

NPS-CS-07-006

NAVAL

POSTGRADUATE

SCHOOL

MONTEREY, CALIFORNIA

 Approved for public release; distribution is unlimited.

 Prepared for: Center for National Software Studies

NAVAL POSTGRADUATE SCHOOL

Monterey, California 93943-5000

Proceedings of the

First IEEE International Workshop on Safety of Systems

By

James Bret Michael

John Hauraz

Zachary Pace

Summary of Position Papers

Selected Issues in Computer Systems Safety: Position Paper, Andrew J. Kornecki,

Janusz Zalewski

This paper addresses the role of software in system safety, where the application of

computers or programmable devices may put the users or public at risk.

To make significant progress inventing and innovating in the area of safety assessment

and assurance there will need to be a corresponding level of funding to similar to steps

taken a few years ago to sponsor security research.

The way the present authors see progress made possible in the next 5-10 years is via a

significant coordinated effort of respective government agencies and industrial sectors. It

should be made clear to the decision makers that if cost minimization will continue to be

an essential factor in safety-related industries, then we may soon experience the kind of

failures which were caused not so long ago by breaches in security.

Subject Introduction, Archibald McKinlay

This introduction is background for three papers which require a similar introduction:

 Hooking into Systems Engineering

 Systems Safety Engineering HR

 Systems Safety in new Architecture and Technologies

Unlike Systems Safety Engineering, little has been done to incorporate software

requirements and risk management into Systems Engineering. There needs to be a

holistic systems integration approach to the updating of Systems Engineering to re-

integrate Systems Safety Engineering, Systems Assurance and Security, and Software

Engineering. The DoD has efforts in-work to update the Systems Engineering Plan

(SEP) but it will be a year more before it is finished.

Each added discipline required a change in the typical engineer’s abilities, education and

experience. The advancing technologies must be viewed in the same model. When a

safe system is taken and simply attached to the Internet for monitoring the safety risk

changes, and changes in ways that are not obvious to the traditional Software Safety or

Systems Safety Engineer. The technologies are changing so fast that systems are being

built right now without the updated training, education, or toolkit being available because

neither the chip nor the interface existed at the project’s start.

Systems Engineering must return to the roots of risk management and use that to

maintain focus in prioritizing tasks in all schedules, meetings and budgets. Like Systems

Safety was made to absorb occupational and then environmental tasks, so also must

Systems Engineering reconnect to its many children. All children must coordinate

through and with Systems Engineering.

xi

Table of Contents

Selected Issues in Computer Systems Safety: Position Paper,

Andrew J. Kornecki and Janusz Zalewski 1

Selected Issues in Computer System Safety, Andrew J. Kornecki – Presentation 4

Subject Introduction, Archibald McKinlay 50

Transforming Systems Safety and Software Safety Today for
the Systems of Systems of Tomorrow, Archibald McKinlay – Presentation 54

A System of Systems Interface Hazard Analysis Technique,
Patrick Redmond and Bret Michael – Presentation 62

Safety and Security in Secure Software Engineering, Samuel T. Redwine, Jr. 78

Safety and Security, Samuel T. Redwine, Jr. – Presentation 81

Competency Software Safety Requirements for Navy Engineers,
Brian Scannel and Paul Dailey 93

Competency Software Safety Requirements for Navy Engineers,
Brian Scannel and Paul Dailey – Presentation 98

Biologically-Inspired Concepts for Autonomic Self-Protection in
Multiagent Systems, Roy Sterritt and Mike Hinchey 104

Toward a Unified Safety/Security Model, Gary Stoneburner 115

Toward a Unified Safety/Security Model, Gary Stoneburner – Presentation 121

Juggling With the Software Assurance Puzzle Pieces, Jeffrey Voas – Presentation 127

Selected Issues in Computer Systems Safety:
Position Paper

Andrew J. Kornecki
Dept. of Computer & Software Engineering

Embry-Riddle Aeronautical University
Daytona Beach, FL 32114-3900, USA

kornecka@erau.edu

Janusz Zalewski
 Computer Science Department
Florida Gulf Coast University

Fort Myers, FL 33965-6565, USA
zalewski@fgcu.edu

Abstract

The position paper presents the authors’ views

on the critical issues in safety of computer systems
and software. It is based on selected results from
several studies the authors have done for various
government agencies, private companies and
professional societies. Main limitations and
challenges in designing computer systems for
safety are discussed.

1. Introduction

System safety is a very broad term and books
have been written on various aspects of safety
analysis and safety assurance [1,2]. In this position
paper, we are focusing in particular on various
aspects of computer safety, especially the role of
software in system safety, where the application of
computers or programmable devices may put the
users or public at risk. The authors’ experience
comes mostly from research related to aviation, air
transportation and space, but partially also from
research on medical, automotive and nuclear
devices and technologies. However they by no
means claim that the treatment of the subject is
complete and exhaustive.

In a broader sense, to evaluate safety of a
computer product, especially the software product
that is used in a safety critical system, one has to
take a closer look at a product itself, but also at the
way it has been developed, as well as at the way the
tools for developing this product have been created.
This logic is illustrated in Figure 1, and is very
different from the traditional approaches to system
safety, where the analysis is limited only to the
product and the related application environment.

The examples come from the recent study on
the assessment of software development tools for
safety-critical real-time systems conducted for the
Federal Aviation Administration (FAA) [3].
Modern commercial development tools are
typically complex suites combining multiple
functionalities. Considering tool complexity, the
quality of support materials is often marginal.

Unless developers become expertly proficient with
the tool, reliance on it may lead to ignorance of tool
functionality, complacency and thus compromise
the safety of developed system.

Fig. 1. Context for Evaluating Computer Products.

2. Limitations and Knowledge Barriers

What are the three fundamental limitations and
knowledge barriers for safety of systems today?

From the computer use and software standpoint,

there are several issues that obstruct progress in
dealing with safety. The most important among
them seem to be the following:

1) Limited understanding of computers and
software by safety engineers and, vice versa,
limited understanding of safety issues by
computer and software engineers.

2) Very confusing state of safety standards and
guidelines, and proliferation of sometimes
contradicting guidelines. This situation
results in the sheer number of documents the
safety critical system developers must be
aware of.

3) Lack of well-defined, measurable safety
metrics is another fundamental limitation to
progress in safety assurance.

Our studies based on the safety related software

guidelines in civil aviation DO-178B [4] indicated
that the criteria used in this and other safety related
standards do not include solid theoretical
underpinnings to be used as measures of metrics for
safety. This is a significant impediment in product
qualification and certification [5].

1

3. Research Challenges

What are the three most important research
challenges?

As it stands right now, even agreeing on the
state of the art and practice in computer and
software safety research would be difficult. One
important step forward would be to produce a
document defining the body of knowledge in
computer system safety, similar to the one
produced for security [6]. This would help
establish the common ground, from which further
steps could be possibly defined. The challenges
that researchers are facing in this respect, come
from at least the following:

1) Lack of specific data typically available
from industrial projects, since the industry
does not share this type of data due to the
competitive advantage.

2) Common-off-the-shelf components (COTS),
both hardware and software, are going to be
increasingly used in safety critical systems,
but very few studies have been done how to
approach their safety assessment.

3) New technologies will proliferate, both in
hardware, such as high speed databuses [7],
and software, such as automatic code
generation [8], for the analysis of which new
research methods and approaches will have
to be created.

From the perspective of our studies, a critical

issue for vendors and government agencies was the
necessity of certification based on solid
experimental data. However, the qualification data
collected from experiments constitute a component
of the certification package and are highly
proprietary. This situation puts researchers in a
very disadvantageous position. Some relevant
discussions how to address this and similar issues,
have recently taken place at the Tools Forum [8].

4. Promising Innovations

What are promising innovations and
abstractions for building future high-confidence
safety systems?

It is extremely difficult to determine, which

specific techniques or technologies are the most
innovative or make the best promise, mostly
because their suitability and usefulness have to be
proved over time and a range of applications.
However, a few essential directions in innovation
can be mentioned [9]:

1) Improvement of quality and trustworthiness
of products and tools via advances in
verification and validation, possibly via the
application of formal approaches, such as
model checking, has been already in a view

of researches for some two decades and is
still making a promise.

2) Design diversity as an essential technique in
improving computer and software safety has
been used successfully for years and will
remain to be used as one of the most
effective safety techniques thus far.

3) Several newer technologies emerged over
the recent years, of which we mention only
two: model based development and active
safety systems.

4) Present authors’ own research based on the
concepts of a safety shell [10] and Bayesian
belief networks [11] has also a potential to
improve safety in an array of applications.

It seems that a significant progress to develop

new innovative technologies for safety assessment
and assurance may not be possible without some
major concentrated effort towards funding
respective research. This should be an effort
similar to steps taken a few years ago to sponsor
security research. The scale of funding should be
such that development of innovative solutions
would be truly possible. For comparison, it is
worthwhile mentioning that the European
Commission has recently provided over Є3M of
funding for a joint university-industry project on
active system safety [12].

5. Possible Milestones and Conclusion

 What are possible milestones for the next 5-to-
10 years?

 The way the present authors see progress made
possible in the next 5-10 years is via a significant
coordinated effort of respective government
agencies and industrial sectors, driven by the
following three factors:

1) Setting priorities in research directions, for
example to define and verify measurable
safety metrics.

2) Establishing educational preferences to
design and implement changes in the
computing curricula as well as by offering
respective training for safety engineers.

3) Enforcing qualification and certification
processes, so that industry would become
better aware how their respective products
and activities will undergo thorough but
transparent assessment.

Certainly, all this requires a significant increase

in the level of funding, which may not be possible
without decisive legislative actions. It should be
made clear to the decision makers that if cost
minimization will continue to be an essential factor
in safety related industries, then we may soon
experience the kind of failures which were caused
not so long ago by breaches in security.

2

Acknowledgments

 This project was supported in part by the
Aviation Airworthiness Center of Excellence
(AACE) under contract DTFA-0301C00048
sponsored by the Federal Aviation Administration
(FAA). Findings contained herein are not
necessarily those of the FAA. J. Zalewski
acknowledges additional support from the Florida
Space Grant Consortium under Grant No. UCF01-
E000029751

References

[1] Redmill F. (Ed.), Dependability of Critical

Computer Systems, Vol. 1 & 2, Elsevier
Applied Science, London, 1988/89

[2] Leveson N.G., Safeware – System Safety and
Computers, Addison-Wesley, Reading, Mass.,
1995

[3] Kornecki A.J., J. Zalewski, Experimental
Evaluation of Software Development Tools for
Safety-Critical Real-Time Systems,
Innovations in Systems and Software
Engineering – A NASA Journal, Vol. 1, pp.
176-188, 2005

[4] RTCA, Software Considerations in Airborne
Systems and Equipment Certification, Report
RTCA/DO-178B, Washington, DC, 1992

[5] Kornecki A., J. Zalewski, The Qualification of
Software Development Tools from the DO-
178B Certification Perspective, CrossTalk –
The Journal of Defense Software Engineering,
Vol. 19, No. 4, pp. 19-22, April 2006

[6] Redwine, Jr., S.T (Ed.), Secure Software
Assurance: A Guide to the Common Body of
Knowledge to Produce, Acquire, and Sustain
Secure Software, Draft Version 0.9. U.S.
Departments of Homeland Security and
Defense, January 2006

[7] Kornecki A., J. Zalewski, J. Sosnowski, D.
Trawczynski, A Study on Avionics and
Automotive Databus Safety Evaluation, The
Archives of Transport, Vo. 17, No. 3-4, pp.
107-132, 2005

[8] Software Tools Forum, Embry-Riddle
Aeronautical University, Daytona Beach, FL,
May 18-19, 2004, URL: http://www.erau.edu/

 db/campus/softwaretoolsforum.html
[9] Zalewski J., W. Ehrenberger, F. Saglietti, J.

Gorski, A. Kornecki, Safety of Computer
Control Systems: Challenges and Results in
Software Development, Annual Reviews in
Control, Vol. 27, pp. 23-37, 2003

[10] Sahraoui A.E.K., E. Anderson, J. van Katwijk,

J. Zalewski, Formal Specification of a Safety
Shell in Real-Time Control Practice, Proc.
25th IFAC/IFIP Workshop on Real-Time
Programming, Mallorca, Spain, May 15-19,
2000, pp. 117-123

[11] Zalewski J., A.J. Kornecki, H. Pfister,
Numerical Assessment of Software
Development Tools in Safety-Critical Systems
Using Bayesian Belief Networks, Proc. Int’l
Multiconference on Computer Science and
Information Technology, Wisła, Poland,
November 6-10, 2006, pp. 433-442.

[12] ONBASS – An Onboard Active Safety
System, URL: http://www.onbass.org and
http://ec.europa.eu/research/aeronautics/project
s/article_3704_en.html

Authors’ Bios

Dr. Andrew J. Kornecki is a Professor at the Dept.
of Computer and Software Engineering, Embry
Riddle Aeronautical University. He has over
twenty years of research and teaching experience in
areas of real-time computer systems. He
contributed to research on intelligent simulation
training systems, safety-critical software systems,
and served as a visiting researcher with the FAA.
He has been conducting industrial training on real-
time safety-critical software in medical and
aviation industries and for the FAA Certification
Services. Recently he has been engaged in work on
certification issues and assessment of development
tools for real-time safety-critical systems. He is
currently, with Dr. Zalewski, conducting a study on
tool qualification for complex electronic hardware,
sponsored by the FAA.

Dr. Janusz Zalewski is a Professor of Computer
Science and Engineering at Florida Gulf Coast
University. Before taking a university position, he
worked for various nuclear research labs, including
the Data Acquisition Group of Superconducting
Super Collider and Computer Safety and Reliability
Center of Lawrence Livermore National
Laboratory. He also worked on projects and
consulted for a number of private companies,
including Lockheed Martin, Harris, and Boeing. He
served as a Chairman of IFIP Working Group 5.4
on Industrial Software Quality and of an IFAC TC
on Safety of Computer Control Systems. His major
research interests include safety-related real-time
computer systems. He currently works with Dr.
Kornecki on a study for the FAA on tool
qualification for complex electronic hardware.

3

Page 1© 2005 by Andrew Kornecki and Janusz Zalewski

Selected Issues in
Computer System Safety

Andrew J. Kornecki
Embry Riddle Aeronautical University

Daytona Beach, FL 32114, USA
kornecka@erau.edu

http://faculty.erau.edu/korn/

Janusz Zalewski
Florida Gulf Coast University
Fort Myers, FL 33965, USA

zalewski@fgcu.edu
http://www.fgcu.edu/zalewski/

Page 2© 2005 by Andrew Kornecki and Janusz Zalewski

Lecture Outline

1) Fundamental Concepts
2) Design Principles &

Architectures
3) System Safety
4) Real-Time Programming
5) Databus Safety
6) Case Studies & Summary

4

Page 3© 2005 by Andrew Kornecki and Janusz Zalewski

System Safety: Dependability
•Dependability is the property of the system that
justifies reliance on its services
{more on the topic: “Dependability: Basic Concepts and Terminology”,
Edited by Laprie, J.-C., Springer Verlag, 1992, ISBN: 3-211-82296-8}

•Dependability is encapsulation of the following
properties/abilities {adapted from Laprie}:

– Reliability - probability to function correctly over a
given period of time

– Security - ability to prevent unauthorized access and
system damage

– Safety - ability of not harming people and not cause
property damage

Page 4© 2005 by Andrew Kornecki and Janusz Zalewski

System Safety: Dependability

Dependability involves:
•Attributes - the metrics for evaluation of system
services (safety, reliability, security, availability,
integrity, maintainability, confidentiality, etc.)

• Impairments - causes or results of lack of
dependability (error, fault, failure)

•Means - the methods used to deliver dependable
services (fault prevention, removal, detection,
tolerance)

5

Page 5© 2005 by Andrew Kornecki and Janusz Zalewski

System Safety: Dependability

Relationships among Reliability,
Safety and Security Attributes

Page 6© 2005 by Andrew Kornecki and Janusz Zalewski

System Safety: Dependability
Reliability – failure does not lead to severe
consequences (high risk) to the environment or
computer system, nevertheless improving the
failure rate is of principal concern

Safety – failure leads to severe consequences
(high risk) to the environment (and possibly to
computer)

Security – failure leads to severe consequences
to the computer system (and possibly to the
environment)

6

Page 7© 2005 by Andrew Kornecki and Janusz Zalewski

System Safety: Dependability

Example of dependability issues in
a car embedded control software:

Reliability – ignition control, cruise
control, fuel gauge, odometer, etc.

Safety – air bag, seat belts control,
anti-lock brakes, etc.

Security – door locks, alarms, etc.

Page 8© 2005 by Andrew Kornecki and Janusz Zalewski

SAFETY RELIABILITY

fail-safe state defined
(reliability is secondary)

no safety analysis
(reliability assessment only)

 Reliability involves bottom-up activities focusing
on system failures

 Safety involves top-down approach
concentrating on system hazards

System Safety: Dependability

7

Page 9© 2005 by Andrew Kornecki and Janusz Zalewski

System Safety: Basic Terms

•Safety is a characteristic of a system ensuring that it
will not endanger human life, property or environment

•Safety-critical software system is a software
intensive system involved in assuring that safety of
equipment or plant it is interfacing with is not
compromised

•Software Safety is achieved by implementing features
and procedures ensuring that a product performs
predictably under normal and abnormal conditions so
the likelihood of unplanned events is minimized and
their consequences are controlled and contained

Page 10© 2005 by Andrew Kornecki and Janusz Zalewski

System Safety: Basic Terms

•Hazard is the capability of the system to harm the
people, destroy the property or environment

•Nature of the hazard defines the way how it works
and how it can be controlled (radiation, electric
shock, mechanical break)

•The hazard is a potential danger to do harm during
the system operation

•The actual occurrences of hazards are incidents
and accidents

8

Page 11© 2005 by Andrew Kornecki and Janusz Zalewski

System Safety: Basic Terms

•The role of safety features and procedures is to
ensure safety preventing incidents and accidents

• Incident is an occurrence of a situation that could
result in a severe consequences (in terms of loss of
life or property) but it was prevented or the situation
was kept under control

•Accident is an unplanned event or series of events
that results in death, injury, environmental or
material damage

•Both incidents and accidents are exemplifying
safety violation

Page 12© 2005 by Andrew Kornecki and Janusz Zalewski

System Safety: Basic Terms

•Severity of hazard describes consequences of
potential accident (in terms of the human lives
or monetary value)

•Likelihood of a hazard defines how often can
we expect the hazard to occur (in terms of how
many times per time unit)

•Risk is the combined measure of severity and
likelihood of a hazard – likelihood of hazard
leading to an accident (combined with hazard
severity)

9

Page 13© 2005 by Andrew Kornecki and Janusz Zalewski

System Safety: Basic Terms

•Mistakes are made by people (specification, design,
coding, manufacturing, etc.)

•Fault is an internal defect within hardware or software
caused by a mistake, component imperfection, or
external disturbance (or inability of a function to
perform a required action)

•Failure is an external view of the system, showing its
inability to perform required functions

•Error is the difference between computer (observed,
measured) value and the true (specified or theoretically
correct) value (it’s a manifestation of a failure)

Page 14© 2005 by Andrew Kornecki and Janusz Zalewski

System Safety: Basic Terms

Fault propagation cycle

10

Page 15© 2005 by Andrew Kornecki and Janusz Zalewski

System Safety: Basic Terms

Recursive nature
of software faults

Page 16© 2005 by Andrew Kornecki and Janusz Zalewski

System Safety: Basic Terms
•Mistakes made by people (“errare humanum est”)
are the primary reasons that “something went wrong”

•Failure is when the system fails to perform its
required function in the operational phase

•Failure can be caused by:
–user makes how-to-use mistake
–fault (or defect) within the hardware
–fault (or bug) within the software

NOTE: Keep in mind that safety may be compromised
when no failure occurs.

11

Page 17© 2005 by Andrew Kornecki and Janusz Zalewski

System Safety: What went wrong?
•How-to-use mistake is more likely to happen
because:

– of user mistake during analysis or training
– the product is imperfect (too complex, difficult to use,

poor diagnostics)
– there is a fault within the software

•Software bug (or imperfect product) is due to the
developer’s mistake

•Hardware defect is due to:
– designer’s mistake
– manufacturer’s mistake

Page 18© 2005 by Andrew Kornecki and Janusz Zalewski

•Environmental and operating conditions (disabling
interrupts may lead to failing an interrupt driven safety
critical function)

•Logic control by Real Time Executive (order of
processing may impact the failure conditions)

•System function calls (detailed understanding their
operations and side-effects is critical)

•System resources (implicit use of memory in stack ops)
•Timing (deadlines, jitter, or drift may prove dangerous)
•Software architecture (choice of representation may
impact safety)

System Safety: What went wrong?

12

Page 19© 2005 by Andrew Kornecki and Janusz Zalewski

•Most of development methods do not provide
guarantee that timing constraints be met, thus
verification of timing requirements is carried out after
writing the code

•Such approach can be costly because of late fault
detection and need to re-write the code for speed

•Defining timing requirements can be ambiguous,
thus notations allowing formally analyze or animate
the system model are recommended

•Safety requirements must be traceable through the
progression of the product artifacts (requirements =>
design => code => operation)

System Safety: What went wrong?

Page 20© 2005 by Andrew Kornecki and Janusz Zalewski

System Safety: Techniques

Safety Techniques basically
fall into two broad categories:
Design Techniques
(to improve the product)
Process Techniques
(to improve the process)

13

Page 21© 2005 by Andrew Kornecki and Janusz Zalewski

System Safety: Design Techniques

Major architectural safety techniques:
–redundancy - using multiple components
to carry the same task

–diversity - two components (channels,
systems) to carry the same task are
based on different technologies

Page 22© 2005 by Andrew Kornecki and Janusz Zalewski

System Safety: Design Techniques

Controll
er

Operator System

Commands

Responses

Virtual System

G
U
A
R
D

Controll
er

Operator System

Commands

Responses

Virtual
Controller

G
U
A
R
D

Principle of a Safety Shell

14

Page 23© 2005 by Andrew Kornecki and Janusz Zalewski

System Safety: Design Techniques

Primary ControlTiming Guard Exception
Handler

State Guard

Protected I/O

Physical Environment

Safety Shell

Timing
Violation

Response Commands

Response Output
Changes

Other Safety
Violations

Guards Incorporated into a Safety Shell

Page 24© 2005 by Andrew Kornecki and Janusz Zalewski

System Safety: Process Techniques

Safety Lifecycle according to IEC 61508:
• IEC 61508 is a standard for the life-cycle
management of Instrumented Protection Systems –
it formalizes a risk-based approach to establishing
target Safety Integrity Levels (SIL) and assessing
if systems meet these targets

• IEC 61508: “The necessary activities involving
safety-related systems, occurring during a
period of time that starts at the concept phase
of a project and finishes when any safety-
related systems are no longer available for use”

15

Page 25© 2005 by Andrew Kornecki and Janusz Zalewski

System Safety: Process Techniques

IEC 61508
Safety Lifecycle

Page 26© 2005 by Andrew Kornecki and Janusz Zalewski

System Safety: Process Techniques

 Hazard Operability Analysis (HAZOP)
 Failure Mode and Effect Analysis (FMEA)
 Failure Mode and Effect Criticality Analysis

(FMECA)
 Fault Tree Analysis (FTA)
 Event Tree Analysis (ETA)
 Common Mode Failure Analysis (CMF)
 Cause Consequence Diagrams (CCD)
 Petri Nets

16

Page 27© 2005 by Andrew Kornecki and Janusz Zalewski

Real-Time Programming

Basic Concepts
•Concurrency and basic program properties
•Programming language features
•Real-Time kernel features
•Timing issues in real-time programs
•Practical aspects of real-time scheduling
•Board Support Packages & Device Drivers

Page 28© 2005 by Andrew Kornecki and Janusz Zalewski

• TASK - a unit of concurrency executing sequentially
itself, designed to fulfill a specific system function,
typically defined by:
• event - environmental or internal stimulus occurring at
a time point requiring response
• activity - a set of operations responding to the event
requiring time

• Task can be implemented as:
• PROCESS - a virtual computing environment set up to
run as an application program (contains its own data,
code, context, & resources)
• THREAD - a sequence of instructions executed within
the context of a process

Real-Time Programming: Concurrency

17

Page 29© 2005 by Andrew Kornecki and Janusz Zalewski

Real-Time Programming: Concurrency

States of Concurrent Tasks

Page 30© 2005 by Andrew Kornecki and Janusz Zalewski

Real-Time Programming: Concurrency

Concurrency Terms
 Synchronization
 Critical Section
 Mutual Exclusion
 Reentrancy
 Deadlock
 Pre-emption
 Safety and Liveness
 Scheduling

18

Page 31© 2005 by Andrew Kornecki and Janusz Zalewski

Real-Time Programming: Concurrency

10-task example of concurrent execution

Page 32© 2005 by Andrew Kornecki and Janusz Zalewski

Real-Time Programming: Concurrency

19

Page 33© 2005 by Andrew Kornecki and Janusz Zalewski

Real-Time Programming: Concurrency

Page 34© 2005 by Andrew Kornecki and Janusz Zalewski

Real-Time Programming: Concurrency

20

Page 35© 2005 by Andrew Kornecki and Janusz Zalewski

Real-Time Programming: Concurrency

Page 36© 2005 by Andrew Kornecki and Janusz Zalewski

• An informal scan of the real-time (embedded,
dedicated, safety-critical) market reveals:
– 30% assembly and legacy languages
– 30% Ada
– 30% C/C++
– 10% other (100+ other languages)

• C and Ada are the most commonly used languages
in civil aviation today

• C++ is gaining popularity, but its usage is still limited

Real-Time Programming: Languages

21

Page 37© 2005 by Andrew Kornecki and Janusz Zalewski

FEATURE Ada C/C++ Java

Memory
Management

automatic manual garbage
collected

Run-Time
Efficiency

high high medium

Run-Time
Predictability

high* OS
dependent

low

Concurrency
Control

language
features

OS
specific

language
library

Real-Time Programming: Languages

Page 38© 2005 by Andrew Kornecki and Janusz Zalewski

Real-Time Programming: Languages

Language Safety Features:
• Formally defined syntax; Block structure
• Strong typing; Wild (unstructured) jumps
• Memory overwrites; Memory exhaustion
• Dangling pointers; Variable initialization
• Model of floating-point arithmetic
• Exception handling; Reentrancy
• Separate compilation with cross-checking
• Temporal predictability of loops
Efforts include: SPARK, MISRA-C, PEARL.

22

Page 39© 2005 by Andrew Kornecki and Janusz Zalewski

Real-Time Programming: Languages

Strong Typing – strict application od data
type checking rules to prfevent misuse of
variables and data

int a:
float x; // and x are of different types
a = x; // formally, this is incorrect,

// but C/C++ may allow it
a = (int)x; // mode appropriate coding

Fortran allows implicit declarations
C/C++ and Java allow implicit type casting
Ada requires explicit type casting

Page 40© 2005 by Andrew Kornecki and Janusz Zalewski

Real-Time Programming: Languages

Exception – an unexpected situation that may
cause a program to crash.

Examples: division by 0, overflow, reference to
nonexisting object (memory, device), I/O error,
etc.

Exception handling – to provide facilities within
a language to neutralize consequences of
exceptions.

23

Page 41© 2005 by Andrew Kornecki and Janusz Zalewski

Real-Time Programming: Languages

Usual sequence of actions in exception handling:
1. Exception handler included in a program.
2. Exception raised during program execution.
3. Control is transferred to exception handler.
4. Handler executes and exits to the surrounding

block.
x := a/b; -- What if b=0?
…
exception

when CONSTRAINT_ERROR => x=MaxInt;
end;

Page 42© 2005 by Andrew Kornecki and Janusz Zalewski

Real-Time Programming: Languages

Unstructured jump (wild jump) – a program jump
which is not controlled by the programmer.

Unstructured jumps are most likely to occur in
case statement or their equivalents.
Examples include:
- incomplete coverage of cases (missing
default/others)
- erroneous exit from cases (missing break)
- incomplete if/else pairs.

24

Page 43© 2005 by Andrew Kornecki and Janusz Zalewski

Real-Time Programming: Languages

C/C++ pair setjpm() and longjmp():

int setjump(jmp_buf env)

// Saves state info in env for use by longjmp

void longjmp(jmp_buf env, int v)

// Restores the state saved by setjmp

Page 44© 2005 by Andrew Kornecki and Janusz Zalewski

Real-Time Programming: Languages

Memory overwrite – an uncontrolled access to
arbitrary memory locaations.

May be cause by: erroneous pointers, out-of-
bounds array indexes, dynamic allocation.

The programmer must remember that a pointer
is not just an address; it is an address of a data
item of a certain type.

25

Page 45© 2005 by Andrew Kornecki and Janusz Zalewski

Real-Time Programming: Languages

// Check memory space available

int * arr , j=0;

for (; ;) {

j++;

arr = (int *)malloc(TEN_K);

printf(“%d “, j);

}

Page 46© 2005 by Andrew Kornecki and Janusz Zalewski

Real-Time Programming: Languages

Reentrancy – subprogram property that allows
it to be executed by multiple callers at the
same time.

Need for reentrancy is typical in multithreaded
programs. Therefore library routines are
usually indicated MT-safe or not.

26

Page 47© 2005 by Andrew Kornecki and Janusz Zalewski

Real-Time Programming: Languages

Other language aspects:

- variable initialization

- order of evaluation vs. operator precedence

- spawning processes via fork

- killing concurrent units.

Page 48© 2005 by Andrew Kornecki and Janusz Zalewski

Real-Time Programming: Languages

// Both should be avoided
x = i++ + a[i];
x = (i++) + a[i];

// What is the result, and why?
int i = 0;
i = i+++i;

27

Page 49© 2005 by Andrew Kornecki and Janusz Zalewski

Real-Time Programming: Languages

// When if has both branches
// executed simultaneously!
if (fork()) {

… // some code
}
else {

… // other code
}

Page 50© 2005 by Andrew Kornecki and Janusz Zalewski

Real-Time Programming: Languages

Beware of problems with
destroying concurrent units:
- Ada tasks via abort
- Aunix processes via kill()
- threads vi acancellation.

28

Page 51© 2005 by Andrew Kornecki and Janusz Zalewski

Real-Time Programming: Languages

Proc

Meas

Ctrl DBase

Timer GUI

Comm

Observation: Why Java, as the first programming
language in common use, included GUI and
Networking as part of the language? Do LabVIEW
and MATLAB show similar trend?

Page 52© 2005 by Andrew Kornecki and Janusz Zalewski

Concept of RTOS/Kernel Operation:
• Strong distinction between internal system

operations and the user tasks
• RTOS kernel does not participate in the priority

scheme - it operates in the hardware context
• Peripheral interrupts handled by extensions to

the kernel (device drivers) which also function
outside normal application task prioritization

Real-Time Programming: RT Kernel

29

Page 53© 2005 by Andrew Kornecki and Janusz Zalewski

Concept of RTOS/Kernel Operation:
• User tasks communicate with the kernel and

perform most I/O through entry points or calls
into the drivers - I/O is processed outside the
user application context

• Modern RTOS uses threaded micro-kernel
with fast response and options for handling
interrupts at the system priority level

Real-Time Programming: RT Kernel

Page 54© 2005 by Andrew Kornecki and Janusz Zalewski

Basic Terminology
•EVENT – a result of an externally or internally
generated occurrence handled by the processor

•LATENCY - time required to recognize and start
responding to an event

•RESPONSE TIME - time interval between presentation
of an input (stimulus) and the appearance of the
associated output (response)

•DEADLINE - a time point before which a specific event
must occur (e.g. the task must complete the execution)

Real-Time Programming: RT Kernel

30

Page 55© 2005 by Andrew Kornecki and Janusz Zalewski

Basic Terminology
• INTERRUPT LATENCY – the time interval between
the occurrence of an external event and the start of
the first instruction of the interrupt service routine

• INTERRUPT LATENCY INVOLVES: hardware logic
processing, interrupt disable time, handling higher
hardware priority interrupts, switching to handler
code (saves, etc.)

Real-Time Programming: RT Kernel

Page 56© 2005 by Andrew Kornecki and Janusz Zalewski

Basic Terminology
•DISPATCH LATENCY – the time interval between
the end of interrupt handler code and the first
instruction of the process activated (made runnable)
by this interrupt.

•DISPATCH LATENCY INVOLVES: OS decision
time to reschedule (non-preemptive kernel state),
context switch time, return from system call.

Real-Time Programming: RT Kernel

31

Page 57© 2005 by Andrew Kornecki and Janusz Zalewski

Real-Time Programming: RT Kernel

Page 58© 2005 by Andrew Kornecki and Janusz Zalewski

external event application starts executing

interrupt
dispatch
time

interrupt
handler

other
interrupts

pre-emption
latency

scheduling

context
switch return

from
system
call

Contributions to Interrupt Task Response Time

Real-Time Programming: RT Kernel

32

Page 59© 2005 by Andrew Kornecki and Janusz Zalewski

Kernel Responsiveness Involves:
• INTERRUPT LATENCY
• TASK DISPATCH LATENCY
• (WORST CASE) INTERRUPT RESPONSE TIME

(Interrupt Latency + Worst case Execution of
the Interrupt Handler + Interrupt Exit Overhead)

• INTERRUPT TASK RESPONSE TIME
(Interrupt Response Time + Dispatch Latency)

Real-Time Programming: RT Kernel

Page 60© 2005 by Andrew Kornecki and Janusz Zalewski

Schedulability and Determinism
•SCHEDULABILITY - a property of a set of
tasks ensuring that all tasks will meet their
respective deadlines

•PREDICTABILITY - the property of meeting
the temporal determinism criteria

•TEMPORAL DETERMINISM - the situation in
which timing properties of the system are
known (or bounded) for each set of inputs

Real-Time Programming: RT Kernel

33

Page 61© 2005 by Andrew Kornecki and Janusz Zalewski

Topics important but not covered here:
• Real-Time Scheduling

„What Every Engineer Needs to Know about Rate-
Monotonic Scheduling”
IN: Advanced Multimicroprocessor Bus Architectures,
IEEE Computer Society Press, 1995, pp. 321-335,
and Real-Time Magazine, Issue 1/95, pp. 6-24

• Device Drivers
„Teaching Device Drivers Technology in a Real-Time
Systems Curriculum”
IN: Real-Time Systems Education III, IEEE Computer
Society Press, 1999, pp. 42-48
and at http://www.wrs.com/univ/html/featurevol4.html

Real-Time Programming: RT Kernel

Page 62© 2005 by Andrew Kornecki and Janusz Zalewski

Databus Safety
Databus Characteristics
 Mechanical properties concern bus wiring,

connectors, their pinout, and module design and
dimensions

 Electrical (or optical) properties are related to
signal levels and their dynamics to carry
information, including electromagnetic
characteristics

 Logical properties concern the protocol of
exchanging information over a bus

34

Page 63© 2005 by Andrew Kornecki and Janusz Zalewski

Databus Safety

Example of mechanical properties
of the connector for FireWire bus.

Page 64© 2005 by Andrew Kornecki and Janusz Zalewski

Databus Safety

Example of electrical properties of the PCI bus input
signals (T_su – setup time, 7-12 ns; T_h – hold time).

35

Page 65© 2005 by Andrew Kornecki and Janusz Zalewski

Databus Safety

Electrical interface between two FireWire nodes.

Page 66© 2005 by Andrew Kornecki and Janusz Zalewski

Databus Safety

Example of electrical properties and low-level
bus protocol for the PCI bus Read Transaction.

36

Page 67© 2005 by Andrew Kornecki and Janusz Zalewski

Databus Safety

Example of logical properties of the bus for
FireWire Asynchronous READ Transaction.

Page 68© 2005 by Andrew Kornecki and Janusz Zalewski

Databus Safety

Specifics of the Bus Protocol:
• Bus arbitration

competing for bus access
• Data transfer

how devices exchange data once
they obtain bus access

• Fault handling
dealing with bus errors

37

Page 69© 2005 by Andrew Kornecki and Janusz Zalewski

Databus Safety

An Example of Modern Vehicle Network (Leen 2002)

Page 70© 2005 by Andrew Kornecki and Janusz Zalewski

Databus Safety

Steer-by-Wire System (Waern 2003)

38

Page 71© 2005 by Andrew Kornecki and Janusz Zalewski

Databus Safety

Distributed Flight Control System for Boeing 777 Aircraft

Page 72© 2005 by Andrew Kornecki and Janusz Zalewski

Databus Safety

Distributed Flight Control System for JAS
39 Gripen Aircraft (Johansson 2003)

39

Page 73© 2005 by Andrew Kornecki and Janusz Zalewski

Databus Safety

Databus Type Architecture Medium Rate Encoding
Arinc 429 serial unidir. single master 2 wires 100kb/s RTZ bipolar

MIL1553 serial bi-dir. single master twist pairs 1 Mb/s biphase Manch.

Arinc 629 serial bi-dir. multi master twist pairs 2 Mb/s Manchester II

Arinc 659 serial bi-dir. quad redund twist pairs 30MHz biphase Manch.

FlexRay serial bi-dir. fault-tolerant optic/wire 10Mb/s undefined

CAN serial bi-dir. multi-master twist pairs 1 Mb/s NRZ + bit stuff

TTP/C serial bi-dir. dbl redund twist pairs 25Mb/s MFM
IEEE1394 serial d-chain/tree twist pairs 400Mb/s LVDS

Safe-Wire serial bi-dir. master-slave twist pairs 200 kb/s 3-level

SpaceWire serial bi-dir. master-slave 2 wires > 2Mb/s undefined

Page 74© 2005 by Andrew Kornecki and Janusz Zalewski

Databus Safety

Risk Assessment Process
1) Multicriteria-based Safety

Assessment
2) Hazard Analysis
3) Failure Mode Analysis

40

Page 75© 2005 by Andrew Kornecki and Janusz Zalewski

Databus Safety
Criterion Selected Evaluation Factors

Safety Availability and reliability; Partitioning; Failure detection;
Common cause/mode failures; Bus expansion strategy;
Reconfigurability; Redundancy management

Data Integrity Maximum error rate; Error recovery; Load analysis;
Bus capacity; Security

Performance Operating speed; Schedulability of messages; System
interoperability; Bus length and max. load; Retry capability;
Bandwidth; Data latency; Transmission overheads

EMC Switching speed; Pulse rise and fall times; Wiring;
Shielding effectiveness; Lightning/radiation immunity

Design Assur. Compliance with standards (such as DO-254/DO-178B)
V&V Examples: functionality testing, system testing, failure

management, degraded mode operation
Configuration
Management

Examples: change control, compliance with standards,
documentation, interface control, system analysis, etc.

Continued
Airworthiness

Lifetime issues, such as physical degradation, in-service
modifications and repairs, impact analysis. (Rierson/Lewis, 2003)

Page 76© 2005 by Andrew Kornecki and Janusz Zalewski

Databus Safety

Failure Mode Description
Invalid Messages Messages sent across the bus

Contain invalid data
Non-Responsive An anticipated response to

a message does not occur or
return in time

Babbling Communication among nodes
Is blocked or interrupted by
uncontrolled data Stream

Conflict of Node Adrs More than one node has the same
identification (Debouk et al. , 2003)

41

Page 77© 2005 by Andrew Kornecki and Janusz Zalewski

Databus Safety
Potential Hazard Possible Mitigation

Loss of Power Dual power system (including battery,
wires and connectors)

Loss of Communicat’n Dual communication system

Loss of Steering Backup system; Reduced functionality
Redundant system; Steer by braking
active safety system

Loss of Braking Backup system; Reduced functionality
redundant System; Brake by steering
active safety system

Loss of Electronic
Throttle

Backup system; Reduced functionality
redundant system

Loss of Actuators Backup actuators; Red. performance actuator

Loss of Sensors
(recording driver cmds)

Backup sensors; Red. performance sensor
(Chau et al. , 2003)

Page 78© 2005 by Andrew Kornecki and Janusz Zalewski

Databus Safety

Bus Experiments
• Plain simulation for well developed

databus networked configurations
VME/Raceway

• Actual data transfer experiments with
a modern bus FireWire

• Simulation and real experiments for
routing in Bluetooth

• Improving Real-Time Characteristic
of the Ethernet

42

Page 79© 2005 by Andrew Kornecki and Janusz Zalewski

Databus Safety
Bus Parameters
• Bus response – access delay

vs. bus load
• Bus throughput - data transfer

rate vs. packet size
• Interconnect formation and

routing
• Predictability of packet

transmission time

Page 80© 2005 by Andrew Kornecki and Janusz Zalewski

Databus Safety

Access delay vs. bus load:
When bus load increases,

how does it impact access delay?

43

Page 81© 2005 by Andrew Kornecki and Janusz Zalewski

Databus Safety

Server Access Delay for 64B Packets

Page 82© 2005 by Andrew Kornecki and Janusz Zalewski

Databus Safety

Bus throughput:
When packet size increases,

how does it impact transfer rate?

44

Page 83© 2005 by Andrew Kornecki and Janusz Zalewski

Databus Safety

IEEE 1394 Throughput over a Raw Driver
for Asynchronous and Isochronous Modes

Page 84© 2005 by Andrew Kornecki and Janusz Zalewski

Databus Safety

Interconnect formation and routing:
When nodes are being added,

how does it impact access delay
and data transfer rate?

45

Page 85© 2005 by Andrew Kornecki and Janusz Zalewski

Databus Safety

Bluetooth TCP Delay for Increasing Number of Nodes

Page 86© 2005 by Andrew Kornecki and Janusz Zalewski

Databus Safety

Deterministic Ethernet:
Can Ethernet be made predictable
without modification of its CSMA/CD
protocol?

Each node is assigned a priority and two flags:
- collision status flag, c_stat_flag
(collision resolution in progress)

- collision involved flag, c_inv_flag
(node was involved in the collision)

46

Page 87© 2005 by Andrew Kornecki and Janusz Zalewski

Databus Safety

Principle of a deterministic Ethernet protocol.

Page 88© 2005 by Andrew Kornecki and Janusz Zalewski

Databus Safety

Behavior of a regular CSMA/CD node.

47

Page 89© 2005 by Andrew Kornecki and Janusz Zalewski

Databus Safety

Handling messages block of the protocol.

Page 90© 2005 by Andrew Kornecki and Janusz Zalewski

Databus Safety

Comparison of packet transmission times for the
classic CSMA/CD and the extended protocol.

48

Page 91© 2005 by Andrew Kornecki and Janusz Zalewski

Databus Safety

Databus Safety
• New area with ongoing research
• Risk assessment methods

essential as a starting point
• Definition of critical parameters
• Experimentation needed

Page 92© 2005 by Andrew Kornecki and Janusz Zalewski

OK! Let’s go for a beer!!!

49

