

Abstract— Modern software development methodologies use
Model Based Development (MBD) in design and verification
practices. A number of software design tools support the use of
modeling throughout the development lifecycle. Using appropriate
notation the system model is build and verified. Subsequently the
software source code can be automatically generated from the
design artifacts. The variety of tools on the market and deceptive
vendor claims about tool applicability and ease of use leaves
industry confused. To explore this, four students of ERAU Master
of Software Engineering program were given an assignment: to
learn how to use specific software development tool and
subsequently develop small project while collecting observations.
In addition to give the student opportunity to explore modern tools
and technologies, the objective of this exercise was to collect
observation on the leading software development tools usability
from the perspective of a young software developer.

Keywords: Software Engineering, Software Tools, Model Base
Development, Automatic Code Generation, Software Process.

1.0 INTRODUCTION
Software development tools have growing impact on the

effective and efficient development of software-intensive
systems. Modeling can be used throughout the entire system
development lifecycle. Modern software development
methodologies rely on building conceptual models of the
software system and analyzing the models (via simulation,
animation, and semi-formal or formal model checking)
before translation to conventional programming language
format. Recently, the concept of using Model Based
Development (MBD) has become central to design and
verification practices. Supporting the approach software
design tools provide additional Automatic Code Generation
(ACG) capability. ACG can be treated at as the next logical
step in specifying and describing a software system in the
progression: from machine language to assembly language
to algorithmic high-level language to object-oriented high-
level language to graphic modeling language. The modeling
approach provides higher level of abstraction through use of
visual notation as well as formalized modeling languages.
The higher levels of abstraction enable developers to focus
on important features and behavior of the system, allowing
the tool to handle the implementation details.

There are several categorization methods for design tools
with ACG functionality. Their input representation may be
textual or graphical. A tool may be capable of producing
either a framework of the code that needs to be filled with
code in specific language or a fully functional program. A
tool may also restrict the format of the generated product, or
it may provide a wide variety of output options, such as
formal style or language. The relative importance of such
criteria may be a factor to determine the relative value of a
tool for the specific project and organization. The objective
of this study was to collect observation on the leading
software development tools usability from the perspective of
a novice software developer. The tools selected for the
presented study, can be categorized into two groups: (a)
those using a function-based, block-oriented approach, and
(b) those using structure-based, object-oriented approach.

With the function-based block-oriented approach, the
initial design is initially specified in a form of diagrams
representing the system functions (comparative and
mathematical symbols, control blocks). The diagrams are
then used to simulate the system behavior and evaluate its
performance. Once the user is satisfied with the design, an
automatic code generator translates the model and the
resulting target source code is produced that reflects the
rules specified in the diagrams. Typically, no code needs to
be written and the tools of this category are popular between
domain specialists (control, system, mechanical, aerospace,
and civil engineers).

With the structure-based, object-oriented approach, the
initial design structure and behavior are documented as a
collection of models using object-oriented diagramming
notations, such as class diagrams, sequence diagrams, state
diagrams, etc. The specific behavior is represented in terms
of events with actions defined in the supported computer
language. Typically, computer scientists and
computer/software engineers are primary users of such tool.
As in the functional approach, the resulting diagrams are
used to validate the system behavior through animation or
simulation and then to generate the target source code.
Recently, the standardized Unified Modeling Language
(UML) notation is widely used.

Considering the above categorization and availability of
tools, the following selection was made

Software Development with Automatic Code Generation:
Observations from Novice Developer Viewpoint

Farahzad Behi
Embry Riddle Aeronautical University

Computer & Software Engineering
Daytona Beach, FL 32114

Phone: 1-386-226-6454
Fax: 1-386-226-6678

behif@erau.edu

Andrew J. Kornecki
Embry Riddle Aeronautical University

Computer & Software Engineering
Daytona Beach, FL 32114

Phone: 1-386-226-6888
Fax: 1-386-226-6678
kornecka@erau.edu

• In the Software Engineering paradigm (structural:
object-oriented):
o Rhapsody (iLogix) [1]
o Esterel Studio (Esterel Technologies)[2]

• In the Control Engineering paradigm (functional:
block-oriented):
o MatLab (Simulink, Stateflow, Real Time Workshop)

from MathWorks[3]
o Scade (Esterel Technologies)

After tool assignment, the students engaged in the project.

The following sections present the observations collected
after the project completion.

2.0 CASE STUDY
To reduce the bias related to lack of familiarity with the

tool, the project was conducted in two phases: (a) learning
phase and (b) execution phase. The learning phase included
familiarization with the environment and the tool finalized
with developing a simple system simulating an electric
hairdryer defined by four simple requirements. The
execution phase included building slightly more complex
system simulating a microwave oven defined by ten
requirements. In this phase the data and observations were
collected. Six steps of the process used in the case study are
presented in Figure 1.

Experiment Process:
Step One: Collect information about the specific tool from
literature (dealing with the concept of operation,
background, tool/vendor history, and industry feedback)
while exploring the tool availability license currency, etc.
Step Two: Study the assigned tool and work with
demo/tutorial for familiarization with the tool (which
includes also porting of the resulting software to the
VxWorks[4] target)
Step Three: Attempt to complete the throw-away example
model (HAIR DRYER) to gain experience and learn what
you need to know to attempt the project (collect the effort
data)
Step Four: Only then start the actual project to build the
evaluation model (MICROWAVE) while collecting data on
effort, defects, code size, code performance, usability, and
engineering observations
Step Five: Compile your observations and data into a brief
final report
Step Six: Prepare brief presentation and a demo of your
system.

Fig. 1: Experiment Process

3.0 RESULTS
The following sections describe four tools from the

developer perspective. The description includes brief

information about the tool, its operations and use, and
general observations.

3.1 Esterel Studio
Esterel Studio is a development tool used to assist in

building and verifying design control software for embedded
systems. The foundation of the Esterel studio is synchronous
Esterel language using a finite state machine approach to
represent the control mechanism. This control mechanism
can be implemented in hardware or software using the same
specification. This hardware-software equivalency is the
trademark of the approach [2]. More advanced users have
the option of developing systems using more flexible, but
more difficult internal language, while novice users can use
the graphical constructs only. For greater flexibility, the two
notations can be mixed. In either case, the starting point is
creation of a workspace and a project, creation of a default
or new model, creation of inputs and outputs, user-defined
types, functions and procedures. Then the model can be
populated using a combination of the three state views: (a) a
graphical state in which the developer can draw pure state
diagrams, (b) a macro state this is where the developer can
mix text and graphical notation, and (c) a pure textual state
block with inline Esterel code. Figure 2 presents a screen
shot of the project using graphical state view.

The completed model can be checked with the model
checker, which translates the model into its underlying
notation amenable for formal analysis. The results of
checking are displayed in the tool.

After this process is finished the model can now be
simulated and/or translated into C- source code. A graphical
representation of the model allows developer to observe the
simulation progress step-by-step.

The tool provides documentation on interfacing with the
generated C-source code. According to our interpretation of
the documentation, Esterel has a graphical construct for
separating state machines and allowing them to run
concurrently. But examination of the generated code does
not show concurrency.

After finishing the microwave project the generated
source file were 537 LOC with the executable size 12kB.

The tool documentation is easy to understand but hard to
find. The documentation for the installed, new software
version was abridged and lacking detail. The installed
system also had an earlier version of documentation, which
was more detailed but often not consistent with the used
software version. It would be nice to see more examples on
how to pass data with events.

One of the problems with the tool has been its inability to
recover gracefully from errors. The Esterel Studio software
crashed and closed unexpectedly several times during
operation. During the model checking there are error
warnings that require more explanation from a usability
perspective. One such error/warning is a cyclic warning
showing where the cycles exist and how they are related but
no explanation of how to fix them. Another issue is the

software file/platform compatibility issues. This occurs
when developing a model on one system and then trying to

open and run the model as a simulation on another machine
– it gives a “time not correct” error.

Fig. 2: Esterel Studio State Diagrams

3.2 Rhapsody
iLogix Rhapsody is a CASE - Tool for embedded systems

software development. Rhapsody is claimed to be "The
industry's leading Model-Driven Development environment
based on UML 2.0 that allows full application generation for
embedded systems and software developers." [1]. Through
Rhapsody’s MDD approach, a developer can rapidly target
the platform independent application model to a real time
embedded operating system, reducing development and
integration time. Rhapsody naturally lends itself to an
iterative design approach where the software can be
constantly executed, simulated and validated in a native
environment, then downloaded to the embedded target.

The tool provides support for all UML 2.0 constructs. In
addition, the tool is capable of auto-generating code in
C/C++, Java, and Ada, which requires appropriate compilers
to be installed on the system. The latest version allows
developer to use both functional and object oriented design
methodologies in one environment.

Rhapsody comes with an extensive set of tutorials and
manuals however complexity of the tool exceeds capability
of documentation to explain the required details.
Documentation may, for example, show a sequence of steps
necessary to accomplish certain functionality or feature.
However, long learning period is required to reach mastery
over Rhapsody complex features. The case study required
that the model be developed in the Rhapsody for C. Figure 3

presents two elements of Rhapsody notation: File Diagram
and Statechart.

The main power of the software is its flexibility to use any
or all of these UML notations to develop the model at any
level of granularity and from different but consistent
viewpoints. While this is extremely useful, accommodating
the different development tastes among developers and
organizations, it is also a major challenge for novice
developers or those with limited UML exposure. The
challenge increases when attempting to use object-oriented
modeling approach for functional project development
leading to target C program. The recent Rhapsody version
helps by supporting procedural development, where files
replace objects and classes. A continuing practice with the
tool is necessary to respond to such challenge.

The tool is an excellent platform for requirements
analysis. Use case can be developed showing they trace back
to requirements. Block Diagram and a Software Realization
Diagram represent the software structure. These two
diagrams were selected for this project following the tutorial
guidance. Certainly other diagrams could have been
constructed. Rhapsody analysis models provide minute
details of the system/software operations. The choice of
which diagrams to use or how far to go with the details in
modeling ultimately depends on the nature of the software
and developers’ experience.

Another good feature of Rhapsody is that while model
views can be constructed independently of each other, the

tool allows for their inter-linking and realization of changes
among the views. Object Model Diagrams were used in the
case study to model the system component at the design
level to realize the files that make up the system. The tool’s
modeling flexibility allows the developer to either build
upon structural design detail, such as object, by
implementing functions and variables, etc. or to switch to
behavioral view such as sequence diagrams. It also allows
the developer to start with any model view or diagram and
proceed later on to refine the views as the model matures in
development. A component is a unit of executable code, and

must be created in Rhapsody before the software is able to
generate code for the model. Each component has a
configuration defining the module views (diagrams, charts)
and elements (events, operations, triggers) to be used in
generating the code. The views or the elements must be
associated with an object at the module level (file, class,
object). Among many possible configurations in a project,
the active configuration is one used during code generation.
The tool generates code of substantial size. The Case Study
code was over 4KLOC of the code.

Fig. 3: Rhapsody in C File and Statechart Diagrams

The disadvantage is larger software that may be more

cumbersome to debug, and may have some influence on
performance in certain applications. However, Rhapsody
also provide excellent debugging tools, where an error can
be double clicked in the output screen of the software and
the developer is instantly taken to the specific location of the
error in the particular file in which it was reported.

Rhapsody is a great tool for modeling real-time embedded
systems with the focus on ensuring safe design concepts.
The tool offers incredible flexibility in how a model may be
developed. The drawback to the above is the substantial
learning curve that precedes a level of mastery where such
gains may be realized. Rhapsody is a very complex tool - the
software may be integrated to work with various platforms
and other third party tools, such as CORBA, VxWorks,
RapidRMA and many others. It seems to be impossible to
master all of its capabilities in the course of 2-3 moths.
Practice however is the best method at heading in that
direction.

3.3 Scade
Esterel Technologies has commercialized SCADE to

implement a correct-by-construction methodology with a
sophisticated tool suite. The vendor literature reads:
“SCADE Suite implements a unified conceptual model of
embedded computation backed by three strong technical
cores: the use of specific high-level rigorous graphical and
textual language, compiling algorithms for correct-by-
construction implementation, and formal testing and
verification techniques.” [2].

The tool is complicated but powerful. It is capable of
handling different types of control logic. Graphic modeling
of the designs in form of state diagrams, combinational and
sequential logic constructs allows the designers the
flexibility to describe the nature of the system and the events
that control its behavior.

Behind the graphic notation, resides a formal
programming language Lustre, a formally defined
synchronous language for the development of safety critical
control software. SCADE incorporates many other features

such as the model-checking, abstract interpretations, testing
capabilities, simulation, and debugging. Using these tools
or SCADE capabilities in conjunction with Lustre’s
constraints, the software designed and generated by SCADE
may be verified against any desired standard.

The entry point to SCADE is the Editor with main
sections: the hierarchy window containing the files and
components within the model, the editor window itself
where the model is created and separate entities are
connected, and the build window and message center for

displaying all information to the developer (Fig. 4)
Systems are designed for completeness and lack of

ambiguity using block diagrams to represent functional
behavior and safe state machines for event-driven behavior.
In either methodology, SCADE provides the designers with
model checkers for syntax and semantic errors.
Additionally, the SCADE Editor may perform
methodological checks to maintain correctness during
development .

Fig. 4: SCADE Hierarchy, Editor, and Build Windows

The state machine taking inputs and producing outputs

provides the user with a means of describing the behavior of
the system. The tool provides the developer with a
graphical debugging and simulation feature. This feature is
the virtual prototype of a system. It is a pre-build, non-
physical prototype that has the same functionality of the
intended system; the dream of a software engineer, not
needing to rely on hardware performing properly during
development. During the design phase of the system, the
tool provides the ability to validate any algorithms in the
system. This stage also allows the user to capture and verify
any system-level safety properties producing counter-
examples if the property does not hold.

The learning curve for the tool was relatively long due to
marginal and inconsistent tutorial documentation. Once the
learning process was complete, the actual building the model
was significantly short as tools nicely support the type of
design required by the data acquisition and control systems.
The created model could be verified by a visual inspection
via special function depicting the relation between various

model components. The code generation produces several
warnings attributed to variables that were long removed
from the model.

The tool can automatically generate documentation for
created models listing all inputs and outputs. The simulation
capability allows the design to be verified before code
generation. The tool prohibited programming loops
requiring the developer to use multiple nodes and several
imported operations. The created design included manually
written function dedicated to data reading that was re-used
several times in the system. The total number lines of
generated code exceeded 1.8K. The traceability was
checked using the lowest model layers. Checking
traceability was not an easy task since the tool automatically
assigns variables names. However, there is an option to
assign name to variables locally, which could take a lot of
additional development time and was probably not the
intention of the tool designers. Difficulty of traceability was
extended due to relatively limited readability of the
generated code. The code generator, after intermediate

translation, creates one large source file. The format of the
code is of limited readability due to lack of indentation and
continuous alignment. The tool allows the developer to
manually add source code (using an Imported Operator)
during modeling phases. However, if the developer did not
pay attention, the code generator would overwrite the
working file thus destroying the code added by the
developer.

3.4 Matlab/Simulink/Stateflow/Real-Time-Workshop
MATLAB and Simulink are high-performance

development environments used within engineering
professions that can be applied on a wide range of projects.
For example, complex control systems, can be modeled
either textually or graphically and the resulting data can be
analyzed against a variety of metrics. Simulink allows
designers to do modeling with the additional toolboxes such
as xPC Target, Stateflow, and Control Systems. These
toolboxes interact with Simulink, allowing a designer to
combine a state machine with a control system and
communicate the data across an RS232 communication port.
Another ability of MATLAB is to generate C source code
from a model through use of Real-Time Workshop (RTW).
The generated code can run on an embedded operating
system or on Windows or Unix. Stateflow provides the
ability to create and model systems using the UML State

Machine notation with states and transitions (Figure 5). The
state machine object within the Simulink model accepts two
types of inputs: data and events. There can also be internal
data within the state machine.

Transitions between states can have a variety of
properties. There are conditions, events on transition, and
more. Further, the states can have action properties such as
entry, exit, are more. These states and transitions allow the
designer to model the system behavior accurately and then
combined with MATLAB as stated earlier, to allow the
developer to auto generate source code.

The power of these applications is staggering when
compared to other engineering tools. Not only can they be
applied to specific engineering disciplines, but they can also
incorporate more than one engineering discipline into a
model. By combining objects from different toolboxes,
MATLAB and Simulink provide the ability to model, for
example, the flight dynamics of a 747 and the flight control
software used to control it. MATLAB and Simulink have
excellent and extensive reference materials. However, they
are far from simple to learn and understand and not too
helpful for a novice developer resulting in a steep learning
curve. A part of the problem was also that the
documentation version did not match the installed tool
version.

Fig. 5: Matlab Stateflow Microwave Model

After starting Simulink toolbox browser a new model
could be easily created. The inclusion of a Stateflow in a
Simulink model was easy – just drag and drop. However
understanding how to create Stateflow inputs was not.
There are two inputs into the Stateflow: data and events.
Events are passed into the Stateflow model block when they
are generated within the Simulink model. The total size of

the generated code was about 2 KLOC (with source files
was 833 LOC of sources and 1,176 of header files). Once
getting to a comfortable spot on the steep learning curve,
implementing a model in MATLAB and Simulink are fairly
easy. There were few issues with the simulation of the
Simulink model, which would execute differently each time.
For example, the ShowTime state with a self-loop set to an

external timer event would transition at different times even
if no variables or properties were changed. The guard was
set to execute the transition after 1,000 executions of the
timer event. The first time the model was simulated, this
worked. The second time, instead of executing every
second it executed every 10 seconds. This timing
unpredictability was unresolved through the project.

Code generation within MATLAB is not very easy either.
There are multitude of options available for both setting up
the model and generation of the code. The documentation
for this and for download to the target is not readily
available for a novice user. The build resulted in generation
of at least 50 or more object *.o files from the original three
source files. Further, there documentation on what file to
download to the target, and what task to execute to run the
project on the target was difficult to find.

The scope of the behavioral aspects of the RTW code
generation focus on the Stateflow diagram. The generated
code does provide variables for the inputs, outputs, and local
variables as defined in the Stateflow, however to access
them from the target machine, a separate source file would
need to be created.

Other issues experienced during this exercise included
limited documentation on Stateflow transition conditions,
specifically on how to include logic conditions and lack of
guidance on how to include custom MATLAB code within
the Stateflow object. The Simulink documentation was out
of date reflecting earlier version of the product and some of
the errors occurring in MATLAB and Simulink were not
documented. During simulation, Simulink did not always
execute the same way and occasionally run-time Simulink
errors resulted in tool crashing.

What makes learning the application very hard is that
there are very few simple models explaining how the
toolboxes interact within Simulink. There is no explanation
of why implementing x-object in such a way has a changing
impact on the model; or why the model must have x-object
implemented another way. The amount of the
documentation is abundant often confusing unexperienced
user. Lack of help for on how to use the tool was an issue.
Certainly, MATLAB/Simulink examples (like an F-14 or a
nuclear power plant models) detailed how inputs and outputs
work through the system, but they were so complicated that
even looking at them may intimidate new user. For this
project, the use of MATLAB was limited to generate C
source code from a Simulink model reflecting the behavior
of the system specified in the requirements. After
understanding how the applications worked, it was fairly
easy to create the model. The obscurity of information made
it difficult to implement more than the default input, output,
and local data and event variables, and code generation.

4.0 CONCLUSIONS
The general observations, which were made during this

experiment, were mostly common between the different

tools. Lack of consistent, easy to navigate, and complete
documentation was one of the major obstacles for novice
users of these tools. Often, the documentation version lags
the actual tool version; tutorials were inadequate and
sometimes inconsistent with the behavior of the tool and
they did not have enough simple examples. However, most
documentation presented good reference material.

Other issues with most of the tools were: inability to
clearly explain, present possible solutions, and recover
gracefully from errors. At time the tool crashed when it
should not have. The tools were complex and learning
curves were very steep and time consuming for beginners.
The code generation process was not as easy as it might
seem. The generated code was large, not easy to read, and
hard to debug. Verification of the integrity of the generated
code is a different subject. Compilation and downloading of
the code to the target platform has been a significant effort
and required good knowledge of low-level computer skills
such as compiling, linking, loading, makefile editing,
location of libraries and executables, connection between
host and target, etc. These skills are typically not strong side
of the domain application developers. On the other hand,
these are very powerful tools for software development.
Each tool offers some level of power and flexibility during
the process of software development. This flexibility and
complexity has both good and bad side. Once the user is one
level above a novice user, it is obvious that these are
excellent tools for designing and implementing software.
However, they are still evolving and need many
improvements.

REFERENCES
[1] www.ilogix.com . Rhapsody user guide, tutorial and

reference document
[2] www.esterel-technologies.com . Esterel Studio user

guide, tutorial and reference document
[3] www.mathworks.com . MatLab user guide, tutorial and

reference document
[4] www.windriver.com . VxWorks and Tornado user

guide, tutorial and reference document

