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Ion Bernstein waves driven by two transverse flow layers
M. A. Reynoldsa) and G. Ganguli
Beam Physics Branch, Plasma Physics Division, Naval Research Laboratory, Washington, D.C. 20375

~Received 9 February 1998; accepted 16 April 1998!

The interaction between two narrow layers ofE3B flow is investigated, along with their stability
properties. The mode frequencies, growth rates, and eigenfunctions are calculated. It is found that
the instability due to a single layer is robust to the inclusion of a second layer. Specifically, when
the separation between the layers is on the order of the ion-cyclotron radius, there is strong coupling
between the two layers and the second layer is destabilizing. In addition, when the flow velocities
are in opposite directions a wide variety of modes is possible, including near-zero-frequency modes,
resulting in broadband structure in both the frequency spectrum and the wave number spectrum.
These results may have implications for the understanding of the auroral ionosphere, where such
spatial structure in the transverse electric field is often observed. ©1998 American Institute of
Physics.@S1070-664X~98!03807-5#
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I. INTRODUCTION

Nonuniformities in the direction perpendicular to th
magnetic field are routinely observed in a variety of plasm
The complicated structure in the density, current, and elec
field of the auroral ionospheric environment1 is one striking
example. For many years, observations of the aur
ionosphere2–4 have revealed fine scale structure in the tra
verse electric field, in which the overall effect is one
strong velocity shear, resembling many individualE3B flow
layers in close proximity. In addition, laborator
experiments5,6 designed to model the space environme
have been able to externally drive electric fields of this ty
The linear stability properties of waves in such nonunifo
media are difficult to predicta priori: each situation must be
studied individually, and evaluated on a case-by-case b
In this paper, we study the effects that structured, nonu
form E3B flow has on the stability of ion Bernstein wave
Specifically, we investigate the case of two layers~whose
thicknessL is on the order of the ion-cyclotron radius,L
*r i! with finite E3B flow, immersed in a backgroun
plasma that is stationary.

It has been shown, both theoretically7,8 and experi-
mentally,9,10 that a single localized flow layer~with its asso-
ciated velocity shear! can be unstable to ion-cyclotron-lik
waves. In the frame of the background plasma the elec
static wave energy density is negative within the flow lay
and positive outside the flow layer, which means that a l
of wave energy from the layer can sustain wave growth.7 The
waves that grow must propagate energy outward across
boundary between the layer and the background plas
Analysis of single-particle orbits11 in the field structure gen
erated by the instability shows that ions fall through a pot
tial drop and give up this energy to the wave, similar to t
physical mechanism of a magnetron. In this paper, we g
eralize the single-layer results to include the new effects
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to the addition of a second layer. Because an examinatio
the field structure is crucial to the understanding of the ph
ics of this instability, we use the eigenfunctions of the wa
potential in a given flow structure as an important pedago
cal tool. Of course, the eigenfunctions may not be orthogo
if the system exhibits transient behavior, and other meth
must be used to deduce the linear response.12 This compli-
cation is not considered here.

The eigenvalue equation for ion Bernstein waves in
nonuniform plasma is derived in Sec. II, the dispersion re
tion for our choice of geometry is given in Sec. III, an
relevant results for a single flow layer are described in S
IV. In Secs. V and VI we investigate in detail two types
structures that are generic in character. The first type, Sec
is characterized by flows in the same direction, with a reg
of zero velocity separating the two layers. The second ty
Sec. VI, is characterized by flows in opposite directions w
no separation between the two layers~this approximates a
so-called ‘‘paired electrostatic shock’’2!. Section VII is the
conclusion.

II. ION BERNSTEIN WAVES IN NONUNIFORM
PLASMAS

To obtain electrostatic ion Bernstein waves,13 we make
the usual approximations of low frequency~v!Ve , where
Ve is the electron-cyclotron frequency!, long perpendicular
wavelength~k're!1, wherere is the electron-cyclotron ra
dius!, and perpendicular propagation~ki[0; finite ki intro-
duces Landau damping, which is ignored here!. In addition,
we assumevpi@V i ~wherevpi and V i are the ion-plasma
and ion-cyclotron frequencies!, which holds for most plas-
mas of interest. This is equivalent to restricting the frequen
regime to well below the lower hybrid frequency,v!v lh .
Under these approximations, and taking magnetic field to
in the z direction, the electrostatic dispersion relation for
uniform plasma has the simple form13

il:
4 © 1998 American Institute of Physics



e

th
tia
in

d

in
r
ta
-

i-

it

an
he
nt
y.

a

rs
uct
rm

ub-

s in

s of

or-
be-

e
e

re-
two

e

2505Phys. Plasmas, Vol. 5, No. 7, July 1998 M. A. Reynolds and G. Ganguli
D512(
n

Gn~b'!
v

v2nV i
50, ~1!

whereb'5(kx
21ky

2)r i
2/2, r i5 v̄ i /V i is the ion-cyclotron ra-

dius, v̄ i5A2Ti /mi is the ion thermal velocity,Gn(b')
5exp(2b')In(b'), andI n is a modified Bessel function. Th
solution of Eq.~1! gives the so-called ‘‘pure’’ ion Bernstein
waves.14

When the plasma is nonuniform, an exact solution of
plasma response requires an integral-differen
formulation.15 To lowest order, however, nonuniformities
thex direction can be included by expandingD for smallkx ,
and making the substitutionkx→2 i ]/]x. ~Here, we have
assumed that any nonuniformities in they and z directions
are negligible compared with those in thex direction.! The
uniform dispersion relation then becomes a second order
ferential ~eigenvalue! equation

H DU
kx50

2S ]D

]~kx
2! D

kx50

]2

]x2J f~x!50, ~2!

wheref is the electrostatic potential, and the quantities
side the braces~D and its derivative! are to be evaluated fo
kx50. When the plasma parameters are piecewise cons
the general solution to Eq.~2! in each region is an exponen
tial, f(x);exp(6ikx), where

k252
D

]D /]~kx
2!
U

kx50

5
12(nGn~b!ṽ/~ṽ2nV i !

~r i
2/2!(nGn8~b!ṽ/~ṽ2nV i !

, ~3!

b5ky
2r i

2/2, G85dG/db, ṽ5v2kyVE(x), and VE(x)5

2 ŷcEx(x)/B. The quantityṽ is the Doppler-shifted fre-
quency due to theE3B flow, and is a function of position in
this case.~In previous work,5–11,15,16the symbolv1 has been
used to denoteṽ.! The quantityv has both a real and imag
nary part, which we denotev[v r1 ig, where v r is the
frequency andg is the growth rate.

III. GEOMETRY AND NONLOCAL DISPERSION
RELATION

We consider two layers, labeled layer 1 and layer 2, w
widths L1 andL2 and flow velocitiesV1 andV2 , separated
by a distanceD. TheE3B drift velocity as a function ofx is
specified in five different regions

VE55
0 x,2L1/2

V1 2L1/2,x,L1/2

0 L1/2,x,L1/21D

V2 L1/21D,x,L1/21D1L2

0 L1/21D1L2,x
6 . ~4!

The geometry is sketched in Fig. 1. A piecewise const
flow velocity is chosen for its simplicity, and because t
instability of interest does not depend explicitly on gradie
in the flow, but does depend on the global nonuniformit8
e
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The nonlocal dispersion relation for this nonuniform plasm
is obtained by matching bothf and ]f/]x across the four
boundaries between the five regions~see the Appendix for
details and a generalization to an arbitrary number of laye!.
The two-layer dispersion relation can be written as a prod
of two single-layer dispersion relations plus a coupling te

D12
~2![D1

~1!D2
~1!1C1250. ~5!

The superscript indicates the number of layers and the s
scripts label each layer. That is,

D1
~1![~k02k1!2eik1L12~k01k1!2e2 ik1L150 ~6!

is the nonlocal dispersion relation for layer 1~i.e., assuming
V250!, D2

(1) is identical in form toD1
(1) with k1→k2 and

L1→L2 , and

C1254e2ik0D~k0
22k1

2!~k0
22k2

2!sin~k1L1!sin~k2L2! ~7!

is the coupling between the two layers. The wave number
thex direction in the flow layers,k1 andk2 , are given by Eq.
~3! with ṽ replaced byv2kyV1 and v2kyV2 , while the
wave number in the regions with no flow,k0 , is given by Eq.
~3! with ṽ replaced byv.

The dispersion relation for a single layer,D1
(1)50, can

be factored into terms responsible for definite parity~even
and odd! eigenfunctions

D1
~1!54@k0 cos~k1L1/2!2 ik1 sin~k1L1/2!#

3$ ik0 sin~k1L1/2!2k1 cos~k1L1/2!%50, ~8!

where the eigenfunctions associated with the eigenvalue
the term in square brackets are even inx, while those asso-
ciated with the term in curly braces are odd. No such fact
ing is possible in the more general case considered here
cause the flows do not exhibit any inherent symmetry inx.

The result in Eq.~8! is equivalent to the solution of the
time-independent Schro¨dinger equation for a finite squar
well, and Eqs.~5!–~7! show the extension from a singl
square well to two square wells. We have expressed the
sult in a form that separates the interaction between the
flow layers~or square wells! from the dynamics of a single
flow layer. Equation~7! shows that the coupling between th
two layers is proportional to exp(22D Im k0) which means
that for largeD the layers are uncoupled~of course, the fact

FIG. 1. Geometry of the structured flow. The two layers have widthsL1 and
L2 , flow velocitiesV1 andV2 , and are separated by a distanceD.
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that Imk0 is positive is required by the boundary conditio
that f→0 for uxu→`!. In this case, the modes of one lay
are normal modes of the system regardless of the other la
If the layers are identical, then there is the possibility th
some roots are degenerate. WhenD&1/(2 Imk0) ~the case
we wish to investigate here!, the coupling between the layer
is strong, and the normal modes are global in nature
incorporate the physics of the interaction of the two laye

IV. SINGLE-LAYER RESULTS OF RELEVANCE

When V250 ~i.e., k25k0!, the dispersion relation is
given by Eq.~8! and the resulting stability properties hav
been discussed elsewhere in detail~see Ganguli8 and refer-
ences therein!. We describe briefly only the results releva
to the two-layer case. This includes a detailed look at
properties of the eigenfunctions, which form the basis for
interpretation of the physics in the two-layer case.

We choose a coherent mode,7 where the growth rate is
positive only in a narrow range ofb. ~The ion-cyclotron
radiusr i is held constant, so that a variation ofb signifies a
variation ofky .! Figure 2 showsg as a function ofb for a
single layer, with flow velocityV153v̄ i . ~The frequency,
v r , is not shown as it remains approximately equal to 1.6V i

over the entire range ofb.! Two different widths are shown
L153r i and L156r i . This illustrates the property that a
the width increases, the growth rate decreases. Physic
the reason is that the velocity shear is weaker. In the n
section it will be shown that when the separation betwe
two layers is small, they can either be strongly coupled or
as essentially a single, wider, layer~with a corresponding
reduction in the growth rate!, depending on the wave num
ber.

A heuristic derivation of the growth rate, which consi
ers only energy flow, results in15

g52
vgU0

L1U1
, ~9!

wherevg is the group velocity in thex direction across the
boundaries of the layer (x56L1/2), U0 is the electrostatic
wave energy density in the region of no flow outside t
layer, andU1 is the electrostatic wave energy density insi

FIG. 2. Growth rate for a single layer as a function of wave numberb for
two different thicknesses,L153r i ~solid! and L156r i ~dotted!. The flow

velocities areV153v̄ i andV250. The three diamonds~a!–~c! mark eigen-
values for which the eigenfunctions are shown in Fig. 3.
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the layer. WhenU1 is negative,U0 is positive, andvg is
positive, which is the case here, there is the possibility
instability. ~Positive vg means the group velocity point
away from the layer.!

This energy flow can be inferred from Fig. 3 where t
eigenfunctionsf(x) for a single layer of widthL153r i are
shown for three different values ofb ~corresponding to the
diamonds in Fig. 2!. Wheng is maximum@Fig. 3~b!#, energy
propagates away from the layer in both directions. This is
physical mechanism by which the instability grows: becau
the electrostatic wave energy density is negative within
layer and positive outside the layer, the eigenfunction m
be a wave whose group velocity propagates energy ac
the boundary between the layer and the background pla
in order for the free energy to be released. The direction
energy flow is determined from Fig. 3~b! and the fact that
these waves are backward waves. In Fig. 3~b!, the phase of
Ref lags that of Imf by 90°, which means that the phas
velocity points toward the layer. In addition, for frequenci
below the lower hybrid frequency, ion Bernstein waves a
backward waves for all values ofk' . ~This can be seen from
Fig. 1 of Ref. 14 by noting thatdv/dk',0.! These two facts
together indicate that the group velocity points away fro
the layer, thus satisfying the criteria for instability given
Eq. ~9!. When the eigenfunction is either localized within th
layer @Fig. 3~a!# or evanescent outside the layer@Fig. 3~c!#
the growth rate is reduced. Only the ‘‘ground state’’ eige
functions ~and eigenvalues! are shown, because they typ
cally have the largest growth rates. Similar to the quant
square well problem, however, there are other ‘‘bou
states,’’ and they exhibit the same physical behavior j
described for the ground state.

This physical behavior exists for two layers as well, b
the possibility of coupling between the layers, and the res
ing interference between the eigenfunctions associated

FIG. 3. Eigenfunctions for a single layer of thicknessL153r i and flow

velocity V153v̄ i for three different values ofb: ~a! b50.52559, ~b! b
50.575, ~c! b50.62336. The dashed line is Ref, the dot-dashed line is
Im f, and the solid line isufu. The two vertical lines delineate the edges
the layer, and the dotted line in~b! marks the zero value. In~c!, Ref andufu
are virtually identical.
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each layer, results in new effects with corresponding qu
tative and quantitative changes in the mode structure
growth rates.

V. IDENTICAL LAYERS

We now turn to the first of the two generic structu
types: two identical layers. Identical layers are chosen
cause we want to focus on the physics of the coupl
mechanism, and the behavior of the coupling termC12. This
can be illustrated most easily whenD1

(1) andD2
(1) are iden-

tical. When the two layers are widely separated, the nor
modes will be similar to those of a single layer, with simil
stability properties. As the separation decreases, howe
the coupling termC12 plays a nontrivial role.

There are two parameters which quantify the stren
and behavior of the interaction between the two layers. T
first parameter is a measure of the strength of the coupl

d[2D Im k0 . ~10!

The coupling term,C12, is proportional to exp(2d), so that
for large d ~large separations! the coupling is exponentially
small. In addition,d/2 is the number ofe-foldings of the
amplitude of the eigenfunction between the layers. In
region of no flow between the layers, the eigenfunction,f, is
proportional to exp(2x Im k0). Evaluating this for a separa
tion of x5D results in exp(2d/2). This is consistent with the
physical idea thatC12 should have the same dependence
separation asff* , a measure of the energy. The seco
parameter is the number of wavelengths that fit between
layers

N[
D

lx
5

D Re k0

2p
, ~11!

wherelx is the wavelength in thex direction in the region
between the layers.

To illustrate how these parameters determine the in
action, we chooseL15L253r i andV15V253v̄ i . Figure 4
shows the growth rate in the transition between large
small separation, forb50.575. Also shown is the magnitud
of the coupling termC12, which decays exponentially with
increasing separationD. Three regimes can be distinguishe

FIG. 4. Growth rate~solid line! and coupling term~dotted line! for two
identical layers as a function of separationD. The thicknesses areL15L2

53r i , the flow velocities areV15V253v̄ i , and the wave number isb
50.575. The three diamonds~a!–~c! mark eigenvalues for which the eigen
functions are shown in Fig. 5.
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For large separations,D*20r i , the coupling term is expo-
nentially small, and in this limit a root of the single laye
D1

(1) is also a~degenerate! root of D12
(2) . The physics of this

limit was discussed in the previous section. For intermed
separations, 5r i&D&20r i , the growth rate oscillates with
D. Finally, for small separations,D&5r i , C12 becomes ap-
preciable, the coupling between the two layers is strong
and the growth rate approaches twice its single layer va
~As in the single-layer case,v r'1.6V i for all values ofD.!
This behavior can be understood by examining the eig
functions.

The eigenfunctions for three separations (D/r i

520,7.5,1.2) are shown in Fig. 5. For large separations,
5~a!, each layer drives waves locally, independent of
other layer. For this case,d'13, which means that the two
layers are effectively uncoupled. Of course, any noise in
plasma will destroy the slight coupling that exists theore
cally for these large separations. As the separation decre
the coupling increases, and the growth rate changes from
single-layer value and oscillates withD. These oscillations
are due to an integral number of wavelengths fitting in
potential well between the layers, as given by the param
N. This can be seen from Fig. 6, which showsN as a func-
tion of layer separation.~For comparison, the growth rate i
also shown.! WhenN is an integer, the growth rate is near
maximum. This is similar to the effect thatN has on the
transmission coefficient through two quantum square we
The growth rate is not exactly a maximum, however, beca
the effective potential well between the layers is not infini
The eigenfunction for the separation whereN'1 is shown in
Fig. 5~b!. WhenD&5r i , the waves generated by each lay
constructively interfere, as shown in Fig. 5~c!, and the eigen-
function is largest in the region between the two layers. T
is because the waves propagating away from each laye
reflected multiple times in the region between the layers

FIG. 5. Eigenfunctions for two layers of thicknessL15L253r i and flow

velocities V15V253v̄ i for three different values ofD: ~a! D520r i , ~b!
D57.5r i , ~c! D51.2r i . The dashed line is Ref, the dot-dashed line is
Im f, and the solid line isufu, andb50.575. The vertical lines delineate th
edges of the layers, and the dotted lines mark the zero values.
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this regime, there is no simple formula~e.g., an integral
number of wavelengths! which will predict the separation
with maximumg.

This coupling can be investigated in more detail by loo
ing at the behavior ofg ~and the eigenfunctions! as a func-
tion of b. Figure 7 showsg(b) for two values of the sepa
ration (D/r i50.12,1.2). The growth rates for a single lay
of widths L153r i and L156r i are shown for comparison
Figure 8 shows the eigenfunctions corresponding to the th
diamonds in Fig. 7. For case~a!, the two layers are essen
tially uncoupled: the growth rate is close to the single-la
value, the eigenfunction is localized,d'4.5 andN'1.5,
which means that the spatial damping in thex direction is
strong enough for the distance between the layers to be
fectively large. For case~c!, the two close layers behave as
single wide layer: the growth rate is low, the eigenfunction
evanescent outside the layers,d'0.4, andN'0.06, which is
small enough that the eigenfunction is not affected by
narrow potential well between the two layers. In the interm
diate regime of enhanced growth rate, where the eigenfu
tion is shown in Fig. 8~b!, the coupling is very strong and th
system behaves neither like two separate single narrow
ers nor one single wide layer.

FIG. 6. Number of wavelengthsN that fit between the layers~solid line!, for

L15L253r i , V15V253v̄ i , andb50.575. Also shown is the growth rat
~dashed line!. The dotted lines indicate the values of the separation
which an integral number of wavelengths fit between the layers. The squ
indicate the growth rate for these separations.

FIG. 7. Growth rate for two identical layers as a function ofb, for two
values of the separationD/r i50.12 ~dashed!, 1.2 ~solid!. For comparison,
the dotted lines show the growth rates of a single layer of widthsL153r i

andL156r i ~see Fig. 2!. The three diamonds~a!–~c! mark eigenvalues for
which the eigenfunctions are shown in Fig. 8.
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Maximum Growth Rate

The results so far have been presented for specific va
of b. In the asymptotic limit, however, the plasma will re
spond most strongly to the wave number component with
largest growth rate. It is important, therefore, to maximizeg
overb. In general, one would maximize overki as well, but
we are restricting this study to long parallel waveleng
only. Of course, the saturated nonlinear response is not
essarily strongest at this wavelength. In addition, the allow
wave numbers in laboratory experiments9,10 have physical
restrictions via boundary conditions that affect the obser
response. For these reasons, a comparison with any ex
ment must take into account the configuration of that exp
ment. It is not possible to prove conclusively that a glob
maximum has been found, but it is possible to locate lo
maxima over parameter space. In the present case, a s
branch of the dispersion relation often has more than
locally ~in b! maximum growth rate, as can be seen in t
dashed line of Fig. 7. Each of these local maxima typica
have different properties, as evidenced by their eigenfu
tions ~see, for example, Fig. 8!. Figure 9 shows the locally
maximum growth rate,gmax, as a function of separation
where each maximum is depicted with a different line sty
Figure 10 shows the value ofb for each local maximum,bm ,
with the line styles corresponding to those in Fig. 9. T
solid line is the mode with the strongest coupling~that is,
where the eigenvalue is influenced byC12!; it also has the
largest growth rate for this branch of the dispersion relati
The dotted and dashed lines represent modes that are pe
bations of the single-layer dispersion~due to the variation of
N!. The single, wide layer behavior, shown as a thick so

r
es

FIG. 8. Eigenfunctions for two layers of thicknessL15L253r i and flow

velocitiesV15V253v̄ i separated by a distanceD51.2r i for three different
values ofb: ~a! b50.527,~b! b50.575,~c! b50.62582. The dashed line is
Ref, the dot-dashed line is Imf, and the solid line isufu. The vertical lines
delineate the edges of the layers, and the dotted lines in~b! and~c! mark the
zero values.
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line marked by an arrow~with a close-up shown in the inset!,
only exists as a local maximum for extremely small values
the separation.

VI. OPPOSITELY DIRECTED FLOWS

The physics elucidated above suggests a second ge
type of structure, that of oppositely directed flows. WhenV1

is large enough, the wave energy density in layer 1 can
negative, leading to instability through coupling with th
positive wave energy density outside the layer. This coup
also occurs ifV2 is allowed to be negative, forcing layer 2 t
act as an energy sink, rather than an energy source. This
of profile, two adjacent flow layers with oppositely directe
velocities, is commonly seen in the auroral ionosphere an
called a paired electrostatic shock.2 Most importantly, the
dispersion relation of this type of structure has many lo
maxima with widely varying frequencies and wave numbe
which can physically manifest itself as a broad spectrum

We investigate the case where layer 1 has the same
rameters as before,V153v̄ i andL153r i . The second layer
is adjacent to the first,D50, and has the same width,L2

5L1 , but has a flow velocity in the opposite direction,V2

,0. In this configuration, the growth rate can be a multip

FIG. 9. Growth rate, maximized overb, for two identical layers as a func
tion of separationD. The thicknesses areL15L253r i and the flow veloci-

ties areV15V253v̄ i . The different line styles, solid, thick solid, dotted
and dashed, represent different local maxima. The wide layer maximum
thick solid line, is marked with an arrow, and a close-up is shown in
inset.

FIG. 10. Maximum value ofb of four different local maxima for two iden-
tical layers as a function of separationD. The thicknesses areL15L2

53r i and the flow velocities areV15V253v̄ i . The different line styles
correspond to the growth rates shown in Fig. 9.
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peaked function ofb, so that many local maxima exist. Th
situation is shown in Fig. 11, where the growth rate forV2

521.8v̄ i has three local maxima. All three of these roo
correspond to the ground state eigenfunction. There also
ist local maxima for other bound states, but for clarity w
focus only on the ground state. As in the case of identi
layers, the behavior of the maximum growth rates is the m
physically interesting. Figures 12–14 show the locally ma
mized growth rategmax, frequencyv r , andbm for the four
fastest growing roots, wherebm is the value ofb for which
g5gmax. Figure 15 shows the eigenfunctions of three
these roots forV2522.85v̄ i .

In Figs. 12–14, the solid lines represent the mode tha
morphologically similar to the single-layer case~i.e., they are
single-layer roots perturbed by the second layer!. Its associ-
ated bm is approximately 0.58~compare with Fig. 2!, its
frequency is approximately 1.6V i , and its growth rate is
only slightly reduced from the single-layer case. Figure 15~a!
shows the eigenfunction for this root, which exhibits the fo
lowing behavior. To the left of layer 1,x,2L1/2, the wave
propagates. To the right of layer 2,x.L21L1/2, the wave
propagates but its amplitude is small because it had to tu

he
e

FIG. 11. Growth rate for oppositely directed flows as a function ofb,
corresponding to ground state eigenfunctions. The solid line is the sin
layer mode~layer 1! perturbed by layer 2, while the dashed and dotted lin
are new modes. The line styles correspond to Figs. 12–14. The param

areV153v̄ i , V2521.8v̄ i , L15L253r i , andD50.

FIG. 12. Growth rates of four different local maxima for oppositely direct
flows as a function ofV2 . The solid line is the single-layer mode~layer 1!
perturbed by layer 2, while the dashed, dotted, and dot-dashed lines are

modes. The parameters areV153v̄ i , L15L253r i , and D50. The three
diamonds~a!–~c! mark eigenvalues for which the eigenfunctions are sho
in Fig. 15.
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through layer 2 where the wave energy density is posit
which forces the eigenfunction to be evanescent. The ef
of the presence of layer 2, with negativeV2 , on this mode is
minimal because the energy is still allowed to leave laye
~either by propagation on the left or absorption on the righ!,
as required for a positive growth rate.

The other three roots~indicated by the dotted, dashe
and dot-dashed lines! are quite different in character an
have no counterpart in the single-layer case. They have
properties that distinguish them from the single-layer ca
First, they all exhibit the trend of decreasingv r , decreasing
gmax, and decreasingbm as uV2u increases~these quantities
are all relatively constant for the single-layer case!. In fact,
for uV2u approximately equal toV1 the frequency become
extremely low, approachingv r→0. Second, the eigenfunc
tions are not propagating waves, but are evanescent s
tures@see Figs. 15~b!–15~c!#. The flow profile thus modifies
the usual ion Bernstein waves, which are coherent and
row band, into a broadband~even static! response. At the
same time, many modes become unstable, creating the
sibility of both frequency and wavenumber spectra that
quite broad.

FIG. 14. Maximum value ofb of four different modes for oppositely di
rected flows as a function ofV2 . The solid line is the single-layer mod
~layer 1! perturbed by layer 2, while the dashed, dotted, and dot-dashed

are new modes. The parameters areV153v̄ i , L15L253r i , andD50.

FIG. 13. Frequency of four different modes for oppositely directed flows
a function ofV2 . The solid line is the single-layer mode~layer 1! perturbed
by layer 2, while the dashed, dotted, and dot-dashed lines are new m

The parameters areV153v̄ i , L15L253r i , andD50.
,
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VII. CONCLUSION

Structure in the perpendicular flow profile of a plasm
in the form of layers flowing in the same direction or
opposite directions, enriches its instability properties. P
files similar to those investigated here are observed, for
ample, in the auroral ionosphere.

Two important conclusions follow from this work. Firs
instabilities due to a nonuniform velocity are quite robust
the inclusion of fine structure in the flow profile. In fact, th
fine structure can even be destabilizing~i.e., when two layers
are close and the coupling is strong!. We do not expect this
conclusion to be altered qualitatively if further structu
~three or more layers, for example! is added to the flow pro-
file, although a determination of the quantitative aspects
the interaction require numerical analysis. Second, when
positely directed flows exist, extremely low-frequency wav
become unstable, with associated evanescent field struct
This quasistatic response is similar to that which is obser
in the auroral ionosphere.2 In addition to the possibility of
low frequencies, many modes become unstable, which co
result in a broad frequency spectrum forv&vci and a broad
wave number spectrum fork'r i&1.

The two generic velocity profiles investigated here we
chosen for their similarity to profiles observed by soundi
rockets and satellites.1–4 For this reason, these results a
intended to shed light on the current understanding of
process of wave generation in the auroral ionosphere.
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APPENDIX: DISPERSION RELATION

When the flow velocity is piecewise constant, t
second-order differential equation forf is mathematically
identical to the quantum square well problem. The simp
case, a single flow layer or a single square well, is covere
most textbooks on quantum mechanics.17 In this appendix,
we solve the eigenvalue equation for two layers, and ext
the solution to an arbitrary number of layers. The bound
conditions are written in matrix form, and we show that th
can be built from two types of submatrices; those that rep
sent the dispersion relation of each layer separately,
those that represent the coupling between the layers. In
way, the dispersion relation for any number of flow laye
~or square wells! can be determined, with the coupling e
plicitly shown.

Equation~2! can be rewritten as

H ]2

]x2 1k2~x!J f~x!50, ~A1!

wherek2(x) is the effective potential. In each region listed
Eq. ~4!, the potentialf is expressed as a sum of both righ
going and left-going plane waves with arbitrary amplitud
~except for the outermost regions, where only outgoing pl
waves satisfy the correct boundary conditions asx→6`!

f55
w1e2 ik0x

w2e1 ik1x 1 w3e2 ik1x

w4e1 ik0x 1 w5e2 ik0x

w6e1 ik2x 1 w7e2 ik2x

w8e1 ik0x

6 , ~A2!

where Imk0.0. Because the system is uniform in both they
and z directions,f must be continuous across each boun
ary. Integrating Eq.~A1! across each boundary results in t
condition that]f/]x must also be continuous. These are t
usual quantum-mechanical boundary conditions that de
mine the amplitudesw i . The two matching conditions ap
plied to each of the four boundaries result in a set of ei
coupled equations for the amplitude off, which can be writ-
ten as a matrix equation

M•w50, ~A3!

wherew5$w1 ,w2 ,w3 ,w4 ,w5 ,w6 ,w7 ,w8% and M is the ma-
trix of coefficients. Setting the determinant ofM equal to
zero gives the dispersion relation

det M5D12
~2!50. ~A4!

The form ofD12
(2) is shown explicitly in Eq.~5!. The matrix

M is neither symmetrical nor does it display the coupli
clearly. However, it can be written to explicitly show th
symmetry and coupling between the two layers clearly i
-

-
a-

st
in

d
y

-
nd
is

s
e

-

e
r-

t

t

first is transformed by a matrixT ~shown below!, which
eliminates unimportant phase factors, and then is written
232 matrix of 434 submatrices. This gives a new matrixM̄

M̄[M•T5FM1 CD
U

CD
L M2

G , ~A5!

where M1 is the 434 matrix which gives the single-laye
dispersion relation for layer 1,

M15F 1 21/m1 2m1 0

2k0 2k1 /m1 k1m1 0

0 2k1m1 k1 /m1 k0

0 2m1 21/m1 1

G , ~A6!

and the matrix elements are given bym15exp(ik1L1/2),
wherek1 is the wave number in layer 1 andL1 is the width
of layer 1. That is, detM15D1

(1) , which is shown explicitly
in Eqs. ~6! and ~8!. Equivalently, for the second layer
detM25D2

(1) . The upper and lower off-diagonal submatr
ces,CU andCL, couple the two layers,

CD
U5F 0 0 0 0

0 0 0 0

2k0eik0D 0 0 0

eik0D 0 0 0

G , ~A7!

CD
L 5F 0 0 0 eik0D

0 0 0 k0eik0D

0 0 0 0

0 0 0 0

G , ~A8!

whereD is the separation between the two layers. The tra
formation matrix T can also be written in the matrix-of
matrices format, as a product of two matrices

T5F I O

O T12
G•FT1 O

O T2
G , ~A9!

where I and O are the 434 unit matrix and zero matrix,
respectively,

T125F e1 ik0d 0 0 0

0 e2 ik2d 0 0

0 0 e1 ik2d 0

0 0 0 e2 ik0d

G , ~A10!

d5D1L1/21L2/2 is the distance between the centers
each layer, and

T15F e2 ik0L1/2 0 0 0

0 1 0 0

0 0 1 0

0 0 0 e2 ik0L1/2

G . ~A11!

The submatrixT12 effectively translates layer 2 a distance
2d along thex axis so that it is centered on the origin, an
the submatrixT1 effectively translates the boundaries
layer 1 to the origin~andT2 makes a similar translation fo
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layer 2!. These translations eliminate the phase factors a
ciated with the fact that the boundaries between the diffe
regions are not located at the origin, and putM̄ in a symmet-
ric form. Because detT5exp$2ik0(L11L2)%, the determi-
nants ofM andM̄ differ only by an unimportant phase facto
and either may be used to calculate the dispersion relatio
calculation of the eigenfunctions, however, requires the
of M, because it includes the proper phase factors.

The generalization ofM̄ to an arbitrary number of layer
is simple because the inherent symmetry is clear and
coupling is explicit. The result forN layers is a block tridi-
agonal matrix

M̄~N!53
M1 CD1

U O ... O

CD1

L M2 CD2

U
... O

O CD2

L M3 ... O

] ] ] �
CDN21

U

O O O CDN21

L MN

4 , ~A12!

whereD i is the separation between the layeri and layeri
11. The transformation matrixT has a similar extension to
N layers

T~N!5F I O ... O

O T12 ... O

] ] � O

O O O T1N

G •F T1 O ... O

O T2 ... O

] ] � O

O O O TN

G , ~A13!

whereT1i is a 434 submatrix that translates layeri to the
origin, Tj is a 434 submatrix that translates the boundar
of layer j to the origin, andI andO are the 434 identity and
zero submatrices defined earlier. The dimensions ofM̄(N) and
T(N) are thus 4N34N, and the equation detM̄(N)50 is the
dispersion relation forN layers of widthLi and separation
D i . From the system of equations contained inM̄(N)

•T(N)

•w50, and a knowledge of the eigenvalues, the eigenfu
tions may be calculated.

Interest in the multiple square well problem has a
recently surged in the condensed matter community du
advances in manufacturing semiconductor heterostructu
which are layers of semiconductor materials with differe
o-
nt

A
e

e

s

c-

to
s,

t

band gaps.18,19 The different band gaps result in a on
dimensional, piecewise-constant electric potential. The te
nique that is used to solve for the eigenvalues and eigenfu
tions of such a potential structure is the transfer ma
method,20 which evaluates a product of 232 matrices~one
for each boundary!; the dispersion relation is then found b
forcing the incoming waves to have zero amplitude.18,19 It is
a different, albeit equivalent, approach to that taken in t
appendix.~The boundary condition on]f/]x must be modi-
fied in semiconductors, however, depending on the spe
excitation of interest.20! The specific case of two, asymmetr
wells has also been investigated,21 although in semiconduc
tors the interest is in the tunneling of electrons between
two wells.
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