
Considering Local Bus Traffic in Network Performance Simulations

V. Jonnalagadda* M. Mathure* A. Kornecki** J. Zalewski***
*School of EE&CS, University of Central Florida, Orlando, FL 32816
** Embry-Riddle Aeronautical University, Daytona Beach, FL 32114

*** Computer Science, Florida Gulf Coast University, Ft. Myers, FL 33965

Workstation Workstation

Workstation

Ethernet

Workstation

Workstation

Workstation

Workstation Workstation

Workstation

Workstation Workstation

Workstation

Bridge Bridge

BridgeBridge

VME BUS

VME BUS

VME BUSVME BUS

Bus Traffic

Bus Traffic

Bus Traffic

Bus Traffic

Others
Real-time
CSMA/CD
FDDI
Token
Ring

Others
RACEWAY
FireWIRE
SKYChannel

Keywords Network performance, computer bus, VMEbus,
RACEway, real-time networks, SES/workbench.

Abstract
In a large distributed computing environment based on local
area networks, such as Ethernet or FDDI ring, system
performance may be significantly degraded by a bottleneck
at some segment of a particular network. In this study we
examine the effect that local bus traffic has on the overall
performance of a network. In particular, we studied server
access for networks using two interconnect technologies,
VMEbus and RACEway. The results show that local bus
traffic on the CSMA/CD or FDDI LAN backbones has a
significant impact on overall performance and may decrease
access delays by an order of magnitude, or more, depending
on traffic load.

Figure 1. Generic Configuration of a LAN.
INTRODUCTION

 The proliferation of high-speed local area network
(LAN) technologies has left users with a bewildering choice
of networks and protocols. In a large-scale distributed
computing environment forming a grid based on Ethernet or
FDDI ring, system performance may be degraded by a
network bottleneck.

 Figure 1 shows a generic configuration of a LAN with
local nodes based on interconnects such as VMEbus or
RACEway. Here we have a number of local hosts,
workstations, or simply multiple processors housed in a
single enclosure, connected via a bus, which use Ethernet to
communicate with hosts located on other buses. Hence in
addition to regular Ethernet traffic we also have bus traffic
that has to be modeled and combined with the LAN traffic.
We use the term workstation as equivalent to any local host
or processor connected to its peers via a bus or other
interconnect.

 One of the most demanding applications that current
LANs support is server access. With the increase in
processor speeds and the number of workstations attached
to networks, network utilizations have been increasing with
detrimental effects on the overall performance. It is difficult
for users to determine in advance whether a given network
technology will deliver the expected performance benefits,
or to determine how to tune their existing systems to take
full advantage of a high-speed network.

 The purpose of this work is to study the migration of a
multiple segment LAN, such as CSMA/CD or FDDI, to an
extended LAN by introducing bus traffic on a VMEbus or
RACEway as a local interconnect. We evaluate the
performance of these network configurations under varying
load and different topologies and compare the results to the
performance of original CSMA/CD network. The main goal
is to see how the local bus traffic affects the overall
performance of the local area network (LAN). For this
purpose, we estimate the server access time in network and
bus models built with the SES/workbench simulator [1].

 Complex networks involve individual nodes built out of
multiple processors connected via some type of a bus or
other interconnect, and with the nodes connected by some
type of local network such as Ethernet. The processors
within a node may or may not have local memory
configurations and there may also be memory at the global
level. Concentrating on performance of such networks
brings us to the analysis of the most common LANs with
local node traffic.

MODELING BUS SYSTEMS
 Most of the modern computer systems share a common
bus, or other type of interconnect, to exchange information.
There is a variety of popular bus standards: ranging from
VMEbus to Futurebus to PCI, and modern interconnects,
from Myrinet, to SKYchannel and RACEway, to
InfiniBand, to name a few [2]. For most computer systems,
the critical issue is the temporal determinism of system
response. The timing of computations in the system depends
not only on the instruction execution time and memory
access, but also on the timing of data exchange between
various system components. The latter, in addition to the
hardware characteristics, is a function of the specific bus
architecture and the bus access and arbitration protocols. In
most cases, the system has a dedicated bus controller/arbiter
– a device designated to manage the bus operation and
execute specific bus protocol. Modern interconnects often
use distributed arbitration, without a central arbiter node.
 Queuing models are very adequate for this single-bus
tightly coupled multiprocessor architecture [3]. Each
processing element is modeled as a finite set of tasks (the
task pool), a CPU, a bus interface unit that allows the
processing element to access the shared bus, and a set of
queues associated with the CPU and the bus interface unit.
Each CPU and bus interface unit has a mean service rate
and the tasks are assumed to have a mean sleep time in the
task pool. Another assumption is that the CPU and the bus
interface unit operate independently of each other, and that
all the bus interface units in the multiprocessor can be
lumped together into a single equivalent Bus Interface Unit.
 A task is assumed initially asleep in the task pool.
When it awakens, it will queue for CPU usage in the ready
list, which is a list of tasks that are eligible to use the CPU
as a result of either being awakened or as a result of having
finished using some resource. Interrupt driven jobs are not
placed on the ready list; instead they have their own higher
priority queue. After using the CPU, the task may request
more CPU service (in which case it will re-queue in the
ready list), it may go back to sleep in the task pool, or it
may request bus usage.
 More advanced bus architectures can be modeled as a
version of a queuing system with customers, servers, and
resources. There are several studies in literature modeling
the bus systems in such a way [4]. The models, mostly,
focus either on distributed systems and describe networking
applications or discuss multiple bus architectures and some
real-time issues. When building the bus architecture model,
we focus on the bus performance. The three basic metrics,
identifying the performance of any bus system, are:
• system throughput – how much data can be transmitted

per time unit,
• bus utilization – what percentage of time the bus is

busy,

• bus access latency – the time needed by the bus to grant
ownership to the requesting agent (a part of bus
response time).

 A high average system throughput is critical for most
systems, for example, in various data acquisition/fusion
applications. Related high utilization of the bus indicates
that the margin for the system upgrade is limited. For real-
time systems and distributed computing applications, more
critical is the determination of system response, that is, bus
access time, used as a performance measure in our study
[5].
 The above-mentioned criteria of bus performance are
affected by the following factors:
• number of agents (processors) attached to the bus,
• latency of the memory,
• bus access protocol and the arbitration method used,
• physical characteristics of the bus (multiplexed lines,

transmission speed, etc.),
• workload characteristics of the processor operation.
 Selection of the workload, including the frequency of
requests and the size of packets sent over the bus (often
related to the local processor cache hit/miss ratio) is critical
to the performance analysis study. The workload depends
on the application and must be clearly identified before
simulation model is developed.

VMEbus Model
 If one wants to enhance functionality and performance
of the computer networks, by changing the configuration
and introducing bus traffic to make them suitable for
distributed computing applications, the VMEbus system [6]
is a prime candidate because it is both rigorously defined
and widely supported. The VMEbus provides support for
multiprocessing using shared memory. Modules can be
designed to act as masters, slaves or both. Before a master
can transfer data it must first acquire the bus using a central
arbiter (Fig. 2).
 A master module can initiate data transfer cycles. A
slave module detects bus cycles generated by a master
module and participates in the cycle, if it is selected to do
so. If certain addresses are selected by the master module,
an on-board signal is sent by the local monitor and a
message broadcast to all modules. To prevent a system
crash, or other problem with data transfer, from locking up
the system, a bus timer times all transfers and kills transfers
which take longer than some specified time interval. Four of
the most important cycles on the VMEbus are: read/write,
block transfer, read-modify-write, and address-only.
 To avoid inconsistency while updating shared memory,
read-modify-write bus cycles are used. The read-modify-
write cycle allows updating shared memory as an atomic
transaction and prevents race conditions.

Arbitration bus

Bus In terface
Logic

Arbiter

Bus In terface
Logic

Slave

Bus In terface
Logic

Master

Bus In terface
Logic

Requester

VSB Backplane

Data Transfer Bus

Da ta processing/
data communication

device

Data sto rage
device

Located
in slot 1

Figure 2. Typical VMEbus Architecture.

 The system parameters that are considered in the
VMEbus simulation model are as follows:
• number of processors in the system (optimally - 3 [5]),
• bus transmission speed, the time to send unit data

through the bus (typically - 40 MB/s),
• arbitration time, the time required to select the next bus

owner,
• transmission unit, the maximum amount of data

transferred in a single transfer operation (256 bytes for
VMEbus).

RACEway Model
 Due to constantly increasing speeds of processors and
peripheral devices, traditional buses are too slow to handle
huge traffic in modern computer systems. One solution to
this is a new interconnect called the RACEway [7], which is
a hierarchical crossbar-based network. Unlike most
multistage interconnection networks, the RACEway
network provides more than one possible path between two
system nodes (except that they are on the same crossbar
switch element) and an adaptive routing capability.
 Figure 3 shows the system level architecture of the
RACEway implementation in a Mercury multicomputer
system [8]. There are four types of system nodes:
Processing Nodes, Memory-only Nodes, External I/O
Interface Nodes, and Standard Bus Interface Nodes (i.e.
VME). Each processing node contains a computing element
(CE), an ASIC dedicated to the management of message
traffic to and from the CE, and part of the main memory.
CEs can transparently access remote memory locations in
the system. Information transfer takes place by means of
fixed-size packets known as RACEway packet (2048 bytes
or less).
 The basic data transfer element in the RACEway
network, the RACEway crossbar switch, is a 6-port, point-

to-point cross connection component. Each port has a 32-bit
wide data path plus 5 control lines and has a data bandwidth
of 160 MB/s. Each of the 6 ports on a given crossbar can be
internally connected to one or more of any of the other 5
ports on that crossbar. These port-to-port connections are
defined by headers in each data packet transmitted over the
RACEway and can be changed dynamically in a switching
time of 125 nanoseconds. Consequently, three independent
port-to-port data transfer connections can be established
simultaneously, providing an aggregate data bandwidth of
up to 480 MB/s.

Figure 3. Typical RACEway Architecture [8].

 The RACEway crossbar network supports concurrent,
priority-based, preemptable data transfer between system
nodes. The data transfer over RACEway network can be
either CPU-controlled or DMA-controlled. Transactions
across the network can be either Write or Read. The system
supports each mechanism with different performance
parameters such as path setup time, routing delay, etc. Each
transaction has a user-defined priority. When two
transactions require a common port in their paths,
contention occurs. The crossbar makes the priority
arbitration, the winning transaction goes through and the
losing transaction is killed/blocked until the completion of
the other one.
 The system parameters that are considered in the
RACEway simulation model are:
• number of processors in the system (6 per crossbar

switch),
• bus transmission speed, the time to send unit data

through the bus (typically – 480 MB/s),
• transmission unit, the maximum amount of data

transferred in a single operation (2056 bytes).

SIMULATION RESULTS

VME Model Assumptions
 In the VMEbus model in SES/workbench (Fig. 4), the
active agents or processors make bus requests. The bus
arbitration submodel is responsible for controlling and
granting the bus resources to the agents in a timely and
organized manner. Once a processor has control of the bus
it performs the transmission. The size of data is the function
of the workload.
 The VME model assumes the following:
• each processor in the system has identical clock rate,
• each processor has identical bus request frequency,
• packets on VMEbus can be divided into smaller

subpackets (not exceeding 256 bytes, determined by the
VMEbus hardware characteristics),

• transmission of the data packet in progress is not
interrupted,

• memory access time is assumed constant,
• a processor cannot be granted the bus if another request

is presently waiting to be serviced by the bus, unless it
has higher priority,

• errors due to invalid data or time-outs are negligible to
the overall system performance.

Figure 4. VMEbus Submodel in SES/workbench.

Basic RACEway Model Assumptions
 The RACEway multicomputer model in
SES/workbench corresponds to the Mercury computer [8]
and consists of three components: a CPU, a
Communications Agent and a Crossbar (Xbar) Switch (Fig.
5). The CPU component models the function of the
microprocessor in the Computing Element (CE). It provides
only a “Compute, Send and Receive” type of functionality
used in performance modeling. The communications agent

models the functions of the CE’s ASIC, specifically, the
management of message traffic to and from the CE. It
maintains the send and receive message queues, sets up and
tears down the message path when messages are sent,
handles message preemption, and handles the reception and
response to remote read and write messages without
involving the CPU.
 The crossbar switch models the function of the
RACEway 6-way crossbar in the RACEway interconnection
network. This includes the modeling of normal setup and
tear-down of communications paths for messages, adaptive
routing, contention and priority arbitration, and path
preemption. With this RACEway crossbar switch primitive,
a variety of topologies of RACEway crossbar
interconnection networks can be easily constructed by
interconnecting the crossbar switches together.

Figure 5. RACEway Submodel in SES/workbench.

Server Access Delay
 This case study compares RACEway and VMEbus with
CSMA/CD segments on FDDI backbone [9]. The
simulation models developed in this project are:
• FDDI backbone having four VMEbus segments.
• FDDI backbone with four RACEway segments.
• FDDI backbone interconnecting four CSMA/CD

segments.
 The workload parameters used in the VMEbus and
RACEway models are as follows (for details, see [12]):
• inter-arrival time, an average time between two

consecutive bus requests from the same processor
(generated using a negative exponential distribution),

• packet size, the number of bytes to be sent in a request,
• protocol – priority based.
 The first simulation, which is not bus-based but was
developed for reference with more advanced systems,
models an FDDI LAN connecting a four segment
CSMA/CD LAN. Figure 6 shows the FDDI backbone and

all the CSMA/CD bridges. The network consists of 70 to 85
active stations (workstations/clients) communicating with
two server computers located on server segment #1.

Ethernet

Etherne t

Etherne tEt hernet

FDDI Ring

Worksta tion

Worksta tion

W orkstation

W orkstation
Workstation Worksta tion

Workstation

Workstation

Workstation

W orkstation

W orkstation

W orkstation

W orkstation

W orkstation

W orkstation

Br idge Bridge

Br idgeBridge

Segme nt A Segment B

Segment #1Segme nt D

Server Server

Figure 6. Configuration of the Server Network.

1

1 0

10 0

1 00 0

1 0 00 0

0 2 0 4 0 60 8 0 1 0

% C ha n ne l U tiliz a tio n

A
c

c
e

ss
 D

e
la

y
 (

m
ic

ro
s

ec
o

0

n

64 b y te s

12 8 by te s

51 2 by te s

Figure 7. Server Access Delays for FDDI LAN with
CSMA/CD Segments.

 Figure 7 shows the results of increasing the load on
segment #1, as access delay versus channel utilization for
different frame sizes (64, 128 and 512 bytes). Access delay
for shorter frames is, in general, shorter than for longer
frames, however, only until about 76% utilization. The

reason access delay becomes shorter for longer frames than
for shorter frames is attributed to the increased number of
total bits that must be transmitted with small packet sizes,
due to a header/trailer overhead [10].
 The second simulation models four VMEbus segments
interconnected by an FDDI backbone. Comparing results
from this and previous simulation shows that the migration
to FDDI backbone with VME segments makes the access
delay under lower loads 2-3 times smaller than when having
CSMA/CD segments. The third simulation models four
RACEway segments interconnected by an FDDI backbone.
In this case, the access delay decreases 10 times compared
to the VME-FDDI simulation, especially under high load
conditions. The throughput of the network is also higher
than in the four-segment VME on a FDDI backbone.

Effect of Packet Length on Access Delay
 Data for all studied configurations are shown
collectively in Figures 8 and 9.

1

10

100

1000

10000

0 20 40 60 80 100

% Channel Utilization

Ac
ce

ss
 D

el
ay

 (
m

ic
ro

se
co

nd
s)

CSMA/CD

CSMA/CD FDDI
backbone
FDDI-VME

FDDI-
RACEw ay

Figure 8. Server Access Delay for 64-byte Packets.

1

10

100

1000

10000

0 20 40 60 80 100
%Channel Utilization

A
cc

es
s

de
la

y
(m

ic
ro

se
co

nd
s)

CSMA

CSMA-FDDI

FDDI-VME

FDDI-RACEw ay

Figure 9. Server Access Delay for 512-byte Packets.

REFERENCES The packet lengths used are 64 bytes, 128 bytes and
512 bytes. Figure 8 shows the access delay versus channel
utilization for a packet length of 64 bytes, for four network
configurations (for the sake of comparison, we include also
plain CSMA/CD network). Figure 9 shows the access delay
versus channel utilization for a message length of 512 bytes.

[1] HyPerformix, Inc., SES/workbench Reference Manual,
Austin, Texas, January 1999.
[2] J. Zalewski (Ed.), Advanced Multi-microprocessor Bus
Architectures, IEEE CS Press, Los Alamitos, CA, 1995.
[3] M. Ajmone Marsan, G. Balbo, G. Conte, Comparative
Performance Analysis of a Single Bus Multiprocessor
Architectures, IEEE Trans. Computers, Vol. 31, No. 12, pp.
1179-1191, December 1982.

 Figures 8 and 9 show that the access delay in case of
RACEway segments is the lowest. Channel utilization in all
the cases is slightly higher for RACEway segments when
compared to CSMA/CD and VMEbus segments. One more
observation that can be made from the graphs is that under
heavy load, the channel utilization reaches the highest
values for 512-byte messages when compared to the other
two message sizes (Figure 10). This is consistent with the
results discussed in [11].

[4] C.W. McCarron, C.H. Tung, Simulation Analysis of a
Multiple Bus Shared Memory Multiprocessor, Simulation,
Vol. 61, No. 3, pp. 169-177, 1993.
[5] A. Kornecki, J. Zalewski, Simulation of Multiprocessor
Bus Systems for Real-Time Applications, Proc. 1998 Conf.
on Simulation Methods and Applications, Orlando, Fla.,
Nov. 1-3, 1998, SCS, San Diego, Calif, 1998, pp. 74-81.

0
10
20
30
40
50
60
70
80
90

100

0 500 1000 1500 2000
Access Delay (m icros econds)

%
 C

ha
nn

el
 U

til
iz

at
io

n

64 bytes

128 bytes

512 bytes

[6] IEEE Std 1014-1987, Versatile Backplane Bus:
VMEbus, IEEE, New York, March 1988.
[7] ANSI/VITA 5.1-1999 American National Standard for
RACEway Interlink, VITA, Scottsdale, Ariz., 1999.
[8] The RACE Multi-computer, Documentation Volume 1,
Version 1.3, Mercury Computer Systems Inc., Chelmsford,
Mass., 2001
[9] ANSI X3T9.5/83-15 REV 15, FDDI Physical Layer
Protocol (PHY), American National Standards Institute,
New York, 1987.
[10] D. Bertsekas and R. Gallager, Data Networks, Prentice-
Hall, Englewood Cliffs, NJ, 1987.
[11] B. Albert, A.P. Jayasumana, Performance Analysis of
FDDI LANs Using Numerical Methods, IEE Proc.,
Comput. Digit. Tech., Vol. 144, No. 3, May 1997, pp. 149-
154.

Figure 10. Effect of Increased Packet Length on Channel
Utilization for RACEway.

CONCLUSION

[12] V. Jonnalagadda, Network Performance Simulation
Involving Bus Traffic, MSc Thesis, University of Central
Florida, Orlando, Fla., 2002.

 We built a model of a heterogeneous local area
network, consisting of FDDI and CSMA/CD backbones
with segments based on VMEbus and RACEway
interconnects. Then we examined the effects that local bus
traffic has on overall system performance, using server
access time as a measure. We modeled a wide range of
network types and traffic patterns in order to see the impact
of the bus traffic and its associated protocols on the
application performance.

Biographies
Vinay Jonnalagadda and Mandar Mathure graduated with
MSc in Computer Engineering, Software Engineering
Specialization, from UCF, doing their theses under
supervision of Dr. Zalewski. Andrew Kornecki is a
professor of Computer Science at Embry-Riddle
Aeronautical University. His research interests include
modeling and simulation, performance evaluation, safety-
critical systems, and real-time software engineering. He
served on the SCS Board of Directors in the 1990s. Janusz
Zalewski is an associate professor of Computer Science at
Florida Gulf Coast University. His research interests
include multiprocessor systems, real-time computing,
safety-critical systems and software engineering. He
consulted for several government organizations, such as
FAA, NASA, NRC, and numerous software companies,
including Lockheed Martin, Harris, and Boeing.

 The results show that local bus traffic on the
CSMA/CD or FDDI LAN has a significant impact on
network performance, thus studying bus traffic in the
network is important to estimate overall performance. In the
server access case study, RACEway with FDDI backbone
demonstrated the best performance. It has the highest
utilization and shortest access delay for long packets, as
well as highest throughput (although the latter results are
not discussed here due to space limits). Future work will
involve studying switching technologies, rather than plain
CSMA/CD.

	V. Jonnalagadda* M. Mathure* A. Kornecki** J. Zalewski***
	Abstract

	INTRODUCTION
	
	
	MODELING BUS SYSTEMS

	VMEbus Model
	RACEway Model
	
	
	SIMULATION RESULTS
	VME Model Assumptions
	Basic RACEway Model Assumptions
	Server Access Delay

	Effect of Packet Length on Access Delay
	
	
	CONCLUSION
	REFERENCES

	Biographies

