for thos
regions in (k,v) space where the damping due to the t
electrons is larger than the damping due to the bulk e
trons, the tail electrons make a density-independent contr
tion to the frequency spectrum. This behavior is clearly se
in Fig. 7, where the contributions to the frequency spectr
S(v) due to the bulk electrons and the tail electrons
shown~for the same parameters as Figs. 3 and 4!. As is well
known, the frequency spectrum for a plasma in thermo
namic equilibrium has a small peak just above the plas
frequency, due to the electron plasma waves.25 For a two-
dimensional plasma with a hot electron component, this p
is enhanced, and the strength of the enhancement is du
the tail electrons and is relatively independent of their d
sity.

Maceet al.26 have investigated the fluctuation spectru
for three-dimensional, unmagnetized, isotropic plasm
whose velocity distribution is a so-called kappa distributio
Because these distributions have an excess of suprathe
particles, there is an enhanced level of fluctuations near
plasma frequency, in agreement with the present work. A
a two-temperature electron distribution~due to photoelec-
trons! has been used to interpret spectral measuremen
the magnetosphere.27

VI. CONCLUSION

We have investigated an effect that is inherent to wea
stable plasmas: an enhanced large-velocity interaction. T

FIG. 7. Contribution of the electrons~both bulk and tail! to the two-
dimensional frequency spectrumS(v) for the same parameters as in Figs.
and 4,nt /ne50.01 andv̄ t

2/ v̄e
2516.
Reynolds, Fried, and Morales
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behavior is not unique to two dimensions, but is quite sim
to the higher-order terms in a three-dimensional domin
approximation expansion, as shown in the studies of Wa1

and of Tidman and Eviatar.3 The increased level of fluctua
tions generated by fast electrons is quite similar in both t
and three dimensions. However, because both the emis
and absorption of fluctuations by fast electrons is retained
the two-dimensional Fokker–Planck theory to lowest or
~no dominant approximation is needed!, these electrons in
teract at a significantly higher level than predicted by
extrapolation based on the usual three-dimensional domi
calculation. Small-angle collisions do not dominate in tw
dimensions, and the soft core of the logarithmic poten
implies that any enhanced fluctuations affect the trans
significantly. In three dimensions, a substantial tail would
necessary before a corresponding effect is observed.4,5 These
results are essential to a complete understanding of t
dimensional particle simulations, especially those of wea
stable plasmas.
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APPENDIX: CALCULATION OF FLUCTUATIONS

In order to calculate the fluctuation integral properly
fewer than three dimensions, some care is needed in im
menting the ensemble average and performing the Fou
transforms. The specific treatment is due to Fried,28 although
it is formally equivalent to the method of Lenard.14 The start-
ing point is the Klimontovich–Poisson system of equatio
~i.e., electrostatic! for an unmagnetized plasma, which dete
mine the exact, microscopic distribution functionf̃ and the
exact, microscopic electric fieldẼ,

S ]

]t
1v–“1

q

m
Ẽ–

]

]vD f̃50, ~A1a!

“–Ẽ54p(
s

nsqsE dnv f̃ . ~A1b!

The ensemble average of an exact quantityÃ is defined as
A[^Ã&, so that the fluctuation from the ensemble averag
dA[Ã2A. The ensemble average off̃ is the usual one-body
distribution functionf5^ f̃ &. The ensemble average of Eq
~A1! results in two systems of equations: those that gov
the average quantities (f andE) and those that govern th
fluctuations (d f and dE). The quasilinear approximatio
~not to be confused with Quasilinear Theory29! consists of
ignoring the higher-order terms when solving for the fluctu
tions, and assuming thatd f and dE evolve on much faste
temporal and spatial scales thanf and E. The fluctuations
drive changes in the average quantities, and the fluctua
integral can be written as

d f

dt
52

q

m

]

]v
–^dE d f &. ~A2!
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Under this approximation, the equations for the fluctuatio
are identical to the linearized Vlasov–Poisson system, wh
d f anddE are the first-order quantities andf is the zeroth-
order distribution function

S ]

]t
1v–“1

q

m
E–

]

]vD d f ~x,v,t !52
q

m
dE~x,t !–

]

]v
f ~v!,

~A3a!

“–dE~x,t !54p(
s

nsqsE dnv d f ~x,v,t !. ~A3b!

The distributionf is not a function ofx or t because it is
assumed to be uniform on the scale over whichd f evolves.
The solution to Eqs.~A3! is well known, and is found by
Fourier–Laplace transforming, i.e., in the context of
initial-value problem. The solution is algebraic and bothd f
anddE are proportional to the initial fluctuations in the sy
temd f (k,v,t50). Transforming back to time and taking th
long time limit, t→`, it is found that the fluctuations ar
driven only by the free-streaming terms (k•v5v) as long as
the plasma is stable (Imv,0 for e50). Finally, the spatial
Fourier transforms must be inverted to evaluate the quan
^dE d f &. The ensemble average of the initial fluctuations

^d f s* ~k,vs,0!d f a~k8,va,0!&

5
~2p!n

ns
f s~vs!d~k2k8!d~vs2va!dsa , ~A4!

where the factor of (2p)n comes from collapsing the invers
transform. The only dependence onn is the exponent of
2p, and the answer is

d f

dt
52

]

]v
•J~v!, ~A5a!

J~v!5
1

~2p!n23(
s

E dnvsS f ~v!

ms

] f s~vs!

]vs

2
f s~vs!

m

] f ~v!

]v D –K, ~A5b!

K5
2q2qs

2ns

m E dnk
d~k–v2k–vs!

ue~k,k–v!u2
kk

k4
. ~A5c!

This formalism allows the calculation of another qua
tity of interest, the fluctuation spectrumS (k,v), which is
defined as the transform of the fluctuating electric fie
squared,

^dE~x,t !dE~x,t !&[E dnk dv

~2p!n11S ~k,v!. ~A6!

The evaluation of̂ dE dE& proceeds in the same manner
the evaluation of̂dE d f & above. The inverse transforms a
evaluated with the help of Eq.~A4!, and the spectrum is24

S ~k,v!5~32p3!
(snsqs

2 f s
1~v/k!

k3ue~k,v!u2
. ~A7!
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The same result is obtained if one calculates the electric fi
due to a test particledE, and then integrates the result ov
all the plasma particles.
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