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Summary of Position Papers 

 
Selected Issues in Computer Systems Safety: Position Paper, Andrew J. Kornecki, 

Janusz Zalewski 

 

This paper addresses the role of software in system safety, where the application of 

computers or programmable devices may put the users or public at risk. 

 

To make significant progress inventing and innovating in the area of safety assessment 

and assurance there will need to be a corresponding level of funding to similar to steps 

taken a few years ago to sponsor security research.  

 

The way the present authors see progress made possible in the next 5-10 years is via a 

significant coordinated effort of respective government agencies and industrial sectors. It 

should be made clear to the decision makers that if cost minimization will continue to be 

an essential factor in safety-related industries, then we may soon experience the kind of 

failures which were caused not so long ago by breaches in security. 

 

Subject Introduction, Archibald McKinlay 

 

This introduction is background for three papers which require a similar introduction: 

 Hooking into Systems Engineering 

 Systems Safety Engineering HR 

 Systems Safety in new Architecture and Technologies 

Unlike Systems Safety Engineering, little has been done to incorporate software 

requirements and risk management into Systems Engineering.  There needs to be a 

holistic systems integration approach to the updating of Systems Engineering to re-

integrate Systems Safety Engineering, Systems Assurance and Security, and Software 

Engineering.  The DoD has efforts in-work to update the Systems Engineering Plan 

(SEP) but it will be a year more before it is finished. 

 

Each added discipline required a change in the typical engineer’s abilities, education and 

experience.  The advancing technologies must be viewed in the same model.  When a  

safe system is taken and simply attached to the Internet for monitoring the safety risk 

changes, and changes in ways that are not obvious to the traditional Software Safety or 

Systems Safety Engineer.  The technologies are changing so fast that systems are being 

built right now without the updated training, education, or toolkit being available because 

neither the chip nor the interface existed at the project’s start. 

 

Systems Engineering must return to the roots of risk management and use that to 

maintain focus in prioritizing tasks in all schedules, meetings and budgets. Like Systems 

Safety was made to absorb occupational and then environmental tasks, so also must 

Systems Engineering reconnect to its many children. All children must coordinate 

through and with Systems Engineering.  
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Abstract 

  
The position paper presents the authors’ views 

on the critical issues in safety of computer systems 
and software.  It is based on selected results from 
several studies the authors have done for various 
government agencies, private companies and 
professional societies. Main limitations and 
challenges in designing computer systems for 
safety are discussed. 
 
1. Introduction 
 

System safety is a very broad term and books 
have been written on various aspects of safety 
analysis and safety assurance [1,2].  In this position 
paper, we are focusing in particular on various 
aspects of computer safety, especially the role of 
software in system safety, where the application of 
computers or programmable devices may put the 
users or public at risk.  The authors’ experience 
comes mostly from research related to aviation, air 
transportation and space, but partially also from 
research on medical, automotive and nuclear 
devices and technologies. However they by no 
means claim that the treatment of the subject is 
complete and exhaustive. 

In a broader sense, to evaluate safety of a 
computer product, especially the software product 
that is used in a safety critical system, one has to 
take a closer look at a product itself, but also at the 
way it has been developed, as well as at the way the 
tools for developing this product have been created.  
This logic is illustrated in Figure 1, and is very 
different from the traditional approaches to system 
safety, where the analysis is limited only to the 
product and the related application environment. 

The examples come from the recent study on 
the assessment of software development tools for 
safety-critical real-time systems conducted for the 
Federal Aviation Administration (FAA) [3]. 
Modern commercial development tools are 
typically complex suites combining multiple 
functionalities. Considering tool complexity, the 
quality of support materials is often marginal. 

Unless developers become expertly proficient with 
the tool, reliance on it may lead to ignorance of tool 
functionality, complacency and thus compromise 
the safety of developed system. 

 

 
Fig. 1.  Context for Evaluating Computer Products. 
 
2. Limitations and Knowledge Barriers 
 

What are the three fundamental limitations and 
knowledge barriers for safety of systems today? 

 
From the computer use and software standpoint, 

there are several issues that obstruct progress in 
dealing with safety.  The most important among 
them seem to be the following: 

1) Limited understanding of computers and 
software by safety engineers and, vice versa, 
limited understanding of safety issues by 
computer and software engineers. 

2) Very confusing state of safety standards and 
guidelines, and proliferation of sometimes 
contradicting guidelines. This situation 
results in the sheer number of documents the 
safety critical system developers must be 
aware of. 

3) Lack of well-defined, measurable safety 
metrics is another fundamental limitation to 
progress in safety assurance.  

 
Our studies based on the safety related software 

guidelines in civil aviation DO-178B [4] indicated 
that the criteria used in this and other safety related 
standards do not include solid theoretical 
underpinnings to be used as measures of metrics for 
safety. This is a significant impediment in product 
qualification and certification [5]. 
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3.  Research Challenges 
 

What are the three most important research 
challenges? 
 

As it stands right now, even agreeing on the 
state of the art and practice in computer and 
software safety research would be difficult.  One 
important step forward would be to produce a 
document defining the body of knowledge in 
computer system safety, similar to the one 
produced for security [6].  This would help 
establish the common ground, from which further 
steps could be possibly defined.  The challenges 
that researchers are facing in this respect, come 
from at least the following: 

1) Lack of specific data typically available 
from industrial projects, since the industry 
does not share this type of data due to the 
competitive advantage. 

2) Common-off-the-shelf components (COTS), 
both hardware and software, are going to be 
increasingly used in safety critical systems, 
but very few studies have been done how to 
approach their safety assessment. 

3) New technologies will proliferate, both in 
hardware, such as high speed databuses [7], 
and software, such as automatic code 
generation [8], for the analysis of which new 
research methods and approaches will have 
to be created. 

 
From the perspective of our studies, a critical 

issue for vendors and government agencies was the 
necessity of certification based on solid 
experimental data.  However, the qualification data 
collected from experiments constitute a component 
of the certification package and are highly 
proprietary.  This situation puts researchers in a 
very disadvantageous position.  Some relevant 
discussions how to address this and similar issues, 
have recently taken place at the Tools Forum [8]. 
 
4.  Promising Innovations 
 

What are promising innovations and 
abstractions for building future high-confidence 
safety systems? 

 
It is extremely difficult to determine, which 

specific techniques or technologies are the most 
innovative or make the best promise, mostly 
because their suitability and usefulness have to be 
proved over time and a range of applications.  
However, a few essential directions in innovation 
can be mentioned [9]: 

1) Improvement of quality and trustworthiness 
of products and tools via advances in 
verification and validation, possibly via the 
application of formal approaches, such as 
model checking, has been already in a view 

of researches for some two decades and is 
still making a promise. 

2) Design diversity as an essential technique in 
improving computer and software safety has 
been used successfully for years and will 
remain to be used as one of the most 
effective safety techniques thus far. 

3) Several newer technologies emerged over 
the recent years, of which we mention only 
two: model based development and active 
safety systems. 

4) Present authors’ own research based on the 
concepts of a safety shell [10] and Bayesian 
belief networks [11] has also a potential to 
improve safety in an array of applications. 

 
It seems that a significant progress to develop 

new innovative technologies for safety assessment 
and assurance may not be possible without some 
major concentrated effort towards funding 
respective research.  This should be an effort 
similar to steps taken a few years ago to sponsor 
security research. The scale of funding should be 
such that development of innovative solutions 
would be truly possible.  For comparison, it is 
worthwhile mentioning that the European 
Commission has recently provided over Є3M of 
funding for a joint university-industry project on 
active system safety [12]. 
 
5.  Possible Milestones and Conclusion 
 
 What are possible milestones for the next 5-to-
10 years? 
 
 The way the present authors see progress made 
possible in the next 5-10 years is via a significant 
coordinated effort of respective government 
agencies and industrial sectors, driven by the 
following three factors: 

1) Setting priorities in research directions, for 
example to define and verify measurable 
safety metrics. 

2) Establishing educational preferences to 
design and implement changes in the 
computing curricula as well as by offering 
respective training for safety engineers. 

3) Enforcing qualification and certification 
processes, so that industry would become 
better aware how their respective products 
and activities will undergo thorough but 
transparent assessment. 

 
Certainly, all this requires a significant increase 

in the level of funding, which may not be possible 
without decisive legislative actions.  It should be 
made clear to the decision makers that if cost 
minimization will continue to be an essential factor 
in safety related industries, then we may soon 
experience the kind of failures which were caused 
not so long ago by breaches in security. 
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2) Design Principles & 
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4) Real-Time Programming
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System Safety: Dependability
•Dependability is the property of the system that 
justifies reliance on its services 
{more on the topic: “Dependability: Basic Concepts and Terminology”, 
Edited by Laprie, J.-C., Springer Verlag, 1992,   ISBN: 3-211-82296-8}

•Dependability is encapsulation of the following 
properties/abilities {adapted from Laprie}:

– Reliability - probability to function correctly over a 
given period of time

– Security - ability to prevent unauthorized access and 
system damage

– Safety - ability of not harming people and not cause 
property damage
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System Safety: Dependability

Dependability involves:
•Attributes - the metrics for evaluation of system
services (safety, reliability, security, availability, 
integrity, maintainability, confidentiality, etc.)

• Impairments - causes or results of lack of 
dependability (error, fault, failure)

•Means - the methods used to deliver dependable 
services (fault prevention, removal, detection, 
tolerance)
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System Safety: Dependability

Relationships among Reliability, 
Safety and Security Attributes
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System Safety: Dependability
Reliability – failure does not lead to severe 
consequences (high risk) to the environment or 
computer system, nevertheless improving the 
failure rate is of principal concern

Safety – failure leads to severe consequences 
(high risk) to the environment (and possibly to 
computer)

Security – failure leads to severe consequences 
to the computer system (and possibly to the 
environment)
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System Safety: Dependability

Example of dependability issues in 
a car embedded control software:

Reliability – ignition control, cruise 
control, fuel gauge, odometer, etc.

Safety – air bag, seat belts control, 
anti-lock brakes, etc.

Security – door locks, alarms, etc.
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SAFETY RELIABILITY

fail-safe state defined
(reliability is secondary)

no safety analysis
(reliability assessment only)

 Reliability involves bottom-up activities focusing 
on system failures

 Safety involves top-down approach 
concentrating on system hazards

System Safety: Dependability
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System Safety: Basic Terms

•Safety is a characteristic of a system ensuring that it 
will not endanger human life, property or environment

•Safety-critical software system is a software 
intensive system involved in assuring that safety of 
equipment or plant it is interfacing with is not 
compromised

•Software Safety is achieved by implementing features
and procedures ensuring that a product performs 
predictably under normal and abnormal conditions so 
the likelihood of unplanned events is minimized and 
their consequences are controlled and contained
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System Safety: Basic Terms

•Hazard is the capability of the system to harm the 
people, destroy the property or environment

•Nature of the hazard defines the way how it works 
and how it can be controlled (radiation, electric 
shock, mechanical break)

•The hazard is a potential danger to do harm during 
the system operation

•The actual occurrences of hazards are incidents
and accidents
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System Safety: Basic Terms

•The role of safety features and procedures is to 
ensure safety preventing incidents and accidents

• Incident is an occurrence of a situation that could 
result in a severe consequences (in terms of loss of 
life or property) but it was prevented or the situation 
was kept under control

•Accident is an unplanned event or series of events 
that results in death, injury, environmental or 
material damage

•Both incidents and accidents are exemplifying 
safety violation
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System Safety: Basic Terms

•Severity of hazard describes consequences of 
potential accident (in terms of the human lives 
or monetary value)

•Likelihood of a hazard defines how often can 
we expect the hazard to occur (in terms of how 
many times per time unit)

•Risk is the combined measure of severity and 
likelihood of a hazard – likelihood of hazard 
leading to an accident (combined with hazard 
severity)
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System Safety: Basic Terms

•Mistakes are made by people (specification, design, 
coding, manufacturing, etc.)

•Fault is an internal defect within hardware or software 
caused by a mistake, component imperfection, or 
external disturbance (or inability of a function to 
perform a required action)

•Failure is an external view of the system, showing its 
inability to perform required functions

•Error is the difference between computer (observed, 
measured) value and the true (specified or theoretically 
correct) value (it’s a manifestation of a failure)
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System Safety: Basic Terms

Fault propagation cycle
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System Safety: Basic Terms

Recursive nature 
of software faults

Page 16© 2005 by Andrew Kornecki and Janusz Zalewski

System Safety: Basic Terms
•Mistakes made by people (“errare humanum est”) 
are the primary reasons that “something went wrong”

•Failure is when the system fails to perform its 
required function in the operational phase 

•Failure can be caused by:
–user makes how-to-use mistake
–fault (or defect) within the hardware
–fault (or bug) within the software

NOTE: Keep in mind that safety may be compromised 
when no failure occurs.
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System Safety: What went wrong?
•How-to-use mistake is more likely to happen 
because:

– of user mistake during analysis or training
– the product is imperfect (too complex, difficult to use, 

poor diagnostics)
– there is a fault within the software

•Software bug (or imperfect product) is due to the 
developer’s mistake

•Hardware defect is due to:
– designer’s mistake
– manufacturer’s mistake
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•Environmental and operating conditions (disabling 
interrupts may lead to failing an interrupt driven safety 
critical function)

•Logic control by Real Time Executive (order of 
processing may impact the failure conditions)

•System function calls (detailed understanding their 
operations and side-effects is critical)

•System resources (implicit use of memory in stack ops)
•Timing (deadlines, jitter, or drift may prove dangerous)
•Software architecture (choice of representation may 
impact safety)

System Safety: What went wrong?

12



Page 19© 2005 by Andrew Kornecki and Janusz Zalewski

•Most of development methods do not provide 
guarantee that timing constraints be met, thus 
verification of timing requirements is carried out after 
writing the code 

•Such approach can be costly because of late fault 
detection and need to re-write the code for speed 

•Defining timing requirements can be ambiguous, 
thus notations allowing formally analyze or animate 
the system model are recommended

•Safety requirements must be traceable through the 
progression of the product artifacts (requirements => 
design => code => operation)

System Safety: What went wrong?

Page 20© 2005 by Andrew Kornecki and Janusz Zalewski

System Safety: Techniques

Safety Techniques basically 
fall into two broad categories:
Design Techniques
(to improve the product)
Process Techniques
(to improve the process)
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System Safety: Design Techniques

Major architectural safety techniques:
–redundancy - using multiple components 
to carry the same task

–diversity - two components (channels, 
systems) to carry the same task are 
based on different technologies 
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System Safety: Design Techniques

Controll
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Operator System

Commands

Responses

Virtual System

G
U
A
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Controll
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Operator System

Commands

Responses

Virtual 
Controller

G
U
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Principle of a Safety Shell
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System Safety: Design Techniques

Primary ControlTiming Guard Exception
Handler

State Guard

Protected I/O

Physical Environment

Safety Shell

Timing
Violation

Response Commands

Response Output
Changes

Other Safety
Violations

Guards Incorporated into a Safety Shell
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System Safety: Process Techniques

Safety Lifecycle according to IEC 61508:
• IEC 61508 is a standard for the life-cycle 
management of Instrumented Protection Systems –
it formalizes a risk-based approach to establishing 
target Safety Integrity Levels  (SIL ) and assessing 
if systems meet these targets

• IEC 61508: “The necessary activities involving 
safety-related systems, occurring during a 
period of time that starts at the concept phase 
of a project and finishes when any safety-
related systems are no longer available for use”
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System Safety: Process Techniques

IEC 61508 
Safety Lifecycle
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System Safety: Process Techniques

 Hazard Operability Analysis (HAZOP)
 Failure Mode and Effect Analysis (FMEA)
 Failure Mode and Effect Criticality Analysis 

(FMECA)
 Fault Tree Analysis (FTA)
 Event Tree Analysis (ETA)
 Common Mode Failure Analysis (CMF)
 Cause Consequence Diagrams (CCD)
 Petri Nets
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Real-Time Programming

Basic Concepts
•Concurrency and basic program properties
•Programming language features
•Real-Time kernel features
•Timing issues in real-time programs
•Practical aspects of real-time scheduling 
•Board Support Packages & Device Drivers
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• TASK - a unit of concurrency executing sequentially
itself, designed to fulfill a specific system function, 
typically defined by:
• event - environmental or internal stimulus occurring at
a time point requiring response
• activity - a set of operations responding to the event 
requiring time

• Task can be implemented as:
• PROCESS - a virtual computing environment set up to 
run as an application program (contains its own data, 
code, context, & resources)
• THREAD - a sequence of instructions executed within 
the context of a process

Real-Time Programming: Concurrency
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Real-Time Programming: Concurrency

States of Concurrent Tasks
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Real-Time Programming: Concurrency

Concurrency Terms
 Synchronization
 Critical Section
 Mutual Exclusion
 Reentrancy
 Deadlock
 Pre-emption
 Safety and Liveness
 Scheduling
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Real-Time Programming: Concurrency

10-task example of concurrent execution
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Real-Time Programming: Concurrency
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Real-Time Programming: Concurrency
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Real-Time Programming: Concurrency
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Real-Time Programming: Concurrency
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• An informal scan of the real-time (embedded, 
dedicated, safety-critical) market reveals:
– 30% assembly and legacy languages
– 30% Ada
– 30% C/C++ 
– 10% other (100+ other languages)

• C and Ada are the most commonly used languages 
in civil aviation today

• C++ is gaining popularity, but its usage is still limited

Real-Time Programming: Languages
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FEATURE Ada C/C++ Java

Memory
Management

automatic manual garbage
collected

Run-Time
Efficiency

high high medium

Run-Time
Predictability

high* OS
dependent

low

Concurrency
Control

language
features

OS
specific

language
library

Real-Time Programming: Languages
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Real-Time Programming: Languages

Language Safety Features:
• Formally defined syntax;  Block structure
• Strong typing;  Wild (unstructured) jumps
• Memory overwrites;  Memory exhaustion
• Dangling pointers;  Variable initialization
• Model of floating-point arithmetic
• Exception handling;  Reentrancy
• Separate compilation with cross-checking
• Temporal predictability of loops
Efforts include:  SPARK, MISRA-C, PEARL.
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Real-Time Programming: Languages

Strong Typing – strict application od data 
type checking rules to prfevent misuse of 
variables and data

int a:
float x; // and x are of  different types
a = x; // formally, this is incorrect,

// but C/C++ may allow it
a = (int)x; // mode appropriate coding

Fortran allows implicit declarations
C/C++ and Java allow implicit type casting
Ada requires explicit type casting
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Real-Time Programming: Languages

Exception – an unexpected situation that may 
cause a program to crash.

Examples: division by 0, overflow, reference to 
nonexisting object (memory, device), I/O error, 
etc.

Exception handling – to provide facilities within 
a language to neutralize consequences of 
exceptions.
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Real-Time Programming: Languages

Usual sequence of actions in exception handling:
1. Exception handler included in a program.
2. Exception raised during program execution.
3. Control is transferred to exception handler.
4. Handler executes and exits to the surrounding 

block.
x := a/b;    -- What if  b=0?
…
exception

when CONSTRAINT_ERROR => x=MaxInt;
end;
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Real-Time Programming: Languages

Unstructured jump (wild jump) – a program jump 
which is not controlled by the programmer.

Unstructured jumps are most likely to occur in 
case statement or their equivalents. 
Examples include:
- incomplete coverage of cases (missing 
default/others)
- erroneous exit from cases (missing break)
- incomplete if/else pairs.
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Real-Time Programming: Languages

C/C++ pair setjpm() and longjmp():

int setjump(jmp_buf env)

// Saves state info in env for use by longjmp

void longjmp(jmp_buf  env, int v)

// Restores the state saved by setjmp
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Real-Time Programming: Languages

Memory overwrite – an uncontrolled access to 
arbitrary memory locaations.

May be cause by: erroneous pointers, out-of-
bounds array indexes, dynamic allocation.

The programmer must remember that a pointer 
is not just an address;  it is an address of a data 
item of a certain type.
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Real-Time Programming: Languages

// Check memory space available

int * arr , j=0;

for ( ;  ; ) {

j++;

arr = (int *)malloc(TEN_K);

printf(“%d “, j);

}
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Real-Time Programming: Languages

Reentrancy – subprogram property that allows 
it to be executed by multiple callers at the 
same time.

Need for reentrancy is typical in multithreaded 
programs. Therefore library routines are 
usually indicated MT-safe or not.
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Real-Time Programming: Languages

Other language aspects:

- variable initialization

- order of evaluation vs. operator precedence

- spawning processes via fork

- killing concurrent units.
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Real-Time Programming: Languages

// Both should be avoided
x = i++ + a[i];
x = (i++) + a[i];

// What is the result, and why?
int i = 0;
i = i+++i;
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Real-Time Programming: Languages

// When if has both branches 
// executed simultaneously!
if  (fork()) {

…  // some code
}
else {

…  // other code
}
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Real-Time Programming: Languages

Beware of problems with 
destroying concurrent units:
- Ada tasks via abort
- Aunix processes via kill()
- threads vi acancellation.
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Real-Time Programming: Languages

Proc 

Meas 

Ctrl DBase 

Timer GUI 

Comm 

Observation: Why Java, as the first programming 
language in common use, included GUI and 
Networking as part of the language?  Do LabVIEW 
and MATLAB show similar trend?
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Concept of RTOS/Kernel Operation:
• Strong distinction between internal system 

operations and the user tasks 
• RTOS kernel does not participate in the priority 

scheme - it operates in the hardware context
• Peripheral interrupts handled by extensions to 

the kernel (device drivers) which also function 
outside normal application task prioritization

Real-Time Programming: RT Kernel
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Concept of RTOS/Kernel Operation:
• User tasks communicate with the kernel and 

perform most I/O through entry points or calls 
into the drivers - I/O is processed outside the 
user application context

• Modern RTOS uses threaded micro-kernel 
with fast response and options for handling 
interrupts at the system priority level

Real-Time Programming: RT Kernel
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Basic Terminology
•EVENT – a result of an externally or internally 
generated occurrence handled by the processor

•LATENCY - time required to recognize and start 
responding to an event

•RESPONSE TIME - time interval between presentation 
of an input (stimulus) and the appearance of the 
associated output (response)

•DEADLINE - a time point before which a specific event 
must occur (e.g. the task must complete the execution) 

Real-Time Programming: RT Kernel
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Basic Terminology
• INTERRUPT LATENCY – the time interval between 
the occurrence of an external event and the start of 
the first instruction of the interrupt service routine

• INTERRUPT LATENCY INVOLVES: hardware logic 
processing, interrupt disable time, handling higher 
hardware priority interrupts, switching to handler 
code (saves, etc.)

Real-Time Programming: RT Kernel
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Basic Terminology
•DISPATCH LATENCY – the time interval between 
the end of interrupt handler code and the first 
instruction of the process activated (made runnable) 
by this interrupt.

•DISPATCH LATENCY INVOLVES: OS decision 
time to reschedule (non-preemptive kernel state), 
context switch time, return from system call.

Real-Time Programming: RT Kernel
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Real-Time Programming: RT Kernel
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external event application starts executing 

interrupt 
dispatch 
time

interrupt 
handler

other 
interrupts 

pre-emption
latency

scheduling

context 
switch return 

from
system 
call

Contributions to Interrupt Task Response Time

Real-Time Programming: RT Kernel
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Kernel Responsiveness Involves:
• INTERRUPT LATENCY
• TASK DISPATCH LATENCY
• (WORST CASE) INTERRUPT RESPONSE TIME

(Interrupt Latency + Worst case Execution of 
the Interrupt Handler + Interrupt Exit Overhead)

• INTERRUPT TASK RESPONSE TIME
(Interrupt Response Time + Dispatch Latency)

Real-Time Programming: RT Kernel
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Schedulability and Determinism
•SCHEDULABILITY - a property of a set of 
tasks ensuring that all tasks will meet their 
respective deadlines

•PREDICTABILITY - the property of meeting 
the temporal determinism criteria

•TEMPORAL DETERMINISM - the situation in 
which timing properties of the system are 
known (or bounded) for each set of inputs

Real-Time Programming: RT Kernel
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Topics important but not covered here:
• Real-Time Scheduling

„What Every Engineer Needs to Know about Rate-
Monotonic Scheduling”
IN: Advanced Multimicroprocessor Bus Architectures, 
IEEE Computer Society Press, 1995, pp. 321-335,
and Real-Time Magazine, Issue 1/95, pp. 6-24

• Device Drivers
„Teaching Device Drivers Technology in a Real-Time 
Systems Curriculum”
IN: Real-Time Systems Education III, IEEE Computer 
Society Press, 1999, pp. 42-48
and at http://www.wrs.com/univ/html/featurevol4.html

Real-Time Programming: RT Kernel
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Databus Safety
Databus Characteristics
 Mechanical properties concern bus wiring, 

connectors, their pinout, and module design and 
dimensions

 Electrical (or optical) properties are related to 
signal levels and their dynamics to carry 
information, including electromagnetic 
characteristics

 Logical properties concern the protocol of 
exchanging information over a bus
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Databus Safety

Example of mechanical properties 
of the connector for FireWire bus.
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Databus Safety

Example of electrical properties of the PCI bus input 
signals (T_su – setup time, 7-12 ns; T_h – hold time).
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Databus Safety

Electrical interface between two FireWire nodes.
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Databus Safety

Example of electrical properties and low-level 
bus protocol for the PCI bus Read Transaction.

36



Page 67© 2005 by Andrew Kornecki and Janusz Zalewski

Databus Safety

Example of logical properties of the bus for 
FireWire Asynchronous READ Transaction.
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Databus Safety

Specifics of the Bus Protocol:
• Bus arbitration

competing for bus access
• Data transfer

how devices exchange data once 
they obtain bus access

• Fault handling
dealing with bus errors
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Databus Safety

An Example of Modern Vehicle Network (Leen 2002)
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Databus Safety

Steer-by-Wire System (Waern 2003)
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Databus Safety

Distributed Flight Control System for Boeing 777 Aircraft
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Databus Safety

Distributed Flight Control System for JAS 
39 Gripen Aircraft (Johansson 2003)
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Databus Safety

Databus Type Architecture Medium Rate Encoding
Arinc 429 serial unidir. single master 2 wires 100kb/s RTZ bipolar

MIL1553 serial bi-dir. single master twist pairs 1 Mb/s biphase Manch.

Arinc 629 serial bi-dir. multi master twist pairs 2 Mb/s Manchester II

Arinc 659 serial bi-dir. quad redund twist pairs 30MHz biphase Manch.

FlexRay serial bi-dir. fault-tolerant optic/wire 10Mb/s undefined

CAN serial bi-dir. multi-master twist pairs 1 Mb/s NRZ + bit stuff

TTP/C serial bi-dir. dbl redund twist pairs 25Mb/s MFM
IEEE1394 serial d-chain/tree twist pairs 400Mb/s LVDS

Safe-Wire serial bi-dir. master-slave twist pairs 200 kb/s 3-level

SpaceWire serial bi-dir. master-slave 2 wires > 2Mb/s undefined
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Databus Safety

Risk Assessment Process
1) Multicriteria-based Safety 

Assessment
2) Hazard Analysis
3) Failure Mode Analysis
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Databus Safety
Criterion Selected Evaluation Factors

Safety Availability and reliability; Partitioning; Failure detection;
Common cause/mode failures; Bus expansion strategy;
Reconfigurability; Redundancy management

Data Integrity Maximum error rate; Error recovery; Load analysis;
Bus capacity; Security

Performance Operating speed; Schedulability of messages; System
interoperability; Bus length and max. load; Retry capability;
Bandwidth; Data latency; Transmission overheads

EMC Switching speed; Pulse rise and fall times; Wiring;
Shielding effectiveness; Lightning/radiation immunity

Design Assur. Compliance with standards (such as DO-254/DO-178B)
V&V Examples: functionality testing, system testing, failure

management, degraded mode operation
Configuration
Management

Examples: change control, compliance with standards,
documentation, interface control, system analysis, etc.

Continued
Airworthiness

Lifetime issues, such as physical degradation, in-service
modifications and repairs, impact analysis. (Rierson/Lewis, 2003)
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Databus Safety

Failure Mode Description
Invalid Messages Messages sent across the bus

Contain invalid data
Non-Responsive An anticipated response to

a message does not occur or
return in time

Babbling Communication among nodes
Is blocked or interrupted by
uncontrolled data Stream

Conflict of Node Adrs More than one node has the same
identification (Debouk et al. , 2003)
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Databus Safety
Potential Hazard Possible Mitigation

Loss of Power Dual power system (including battery,
wires and connectors)

Loss of Communicat’n Dual communication system

Loss of Steering Backup system; Reduced functionality
Redundant system; Steer by braking
active safety system

Loss of Braking Backup system; Reduced functionality
redundant System; Brake by steering
active safety system

Loss of Electronic
Throttle

Backup system; Reduced functionality
redundant system

Loss of Actuators Backup actuators; Red. performance actuator

Loss of Sensors
(recording driver cmds)

Backup sensors; Red. performance sensor
(Chau et al. , 2003)
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Databus Safety

Bus Experiments
• Plain simulation for well developed 

databus networked configurations
VME/Raceway

• Actual data transfer experiments with 
a modern bus FireWire

• Simulation and real experiments for 
routing in Bluetooth

• Improving Real-Time Characteristic 
of the Ethernet
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Databus Safety
Bus Parameters
• Bus response – access delay 

vs. bus load
• Bus throughput - data transfer 

rate vs. packet size
• Interconnect formation and 

routing
• Predictability of packet 

transmission time
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Databus Safety

Access delay vs. bus load:
When bus load increases, 

how does it impact access delay?
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Databus Safety

Server Access Delay for 64B Packets
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Databus Safety

Bus throughput:
When packet size increases,

how does it impact transfer rate?
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Databus Safety

IEEE 1394 Throughput over a Raw Driver 
for Asynchronous and Isochronous Modes
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Databus Safety

Interconnect formation and routing:
When nodes are being added,

how does it impact access delay 
and data transfer rate?
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Databus Safety

Bluetooth TCP Delay for Increasing Number of Nodes
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Databus Safety

Deterministic Ethernet:
Can Ethernet be made predictable
without modification of its CSMA/CD 
protocol?

Each node is assigned a priority and two flags:
- collision status flag, c_stat_flag
(collision resolution in progress)

- collision involved flag, c_inv_flag
(node was involved in the collision)

46



Page 87© 2005 by Andrew Kornecki and Janusz Zalewski

Databus Safety

Principle of a deterministic Ethernet protocol.
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Databus Safety

Behavior of a regular CSMA/CD node.
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Databus Safety

Handling messages block of the protocol.
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Databus Safety

Comparison of packet transmission times for the 
classic CSMA/CD and the extended protocol.
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Databus Safety

Databus Safety
• New area with ongoing research
• Risk assessment methods 

essential as a starting point
• Definition of critical parameters 
• Experimentation needed

Page 92© 2005 by Andrew Kornecki and Janusz Zalewski

OK! Let’s go for a beer!!!
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