
SAFETY OF COMPUTER CONTROL SYSTEMS:
CHALLENGES AND RESULTS IN SOFTWARE DEVELOPMENT

Janusz Zalewski* Wolfgang Ehrenberger** Francesca Saglietti*** Andrew Kornecki****

* University of Central Florida
Orlando, FL 32816-2450, USA
jza@ece.engr.ucf.edu

** University of Applied Science
36039 Fulda, Germany

wolfgang.ehrenberger@informatik.fh-fulda.de
*** Institute for Safety Technology, Forschungsgelände

85748 Garching / Munich, Germany
SAF@grs.de

**** Embry-Riddle Aeronautical University
Daytona Beach, FL 32114, USA

korn@db.erau.edu

Abstract: This paper reviews some results in improving software safety in computer
control systems. The discussion covers various aspects of the software development
process, as opposed to the product features. Software diversity, off-the-shelf software,
rigorous and formal software development are discussed. Copyright © 2002 IFAC

Keywords: Software safety, software diversity, off-the-shelf software, rigorous
development, formal verification, UML, software for computer control.

1. INTRODUCTION

The key aspect of safety in computer control systems
is to minimize the risk of harm, which can lead to
loss of life, limbs, or large financial losses due the
failure of hardware or software of a computer control
system embedded in a larger application. Safety
aspects are important in all modern computer
applications, where computer control is embedded in
larger systems, for example: all means of
transportation, such as cars, railways, airplanes,
ships; large plants, such as nuclear power plants,
chemical plants, etc.; as well as smaller devices, such
as medical electronic devices.

New challenges show up every day, because
computer-controlled systems are being increasingly

applied in other areas related to human safety. In
addition to traditional applications concerning safety
listed above, several new areas have emerged, related
to safety of computer control, including:
telecommunication systems, banking systems, fire
protection systems on oil/gas platforms, and others.
Assuring safety becomes more and more important,
because of an increasing concern about safety of
computers and computer-controlled systems in a
modern society as a whole.

The technologies of providing safety assurance in
computer control systems are often based on the
architecture of feedback control, but they rarely use,
if at all, results from continuous systems. Due to the
discrete nature of the safety problem, methods of
discrete mathematics are usually applied.

ControllerOperator System

Commands

Responses

Virtual System

G
ua

rd

In this view, verification of hardware and software,
with respect to safety, is a key challenge. Methods
currently offered are so complex that they are
manageable only for simple systems, while the
complexity of safety-related applications is usually
high and continues to increase dramatically with the
progress of computing technologies.

In this paper, we present selected approaches to
increase safety of computer control systems via the
appropriate software design process. We focus on
the development process to improve software safety,
as opposed to engineering the design structure of the
controller itself.

2. SOFTWARE SAFETY:
PRODUCT VERSUS PROCESS

Safety is usually defined as a 'negative' property that
asserts simply that nothing bad happens (Rushby
1994). Safety is addressed through a hazard analysis
process, which is normally not conducted in non-
critical software development. Attention of the
developers must be focused on preventing hazards
that are conditions that lead to a mishap, rather than
preventing mishaps directly.

Commands

Responses

Fig. 1. Context for Discussing Safe Software.

In terms of a control system (Fig. 1), hazards are
caused by various failures of the controller. An
‘omission failure’ is caused by a failure of the
controller to react correctly to a given system state.
The controller providing incorrect commands or
inputs to a system causes a ‘commission failure’.
The controller responding correctly but outside of the
required timing constraints causes a ‘timing failure’.

There have been many technical solutions proposed
to ensure software safety (Leveson 1996, Hilburn
and Zalewski 1996). Some of the authors’ own
research (Anderson et al. 1999, Sahraoui et al. 2000)
included the development of a software safety shell,
that depends on a guard to ensure a safe behavior of

the system (Fig. 2). The guard is a low-level
construct that detects the danger and then forces the
system to go to a safe state instead of hazardous one,
if at all possible. This approach was applied in a
traffic-light control case study to detect the
conditions that, if unchecked, would lead to a failure.

All theoretical methods, which rely on engineering
the proper design of the controller’s structure to
detect hazardous states, however, ultimately need to
go through the software development process. This
means that just designing the controller is necessary
but not sufficient for ensuring safety, and during
software development additional care has to be taken
to retain or even improve safety properties embedded
in the design.

One traditional method of developing software for
safety is to use diversity, that is, have independent
teams apply different principles to develop the
software product to the same specifications. Even
this simple approach, however, has its flaws, which
we discuss in Section 3. A further problem arises
when re-using software components, typically
commercial off-the-shelf (COTS) software, which
nowadays is more and more often applied in safety-
related systems. New principles of dealing with
COTS in safety-related systems have to be
developed, which we discuss in Section 4.

Fig. 2. System View of a Safety Guard.

Applying diversity during development and using
systematic methods for dealing with COTS software
might increase the confidence in software
correctness, but in general are not sufficient to
guarantee full product safety. In order to further
improve software safety and lower the risk associated
with its use, approaches relying on more formal
mathematical techniques are required. One step in
this direction is to support the design phase in the
development process by formal design verification,
which makes the entire process more rigorous.

Oper-
ator

SystemCont-
roller

We discuss it in Section 5 in relation to Petri nets.
However, purely formal techniques are not sufficient
to capture completely the reality to be modeled and
analyzed; a very promising approach to the
development of safety-related software consists of
combining formal methods with established
engineering techniques throughout the entire
software life cycle. We discuss this issue in Section
6, for verifying timing requirements with UML and
extended timed graphs.

The rest of this article presents an overview on the
techniques mentioned above; in the following four
chapters each of the co-authors summarizes the
results and insight gained in his / her own area of
research.

3. DIVERSITY IN THE SOFTWARE PROCESS

3.1 Common Failures in Diverse Variants

Since a long time it has been of interest whether
independently developed variants of software could
contribute to the increase of safety. This concept has
been particularly attractive to reduce the licensing
costs of safety-related programs. The basic idea has
been as follows:

• Step 1. Produce independently two variants of
software to solve the same task.

• Step 2. Demonstrate that each single variant has
achieved a certain reliability, for example, that
its failure probability per demand p1 ≈ p2 is
below a certain limit, say 10-4.

• Step 3. Conclude for the probability of common
failure per demand of both variants

p12 ≈ p1 * p2 ≈ p1
2 < 10-8 (1)

This way of thinking may lead to commercially
attractive solutions under certain circumstances.
Doubling the effort - we have to produce two
variants - would result in the square of the relevant
reliability figure. In other words, linear effort
increase during production could provide
exponential reliability gain . The gain would improve
safety properties, at the expense of a loss of
availability properties. Under such assumptions
diversity looks to be economically attractive.

Of course, during producing two variants one would
take any precaution to avoid common faults among
variants. The collection of diversity techniques
proposed in (Saglietti et al. 1992) could be taken to
select a proper set of techniques.

There were, however, severe objections against
conclusion (1). In a theoretical work (Eckhardt and
Lee 1985) it was shown that (1) is to be augmented
by a measure of the varying ”difficulty” throughout

the input data space, namely the variance of the
probability of committing programming errors over
the input domain of the two diverse program
variants:

p12 ≈ p1
2 + Var(q) (2)

where q represents the probability of an arbitrary
variant failing on input x. The variance is to be taken
over all inputs x. An accurate estimate of q would
require examination of a large number of software
variants for any practical project, which is obviously
not viable. Var(q) may exceed p1

2 significantly.

Further investigation leads to the result derived in
(Ehrenberger and Saglietti 1993). If the input domain
of a diverse software system is processed by K
disjoint input channels, and if the software of the
individual channels fails independently, the
probability of common failures is increased by a
factor close to K:

p12KChannels ≈ p12*K ≈ p1
2 * K (3)

3.2 Estimation of the Variance

Littlewood and Miller (1987) developed equation (2)
further and a more general result has been derived,
including the particular case of dissimilarity being
enforced during the development of the diverse
variants:

p12 = p1
2 + Cov(q1,q2) (4)

where q1(x) and q2(x) represent average probabilities
of failure on input x of two arbitrary variants
developed by using different methodologies (forced
diversity). Formula (4) degenerates to (2), if no
dissimilarity was enforced. In principle, Cov(q1,q2)
can become negative. Also here no estimate of the
size of the covariance is known for an arbitrary
concrete system.

Further details on theoretical considerations are
presented in (Ehrenberger 2001b). As they do not
provide a formal proof, experimental evidence is
needed for support. As mentioned above, such
evidence is difficult to get from software
development, because programming a large number
of variants would be too expensive. However, there
may be a way out.

If we believe that programming is a human activity
similar to writing exams, we may consider the results
of student exams in place of the results of programs.
Table 1 shows the envisaged analogies. The table of
the exam results is given in (Ehrenberger 2001a),
where 8 questions had to be answered, including
some on deriving algorithms. A total of 13 exam
papers were considered worth being used in the
evaluation, because the number of faulty answers
was reasonably small. They formed 78 pairs.

Table 1 Analogies between programming faults and
faults in exams.

Aspect Solution of exam Program

Requirements
from

question sheet
from professor

program
specification

Result exam paper developed code
Form of
requirement

answer question x react on input x

Faults faults in solving
the question

program faults

Form of failure human failure human failure

Single task single question,
single answer

single program
part

Single fault fault in answer x fail. on input x

Characteristic:
probability of
fault per
question or
program part

probability of
fault per question

number of
incorrect answers
total number of

questions

each answer,
which does not
score fully, is
considered faulty

probability of
failure per
program part:

number of failing
program parts
total number of
program parts

each program
part, which has
a fault is faulty

Characteristic:
probability of
fault for an
answer or an
input portion

fault
characteristic of
an answer per
exam:

number of exam
papers with faults in

this answer
total number of

exam papers

fault
characteristic
per input
portion:

number of variants
with faults in this

input area
total number of

programs

Variance to be
calculated

over all answers,
over the
probability of the
faulty answer

over the
individual input
domain
portions, over
the probability
of faulty
treatment of an
input

Any correct answer was qualified with 0, any
incorrect one with 1. For each question the number
of failed answers was counted. The qi of question i
was calculated as:

papers exam all ofnumber
ianswer in faults with papers exam ofnumber

and the variance of the difficulty of the questions,
with N representing the number of questions:

Var(question difficulty) =

 1
N i

N

=
∑

1
(qi -

1
N i

N

=
∑

1
qi)2 (5)

On the other hand, the probabilities of common faults
of two students (i,j) can be taken from the related
matrix as pij equal to the following:

questions all ofnumber

papers examboth in faults with answers ofnumber

The probabilities of individual faults per solution pi
and pj could also be evaluated:

pmean = 0.365; (pmean)
2 = 0.133

Var(question difficulty) = 0.023 < (pmean)
2.

pij < pi * pj for 28 pairs
pij = pi * pj for13 pairs
pij > pi * pj for 37 pairs
pij ≤ pi * pj for 41 pairs
pij ≤ 2 * p i * pj for 70 pairs

These observations together with the theoretical
considerations suggest the following estimate for the
common failure probability of a two-fold diverse
system:

p12 ≈ p1
2 + Var(q) ≈ 2*p1

2 (6)

Regarding the exams’ results one has to remember
that no type of forced diversity had been applied. As
forced diversity will be the rule for any real project
with diverse software, failure independence is likely
to be higher than in the exams.

3.3 Results

If one accepts the analogy of the fault producing
processes in students’ exams and programming, one
may consider data from university exams as a basis
for studying software diversity. The investigation of
the answers of a student exam shows that in general
the intuitive result (1) is too optimistic. A correction
by the factor 2 is appropriate. This correction is more
conservative than result (4).

If the program reduces information during its
execution by a selection mechanism, the number of
channels involved in that reduction has to be
considered as a further source of common failure of
independent variants. In many cases of industrial
software application the influence of the information
reduction will be more substantial than the influence
of the varying difficulty of the input domain. Under
ideal circumstances and bringing together results (6)
and (3), we may conclude that:

p12,KChannels ≈ p12 * K ≈ 2 * p1
2 * K (7)

Under ideal circumstances the probability of
common failure of two diverse software variants may
be estimated as two times the square of the value of
the failure probability of the singular variant times
the number of diversity channels that entail
information reduction.
The results of the experiment on diverse software
development can be summarized as follows:

• Errors are not made independently of the
questions to be answered.

• The value of the variance of the difficulty over
the input domain is close to the value of
common failure probability.

• Under ideal circumstances the probability of
common failure equals the square of the failure
probability of one variant multiplied by the
doubles number of channels.

4. OFF-THE-SHELF SOFTWARE

For evident economical reasons, COTS software
components are increasingly (re)used in different
application areas, including safety-critical ones. Due
to their origin, the available information on the
underlying development process of these
components is often only fragmentary.

A very limited knowledge on the component
production, as well as differences between past and
future usage (such as, different reliability demands or
different usage profiles) create a serious challenge
for the software engineering community facing the
problem of assessing the suitability of COTS
components for new development projects.

The strategy suggested to approach this difficult
problem consists of five successive decision phases,
as illustrated in Figure 3:

• Phase 1. Identification of safety demands at
system level;

• Phase 2. Analysis of role of COTS software
within the system (safety relevance &
sensitivity);

• Phase 3. Qualitative (subjective) assessment of
the software process and product quality;

• Phase 4. Quantitative (objective) assessment of
past (testing &) operating experience;

• Phase 5. Validation of component interfaces
within the integrated system.

Considerations on phases 2, 3 and 4 were presented
in (Saglietti 2001, Saglietti 2000b and Saglietti
2000a), respectively. Each phase is discussed below
in terms of key factors to be considered and
necessary actions to be taken during development.

system
level

component
level

system-independent SW
attributes: process &

component-independent
system properties

system vs. component:
safety relevance

sensitivity

system-dependent
SW attributes:

operating experience

component-dependent
system properties

phase 1 phase 2 phase 3 phase 4 phase 5

Fig. 3. Phased Approach to Component Analysis.

Phase 1: Identification of safety and reliability
demands at the system level.

Key factors: risk analysis (black-box, component-
independent).

• Risk analysis: identification of occurrence of
failure-initiating events and loss caused by them;
comparison of hazards involved in automation
with those inherent to the application as such,
i.e., in an uncontrolled mode; identification of
critical events to be controlled; classification of
event criticality if not under control.

• Analysis of results: determination of minimum
quantitative target for reliability demands to be
demonstrated, in terms of minimum probability
of operational survival, i.e. of correct or
acceptable performance under application-
specific operational demand profile.

Phase 2: Analysis of the role of COTS components
within the system (Saglietti 2001).

Key factors: COTS safety relevance, sensitivity
(objective, quantitative, system dependent), safety
criticality and sensitivity.

• Safety Criticality: identification of potentially
critical failure propagation through COTS
modules, evaluation of individual responsibility
of COTS components in terms of safety-
relevance to distribute verification and validation
effort accordingly, determination of bottlenecks
for system safety, definition of fault tolerant
architectural properties accordingly.

• Sensitivity: determination of impact of
component reliability on system reliability to
know whether modest reliability figures at
component level are acceptable for systems with
higher reliability demands, in order to derive to
which extent a post-qualification of pre-
developed software allows to expect an increase
of system reliability.

Phase 3: Qualitative assessment of COTS at
component level (Saglietti, 2000b).

Key factors: COTS process and product (subjective,
qualitative, system-independent), assessment of non-
operational evidence.

Qualitative judgment on non-operational aspects
from all life-cycle phases preceding operation,
should include the following aspects:

• Development process (structured, semi-formal,
formal methods)

• Safety culture (awareness of consequences,
ethical and financial)

• Documentation (accuracy and consistency of
reports and dependencies)

• Resources (human labor and mechanical aid)
• Informal checks (manual analysis of code and

documents)
• Automated static analysis (syntactic and

semantic checks by automatic tools)
• Non-operational tests (execution for non-

representative inputs).

Phase 4: Quantitative assessment of COTS
components within the system (Saglietti 2000a).

Key factors: COTS behavior during testing and
operation (objective, quantitative, system-
dependent), assessment of operational evidence.

• Quantitative judgment of operational aspects:
in spite of deterministic nature of logical faults,
a probabilistic approach is justified by input
randomness, representing physical variables
subject to unpredictability of state transitions in
technical processes under control.

• Estimation of software reliability by statistical
testing on the basis of significant amount of
operational evidence, correct execution of a
large number of independent, operationally
representative scenarios; based on sampling
theory, estimation of upper bound of failure
probability at a given confidence level.

Phase 5: Validation at integrated system level.

Key factors: interface analysis (white box,
component dependent, context dependent).

Inconsistencies between physics and logical
specification have to be analyzed, including:

• Violated global properties, such as in Airbus
incident in Warsaw.

• Violated local properties at interfaces, such as:

(a) Mars Climate Observer, where force
reference system has not been specified by
NASA; JPL controllers expected Newton
(British system), Lockheed Martin
Astronautics provided metric units.

(b) Berlin Fire Brigade – Millennium: different
operating systems in different system parts,
inconsistent communication of date format.

(c) Ariane 5 Explosion, where conversion
routine originally developed for flight
trajectory of Ariane 4 used insufficient
range.

(d) Blood Databank, where program designer
developed the database manager for a single
computer application without considering
networked applications; could not anticipate
that simultaneous access to a record by two
users would lead to a hazard.

5. RIGOROUS DEVELOPMENT PROCESS

The fundamental objective of achieving software
safety is to guarantee that the software does not cause
or contribute to a system reaching a hazardous state.
This may be supported by the rigor and conformance
to well defined engineering standards.

5.1 Safety Analysis and Verification

Mojdehrakhsh et al. (1994) describe a process for
safety improvement. The process must assure that
the software safety analysis is closely integrated with
the system safety analysis and the software safety is
explicitly verified.

The following activities for software safety program
are geared toward achieving the stated objective,
with emphasis on analysis first and verification next.
The analysis phase involves conducting system
safety analysis to:

• Identify the key inputs into the software
requirements specification, such as hazardous
commands, limits, timing constraints, sequence
of events, voting logic, failure tolerance, etc.

• Create and identify the specific software safety
requirements in the body of the conventional
software specification.

• Identify which software design components are
safety critical.

The initial analyses and subsequent system and
software safety analyses identify when software is a
potential cause of a hazard or will be used to support
the control of a hazard. Using specific software
design and implementation techniques and processes
is crucial to reduce potential hazards introduced by
software. The associated verification phase involves
the following steps:

• Apply specific verification and validation
techniques to ensure appropriate implementation
of the software safety requirements.

• Create test plans and procedures to satisfy the
intent of the software safety verification
requirements.

• Introduce any necessary corrective actions
resulting from the software safety verification.

The process is fundamental to the identification of
the safety-critical functions and the causal factors,
including the factors that may be software-induced or
controlled. The identification shall include also
creation of an appropriate taxonomy of hazards
(commission, omission, timing error).

Some of the techniques used for analysis and
verification include (Bishop, 1990): Fault Tree
Analysis (FTA), Event Tree Analysis (ETA), Hazard
Operability Analysis (HAZOP), Failure Mode Effect
Analysis (FMEA), Failure Mode Effect and
Criticality Analysis (FMECA), Common Mode
Failure Analysis (CMF), Cause Consequence
Diagrams (CCD), and Petri Nets (PN).

Most of these methods allow for rigorous treatment
of the development process. The one we found
particularly suitable for studying safety properties is
Petri nets (Saglietti 1998, Kornecki at al. 1998). We
have applied it to the analysis of the TCAS software
specification.

5.2 Petri Nets in Design Verification

TCAS is a Traffic Collision Avoidance System,
introduced to reduce the risk of mid-air collisions
between aircraft. The TCAS equipment is a small
electronic device, consisting of a computer and
software, a directional antenna, a transponder and
cockpit display and controls (Fig. 4 and 5).

Fig. 4. TCAS Architecture.

TCAS continuously monitors aircraft within 10
nautical miles to identify the potential threat. If an
aircraft is determined to be a threat, a Traffic

Advisory is issued showing the available information
about the potential threat, including the call sign,
relative position, altitude difference, and altitude
vector.

Fig. 5. TCAS Cockpit Display

If an aircraft persists to be a threat, the TCAS
evaluates whether collision might occur within the
next 23 seconds. In such case, a Resolution
Advisory is issued, which requires the protected
aircraft to execute one of the range vertical
maneuvers.

Based on the TCAS specification, a Petri net model
was built and verified using a public domain tool
Cabernet (Kornecki et al. 1998). The objective was
to check formally, whether certain states, having
impact on safety, can be achieved as a result of
inconsistencies in the specification.

For example, state changes to the Emergency State,
described under respective conditions, as below,
converted to predicates:

IntruderStatus = Continuing &
Threat = Establishes &
RA = VerticalSpeedLimit &
Intruder is TCAS-equipped &
Own Mode S ID is higher &
Threat has the sane sense as Own &
!(RA display deferred)

were analyzed using the reachability graphs. In
effect, several properties were verified with respect
to safety aspects. Verification of a sample property
of the original TCAS specification, that has been
found “not-satisfied”, is shown in Fig. 6.

MODE S /TCAS
CONTROL PANEL

RA RA

TA

RADAR
ALTI TUDE

PRESSURE
ALTITUDE

DISPLAYAURAL
ANNUNCIATION

DIRECTIONAL
ANTENNA

OM INDIRECTIONAL
ANTENNA

MODE S
TRANSPONDER

SURVEILLANCE AND
CAS LOGI C

GUI
the user interface

ObjecTime
informal tool

Case Study
ground

transportation
safety-critical system

Fig. 6. Sample Output from Cabernet.

The automatic verification was very successful, since
it allowed to identify several flaws in the TCAS
specification. The results showed, however, that a
significant knowledge of Petri nets (timed
environment relationship nets, in this case) is needed
to build a meaningful TCAS model. In order to
enhance usability, it is useful to support
formalization by means of established engineering
practice. One such practice emerging recently, with
supporting software tools, is the use of a Unified
Modeling Language (UML).

6. VERIFYING TIMING REQUIREMENTS
USING UML

This section presents a method of enhancing UML
by dealing with timing requirements via statecharts.
We propose to combine traditional engineering tools,
such as those relying on the UML notation, with
formal methods tools, such as model checkers.
Combining both types of tools into a single
integrated system via a common user interface, to
express and verify timing properties, leads to an
architecture of a verification system (Al-Daraiseh et
al. 2001) as in Fig. 7.

Two tools, a typical design tool based on UML, and
a typical model checker based on a formal method,
are interfaced to a user via a GUI. For expressing
timing requirements, UML statecharts are converted
to Extended Timed Graphs (XTGs), which in turn
are converted to textual representation and analyzed
by a model checker. A new software tool has been
developed to ease the interfacing of models built in
XTG formal language to other tools.

GUI
the user interface

ObjecTime
informal tool

XTG/PMC
formal tool

Case Study
ground

transportation
safety-critical system

Results Analysis

Fig. 7. Architecture of the Integrated System.

6.1 Integrated Methodology

Both statecharts and XTG’s are visual tools to model
the behavior of software. Since UML has no means
to express real-time properties, we propose a method
to convert the UML statecharts to XTGs, so that
statechart models can be model checked using the
PMC model checker (van Katwijk et al. 2000).
Converting a UML model expressed in statecharts, to
XTG graphs, requires thorough understanding of
their mutual correspondence.

XTG is a new engineering notation for describing
real-time systems based on timed automata
(Ammerlaan et al. 1998). It provides a simple
representation for high-level specification languages
and is a suitable notation for those languages that
allow extensive modeling of data, having a maximal
progress semantics, and modeling interprocess
communication by value passing through data
channels.

A UML statechart consists of states and transitions.
A state is an ontological condition that persists for a
significant period of time, is distinguishable from
other such conditions, and is disjoint from them. A
distinguishable state means that it differs from other
states in the events it accepts, the transitions it takes
as a result of accepting those events, or the actions it
performs. A transition is a response to an event that
causes a change in state.

A simple statechart diagram is shown in Fig 8. In the
IDLE state nothing is happening and the timer is not
counting down, waiting for the start command
“StartCmd”. The StartCmd carries a single value,
which is the starting time the timer shall count down.

IDLE

Countin-
g DownStop Cmd

Start Cmd (count: int)

tm(count)/
genSignal(Client,timeout)

Initial

State

Transitions

Fig. 8. Simple Statechart Representing a Counter.

When this event occurs the system transfers to the
Counting Down state and the timer starts counting
down again. There is also a timeout signal “tm”.
When the timeout occurs the “tm” transition is taken
and the action from its action list will be executed.
The actions are shown after the slash “/”. In this case
the action is to send a signal to a client object.
Actions in UML are usually short but they run until
completion before the transition completes. After
that, the counting state is re-entered, and the counting
starts again until the Stop Cmd event occurs. Then
the system transfers to IDLE waiting for the Start.

State State

S1

S3

S2

B1

Guar

d2

Guard2

S1

S3

S2Guard1

Guard2

T T

H

S3

S2

S1

S3

S2

S0

S2

S1

S3

S2

S1

S5

Branch

Terminal State

Histroy state

Absorbing State

Fork Transition

Both Transition should
have the same constraints

Transition Transition

or

State State

JOIN

StateChart Graph XTG Equivalent

S1

sync? sync!

sync!

S4A

B

A & B

S3

Applied
implicitly

Fig. 9. Statechart to XTG Graphs Conversion.

To convert statecharts to XTG graphs, we developed
an equivalence table (partially presented in Fig. 9),
that contains the statechart symbols and the XTG
equivalent symbols. As shown in Fig. 9 the state

symbols are equivalent but their shapes are different.
Transitions in both cases are the same. According to
the table, the equivalent XTG graph for the Counter
example is shown in Fig. 10.

State

Transitions

IDEL

Counting-
Down

StartCmd!

GenSignal?

StopCmd!
Synchronization

Fig. 10. XTG Graph Equivalent to Fig. 8.

6.2 Railroad Crossing Case Study

To check the usefulness of the concept of model
conversion and the applicability of the tool
developed for this purpose, we applied the entire
procedure to the railroad crossing system. The
system consists of three parts: a set of sensors
detecting the passing trains, a gate controller, and a
gate. The sensors process can be in one of three
states namely: far from the crossing, T0, near the
crossing, T1, and in the crossing, T2. A function
called g(t) is defined to represent the gate formally,
where output of this function g(t)∈ [0,90] means that
at 0 the gate is closed and at 90 the gate is open.

UML Design. The behavior of the system is
described with UML in Fig. 11. The safety and utility
properties are expressed in temporal logic (z
represents clock) as follows:

1. AG(train@in => gate@closed)
2. AG(gate@closed => (z=0).

AF (gate@open and z <=5))
The timing properties are missing on the diagram,
since they cannot be expressed in UML.

Fig. 11. UML Model of System Behavior.

As shown in this figure, the UML representation has
to include four processes instead of three, as
suggested previously, since UML doesn’t have the
clock variable. The sensors process can be in one of
three states:

Tr0

Tr2 Tr1 G2G 3

G1G 0

C1

C0
T1

[20 >= C1 >= 5]
/ C1 = 0,

genSignal(approach)

T2[C1 == 2]/
C1 = 0

T3[C1 == 4]/
genSignal(leave)

C1 =0
cnt = 0approach/

cnt+=1

approach/
cnt+=1

leave/
cnt-=1

T2[cnt == 1]]/
genSignal(open)

T1[cnt>=0]/
genSignal(close)

close/
C2=0

open/
C2=0

T1[C2 == 1]

T3[C2 == 1]

a) Train

B) Controller

C) Gate

Counter
1 secTO/

C1++,
C2++

D) Counter

• Far from the crossing, Tr0
• Near the crossing, Tr1
• In the crossing, Tr2.

The railroad crossing example was implemented in
ObjecTime tool as shown in Fig. 12, using four
actors: TrainActor, GateActor, ControllerActor and
CounterActor. ObjecTime behavioral diagram is
similar to UML statecharts. The behavior of the
GateActor is simulated internally. The principle of
operation is the same as described in the UML
design.

Fig. 12. Railroad Crossing ObjecTime Model.

With ObjecTime model simulation, we could only
check sequencing and a limited timing behavior via
animation, but there was no proof of the safety
constraints since the tool does not have this
capability.

XTG Design. Next the UML description is translated
into XTG’s. The gate has four possible states.
Initially it is open (G0). When receiving a close
signal, it transfers to the closing state (G1). One time
unit is allowed to close the gate, enforced by
[C2==1] clock constraint.

G3T1T2

G0 G1T0

G2

C0

C1

c1 := 0
cnt :=0

close?

c2:=0

open?
c2==1

C1 == 2

C1 := 0

C1==(5,20)
approach!
C1 := 0

approach?
cnt+=1

approach?
cnt+=1

leave?
cnt-=1

cnt>=0
close!cnt==0

open!

Fig. 13. Three XTG Processes Representing the
System: Sensors, Controller and Gate.

This description is sufficient to use the
XTGConverter tool for producing an XTG code,
form the XTG graphs, and prepare for automatic
model checking. Results for railroad crossing are
presented in (van Katwijk et al. 2000, and Al-

Daraiseh et al. 2001). A portion of the generated
XTG code for the sensors process is shown in Fig.14.

-- this is the RailRoadCrossing System
system RailRoadCrossing
. . .
processes

Sensors Train1 ;
Gate Gate1 ;
GateCont GateCont1;

composition
Train1 | Gate1 | GateCont1

graph Sensors
-- Local variable assignment added here
state
-- clocks and variables here
clock C1:= 0;
ports
--all the ports are added here

out approach
out leave

--initial state comes after init keyword
init

T0
locations
. . .
T0
{
when C1 == (5,20)
sync approach!
do C1 := 0;
goto T1
}

Fig. 14. XTG Code for Model Checking.

Finally, after running the generated code through the
PMC model checker, the verification results are
obtained. The properties to be verified in the railroad
crossing system are:

1. AG(train@in => gate@closed)
2. AG(gate@closed => (z=0).

AF(gate@open and z <=5))

This means that, at any time, if there are trains in the
crossing the gate should be closed, and at any time if
the gate is closed, it should open in the future.

7. CONCLUSION

Modern safety related systems can be so complex
and so software dependent, that dealing with the
software production process becomes indispensable
to achieve the required level of trustworthiness in
software.

Usual verification methods, such as simulation and
informal prototyping, are dealing only with the
products, not with the processes, and may work well
for checking individual, safety related or timing
properties, but not for the verification of the
correctness of development processes. On the other
hand, the use of diverse software for safety critical

systems is process-related, basing on the assumption
of dissimilar development methodologies. Also the
evaluation of commercial off-the-shelf software to be
re-used in a safety-critical context requires a careful
consideration of the original development process.

On the whole, the approaches described in this article
are complementary with respect to their suitability to
address different problems at different levels of
formalism. An adequate combination is considered to
be promising. One way to proceed is to incorporate
formal techniques into engineering practice and
support it by a combined use of automatic tools, so
that formal verification of safety properties may
become more automated and better accessible to
engineers and software developers

REFERENCES

Al-Daraiseh A., J. Zalewski, H. Toetenel (2001),
Software Verification in Ground Transportation
Systems, Proc. SCI2001, 5th World
Multiconference on Systemics, Cybernetics and
Informatics, Orlando, Fla., July 22-25

Ammerlaan M., R.L. Spelberg, H. Toetenel (1998),
XTG – An Engineering Approach to Modelling
and Analysis of Real-Time Systems, Proc. 10th
Euromicro Workshop on Real-Time Systems,
IEEE Computer Society Press, pp. 88-97

Anderson E., J. van Katwijk, J. Zalewski (1999),
New Method of Improving Software Safety in
Mission Critical Real-Time Systems , Proc. 17th
Int'l System Safety Conference, Orlando, FL,
August 16-21, System Safety Society,
Unionville, Va., pp. 587-596,

Bishop P., ed. (1990), Dependability of Critical
Computer Systems: Guidelines. Techniques
Directory. Elsevier Applied Science, London

Eckhardt Q.E. Jr., L. D. Lee (1985), A Theoretical
Basis for the Analysis of Multiversion Software
Subject to Coincident Errors , IEEE Trans. on
Software Engineering, Vol. SE-11, No. 12, pp.
1511-1517

Ehrenberger W. (2001a), Software Diversity: Some
Considerations on Failure Dependency, Proc.
SCI2001, 5th World Multiconference on
Systemics, Cybernetics and Informatics,
Orlando, Fla., July 22-25

Ehrenberger W. (2001b), Software-Verifikation,
Hanser Verlag, Munich

Ehrenberger W., F. Saglietti (1993), Architecture and
Safety Qualification of Large Software Systems,
Proc. ESREL’93, European Safety and
Reliability Conference, Munich, Germany, May
12-14, Elsevier, Amsterdam, pp. 985-999

Hilburn T., J. Zalewski (1996), Real-Time Safety
Critical Systems: An Overview, Proc. 2nd IFAC
Workshop on Safety and Reliability in Emerging
Control Technologies, Elsevier, Oxford, pp.
127-138

van Katwijk J., H. Toetenel, A.E.K. Sahraoui, E.
Anderson, J. Zalewski (2000), Specification and
Verification of a Safety Shell with Statecharts
and Extended Timed Graphs, Proc.
SAFECOMP 2000, 19th Int’l Conf. On Computer
Safety, Reliability and Security, Springer-Verlag,
Berlin, pp. 37-52

Kornecki A., B. Nasah, J. Zalewski (1998),
TCAS Safety Analysis Using Timed
Environment-Relation Petri Nets , Proc.
ISSRE'98, Int'l Symposium on Software
Reliability Engineering, Paderborn, Germany,
November 4-7

Leveson N. (1996), Safeware: System Safety and
Computers, Addison-Wesley, Reading, Mass.

Littlewood B., D. R. Miller (1987), A Conceptual
Model of Multi-Version Software, Proc. FTCS-
17, Int’l Symp. On Fault-Tolerant Computing,
IEEE Computer Society Press, pp. 170-175

Mojdehrakhsh R., W.T. Tsai, S. Kirani, L. Elliott
(1994), Retrofitting Software Safety in an
Implantable Medical Device, IEEE Software,
Vol. 11, No. 1, pp. 41-50

Rushby J. (1994), Critical System Properties: Survey
and Taxonomy, Reliability Engineering and
System Safety, Vol. 43, pp. 189-219

Saglietti F., W. Ehrenberger, M. Kersken (1992),
Software Diversität für Steuerungen mit
Sicherheitsverantwortung, Report BAU-
Forschungsbericht FB 664, Bundesanstalt für
Arbeitsschutz, Dortmund

Saglietti F. (1998), Integration of Logical and
Physical Properties of Embedded Systems by
Use of Timed Petri Nets, Proc. SAFECOMP’98,
17th Int’l Conf. On Computer Safety, Reliability
and Security, Springer-Verlag, Berlin, pp. 319-
328

Saglietti F. (2000a), Evaluation of Pre-developed
Software for Use in Safety-Critical Systems,
Proc. EUROMICRO’2000, 26th Euromicro
Conference on Software Process and Product
Improvement, IEEE Computer Society Press,
Vol. 2, pp. 193-199

Saglietti F. (2000b), Statistical Significance of Expert
Judgement for Ultrahigh Software Reliability
Demands, Proc. 5th Int’l Conference on
Probabilistic Safety Assessment and
Management, Osaka, Japan, Nov. 27-Dec. 1,
Universal Academy Press, Tokyo

Saglietti F. (2001), Criticality and Sensitivity
Analysis for Off-the-Shelf Components in
Safety-Relevant Systems, Proc. SCI2001, 5th
World Multiconference on Systemics, Cyber-
netics and Informatics, Orlando, Fla., July 22-25

Sahraoui A.E.K., E. Anderson, J. van Katwijk, J.
Zalewski (2000), Formal Specification of a
Safety Shell in Real-Time Control Practice,
Proc. WRTP’2000, 25th IFAC Workshop on
Real-Time Programming, Elsevier, Oxford, pp.
117-123

