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Abstract 
In a large distributed computing environment based on local 
area networks, such as Ethernet or FDDI ring, system 
performance may be significantly degraded by a bottleneck 
at some segment of a particular network. In this study we 
examine the effect that local bus traffic has on the overall 
performance of a network. In particular, we studied server 
access for networks using two interconnect technologies, 
VMEbus and RACEway.  The results show that local bus 
traffic on the CSMA/CD or FDDI LAN backbones has a 
significant impact on overall performance and may decrease 
access delays by an order of magnitude, or more, depending 
on traffic load.  

Figure 1. Generic Configuration of a LAN.  
INTRODUCTION  

  The proliferation of high-speed local area network 
(LAN) technologies has left users with a bewildering choice 
of networks and protocols. In a large-scale distributed 
computing environment forming a grid based on Ethernet or 
FDDI ring, system performance may be degraded by a 
network bottleneck. 

 Figure 1 shows a generic configuration of a LAN with 
local nodes based on interconnects such as VMEbus or 
RACEway. Here we have a number of local hosts, 
workstations, or simply multiple processors housed in a 
single enclosure, connected via a bus, which use Ethernet to 
communicate with hosts located on other buses. Hence in 
addition to regular Ethernet traffic we also have bus traffic 
that has to be modeled and combined with the LAN traffic. 
We use the term workstation as equivalent to any local host 
or processor connected to its peers via a bus or other 
interconnect. 

 One of the most demanding applications that current 
LANs support is server access. With the increase in 
processor speeds and the number of workstations attached 
to networks, network utilizations have been increasing with 
detrimental effects on the overall performance. It is difficult 
for users to determine in advance whether a given network 
technology will deliver the expected performance benefits, 
or to determine how to tune their existing systems to take 
full advantage of a high-speed network.  

 The purpose of this work is to study the migration of a 
multiple segment LAN, such as CSMA/CD or FDDI, to an 
extended LAN by introducing bus traffic on a VMEbus or 
RACEway as a local interconnect.  We evaluate the 
performance of these network configurations under varying 
load and different topologies and compare the results to the 
performance of original CSMA/CD network. The main goal 
is to see how the local bus traffic affects the overall 
performance of the local area network (LAN).  For this 
purpose, we estimate the server access time in network and 
bus models built with the SES/workbench simulator [1]. 

 Complex networks involve individual nodes built out of 
multiple processors connected via some type of a bus or 
other interconnect, and with the nodes connected by some 
type of local network such as Ethernet. The processors 
within a node may or may not have local memory 
configurations and there may also be memory at the global 
level. Concentrating on performance of such networks 
brings us to the analysis of the most common LANs with 
local node traffic.   
 



MODELING BUS SYSTEMS 
 Most of the modern computer systems share a common 
bus, or other type of interconnect, to exchange information. 
There is a variety of popular bus standards: ranging from 
VMEbus to Futurebus to PCI, and modern interconnects, 
from Myrinet, to SKYchannel and RACEway, to 
InfiniBand, to name a few [2]. For most computer systems, 
the critical issue is the temporal determinism of system 
response. The timing of computations in the system depends 
not only on the instruction execution time and memory 
access, but also on the timing of data exchange between 
various system components. The latter, in addition to the 
hardware characteristics, is a function of the specific bus 
architecture and the bus access and arbitration protocols. In 
most cases, the system has a dedicated bus controller/arbiter 
– a device designated to manage the bus operation and 
execute specific bus protocol. Modern interconnects often 
use distributed arbitration, without a central arbiter node. 
 Queuing models are very adequate for this single-bus 
tightly coupled multiprocessor architecture [3]. Each 
processing element is modeled as a finite set of tasks (the 
task pool), a CPU, a bus interface unit that allows the 
processing element to access the shared bus, and a set of 
queues associated with the CPU and the bus interface unit. 
Each CPU and bus interface unit has a mean service rate 
and the tasks are assumed to have a mean sleep time in the 
task pool. Another assumption is that the CPU and the bus 
interface unit operate independently of each other, and that 
all the bus interface units in the multiprocessor can be 
lumped together into a single equivalent Bus Interface Unit. 
 A task is assumed initially asleep in the task pool. 
When it awakens, it will queue for CPU usage in the ready 
list, which is a list of tasks that are eligible to use the CPU 
as a result of either being awakened or as a result of having 
finished using some resource. Interrupt driven jobs are not 
placed on the ready list; instead they have their own higher 
priority queue. After using the CPU, the task may request 
more CPU service (in which case it will re-queue in the 
ready list), it may go back to sleep in the task pool, or it 
may request bus usage. 
 More advanced bus architectures can be modeled as a 
version of a queuing system with customers, servers, and 
resources. There are several studies in literature modeling 
the bus systems in such a way [4]. The models, mostly, 
focus either on distributed systems and describe networking 
applications or discuss multiple bus architectures and some 
real-time issues. When building the bus architecture model, 
we focus on the bus performance. The three basic metrics, 
identifying the performance of any bus system, are: 
• system throughput – how much data can be transmitted 

per time unit, 
• bus utilization – what percentage of time the bus is 

busy, 

• bus access latency – the time needed by the bus to grant 
ownership to the requesting agent (a part of bus 
response time). 

 A high average system throughput is critical for most 
systems, for example, in various data acquisition/fusion 
applications. Related high utilization of the bus indicates 
that the margin for the system upgrade is limited. For real-
time systems and distributed computing applications, more 
critical is the determination of system response, that is, bus 
access time, used as a performance measure in our study 
[5]. 
 The above-mentioned criteria of bus performance are 
affected by the following factors: 
• number of agents (processors) attached to the bus, 
• latency of the memory, 
• bus access protocol and the arbitration method used, 
• physical characteristics of the bus (multiplexed lines, 

transmission speed, etc.), 
• workload characteristics of the processor operation. 
 Selection of the workload, including the frequency of 
requests and the size of packets sent over the bus (often 
related to the local processor cache hit/miss ratio) is critical 
to the performance analysis study. The workload depends 
on the application and must be clearly identified before 
simulation model is developed.  
 
VMEbus Model 
 If one wants to enhance functionality and performance 
of the computer networks, by changing the configuration 
and introducing bus traffic to make them suitable for 
distributed computing applications, the VMEbus system [6] 
is a prime candidate because it is both rigorously defined 
and widely supported. The VMEbus provides support for 
multiprocessing using shared memory. Modules can be 
designed to act as masters, slaves or both. Before a master 
can transfer data it must first acquire the bus using a central 
arbiter (Fig. 2).  
 A master module can initiate data transfer cycles. A 
slave module detects bus cycles generated by a master 
module and participates in the cycle, if it is selected to do 
so. If certain addresses are selected by the master module, 
an on-board signal is sent by the local monitor and a 
message broadcast to all modules. To prevent a system 
crash, or other problem with data transfer, from locking up 
the system, a bus timer times all transfers and kills transfers 
which take longer than some specified time interval. Four of 
the most important cycles on the VMEbus are: read/write, 
block transfer, read-modify-write, and address-only. 
 To avoid inconsistency while updating shared memory, 
read-modify-write bus cycles are used. The read-modify-
write cycle allows updating shared memory as an atomic 
transaction and prevents race conditions.  
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Figure 2. Typical VMEbus Architecture. 
 
 The system parameters that are considered in the 
VMEbus simulation model are as follows: 
• number of processors in the system (optimally - 3 [5]), 
• bus transmission speed, the time to send unit data 

through the bus (typically - 40 MB/s), 
• arbitration time, the time required to select the next bus 

owner, 
• transmission unit, the maximum amount of data 

transferred in a single transfer operation (256 bytes for 
VMEbus). 

 
RACEway Model 
 Due to constantly increasing speeds of processors and 
peripheral devices, traditional buses are too slow to handle 
huge traffic in modern computer systems. One solution to 
this is a new interconnect called the RACEway [7], which is 
a hierarchical crossbar-based network. Unlike most 
multistage interconnection networks, the RACEway 
network provides more than one possible path between two 
system nodes (except that they are on the same crossbar 
switch element) and an adaptive routing capability. 
 Figure 3 shows the system level architecture of the 
RACEway implementation in a Mercury multicomputer 
system [8]. There are four types of system nodes: 
Processing Nodes, Memory-only Nodes, External I/O 
Interface Nodes, and Standard Bus Interface Nodes (i.e. 
VME). Each processing node contains a computing element 
(CE), an ASIC dedicated to the management of message 
traffic to and from the CE, and part of the main memory. 
CEs can transparently access remote memory locations in 
the system. Information transfer takes place by means of 
fixed-size packets known as RACEway packet (2048 bytes 
or less). 
 The basic data transfer element in the RACEway 
network, the RACEway crossbar switch, is a 6-port, point-

to-point cross connection component. Each port has a 32-bit 
wide data path plus 5 control lines and has a data bandwidth 
of 160 MB/s. Each of the 6 ports on a given crossbar can be 
internally connected to one or more of any of the other 5 
ports on that crossbar. These port-to-port connections are 
defined by headers in each data packet transmitted over the 
RACEway and can be changed dynamically in a switching 
time of 125 nanoseconds.  Consequently, three independent 
port-to-port data transfer connections can be established 
simultaneously, providing an aggregate data bandwidth of 
up to 480 MB/s. 
 
 

 

 
Figure 3. Typical RACEway Architecture [8]. 
 
 The RACEway crossbar network supports concurrent, 
priority-based, preemptable data transfer between system 
nodes. The data transfer over RACEway network can be 
either CPU-controlled or DMA-controlled. Transactions 
across the network can be either Write or Read. The system 
supports each mechanism with different performance 
parameters such as path setup time, routing delay, etc. Each 
transaction has a user-defined priority. When two 
transactions require a common port in their paths, 
contention occurs. The crossbar makes the priority 
arbitration, the winning transaction goes through and the 
losing transaction is killed/blocked until the completion of 
the other one.  
 The system parameters that are considered in the 
RACEway simulation model are: 
• number of processors in the system (6 per crossbar 

switch), 
• bus transmission speed, the time to send unit data 

through the bus (typically – 480 MB/s), 
• transmission unit, the maximum amount of data 

transferred in a single operation (2056 bytes). 



 
SIMULATION RESULTS 
 
VME Model Assumptions 
 In the VMEbus model in SES/workbench (Fig. 4), the 
active agents or processors make bus requests. The bus 
arbitration submodel is responsible for controlling and 
granting the bus resources to the agents in a timely and 
organized manner. Once a processor has control of the bus 
it performs the transmission. The size of data is the function 
of the workload.  
 The VME model assumes the following: 
• each processor in the system has identical clock rate, 
• each processor has identical bus request frequency, 
• packets on VMEbus can be divided into smaller 

subpackets (not exceeding 256 bytes, determined by the 
VMEbus hardware characteristics), 

• transmission of the data packet in progress is not 
interrupted, 

• memory access time is assumed constant, 
• a processor cannot be granted the bus if another request 

is presently waiting to be serviced by the bus, unless it 
has higher priority, 

• errors due to invalid data or time-outs are negligible to 
the overall system performance. 

 

 
 
Figure 4.  VMEbus Submodel in SES/workbench. 
 
Basic RACEway Model Assumptions 
 The RACEway multicomputer model in 
SES/workbench corresponds to the Mercury computer [8] 
and consists of three components: a CPU, a 
Communications Agent and a Crossbar (Xbar) Switch (Fig. 
5). The CPU component models the function of the 
microprocessor in the Computing Element (CE). It provides 
only a “Compute, Send and Receive” type of functionality 
used in performance modeling.  The communications agent 

models the functions of the CE’s ASIC, specifically, the 
management of message traffic to and from the CE. It 
maintains the send and receive message queues, sets up and 
tears down the message path when messages are sent, 
handles message preemption, and handles the reception and 
response to remote read and write messages without 
involving the CPU. 
 The crossbar switch models the function of the 
RACEway 6-way crossbar in the RACEway interconnection 
network. This includes the modeling of normal setup and 
tear-down of communications paths for messages, adaptive 
routing, contention and priority arbitration, and path 
preemption. With this RACEway crossbar switch primitive, 
a variety of topologies of RACEway crossbar 
interconnection networks can be easily constructed by 
interconnecting the crossbar switches together. 
 

 
Figure 5.  RACEway Submodel in SES/workbench. 
 
Server Access Delay 
 This case study compares RACEway and VMEbus with 
CSMA/CD segments on FDDI backbone [9].  The 
simulation models developed in this project are: 
• FDDI backbone having four VMEbus segments. 
• FDDI backbone with four RACEway segments. 
• FDDI backbone interconnecting four CSMA/CD 

segments. 
 The workload parameters used in the VMEbus and 
RACEway models are as follows (for details, see [12]): 
• inter-arrival time, an average time between two 

consecutive bus requests from the same processor 
(generated using a negative exponential distribution), 

• packet size, the number of bytes to be sent in a request, 
• protocol – priority based. 
 The first simulation, which is not bus-based but was 
developed for reference with more advanced systems, 
models an FDDI LAN connecting a four segment 
CSMA/CD LAN. Figure 6 shows the FDDI backbone and 



all the CSMA/CD bridges. The network consists of 70 to 85 
active stations (workstations/clients) communicating with 
two server computers located on server segment #1. 
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Figure 6.  Configuration of the Server Network. 
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Figure 7. Server Access Delays for FDDI LAN with 
CSMA/CD Segments. 
 
 Figure 7 shows the results of increasing the load on 
segment #1, as access delay versus channel utilization for 
different frame sizes (64, 128 and 512 bytes). Access delay 
for shorter frames is, in general, shorter than for longer 
frames, however, only until about 76% utilization. The 

reason access delay becomes shorter for longer frames than 
for shorter frames is attributed to the increased number of 
total bits that must be transmitted with small packet sizes, 
due to a header/trailer overhead [10].  
 The second simulation models four VMEbus segments 
interconnected by an FDDI backbone.  Comparing results 
from this and previous simulation shows that the migration 
to FDDI backbone with VME segments makes the access 
delay under lower loads 2-3 times smaller than when having 
CSMA/CD segments.  The third simulation models four 
RACEway segments interconnected by an FDDI backbone.  
In this case, the access delay decreases 10 times compared 
to the VME-FDDI simulation, especially under high load 
conditions. The throughput of the network is also higher 
than in the four-segment VME on a FDDI backbone. 
 
Effect of Packet Length on Access Delay 
 Data for all studied configurations are shown 
collectively in Figures 8 and 9. 
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Figure 8. Server Access Delay for 64-byte Packets. 
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Figure 9. Server Access Delay for 512-byte Packets. 
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 We built a model of a heterogeneous local area 
network, consisting of FDDI and CSMA/CD backbones 
with segments based on VMEbus and RACEway 
interconnects. Then we examined the effects that local bus 
traffic has on overall system performance, using server 
access time as a measure. We modeled a wide range of 
network types and traffic patterns in order to see the impact 
of the bus traffic and its associated protocols on the 
application performance.  
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 The results show that local bus traffic on the 
CSMA/CD or FDDI LAN has a significant impact on 
network performance, thus studying bus traffic in the 
network is important to estimate overall performance. In the 
server access case study, RACEway with FDDI backbone 
demonstrated the best performance. It has the highest 
utilization and shortest access delay for long packets, as 
well as highest throughput (although the latter results are 
not discussed here due to space limits).  Future work will 
involve studying switching technologies, rather than plain 
CSMA/CD. 
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