
Proceedings of the International Multiconference on ISBN 978-83-60810-14-9
 Computer Science and Information Technology, pp. 665 – 672 ISSN 1896-7094

Abstract—This paper presents an overview and the role of
certification in safety-critical computer systems focusing on
software and hardware use in the domain of civil aviation. It
discusses certification activities according to RTCA DO-178B
“Software Considerations in Airborne Systems and Equipment
Certification” and RTCA DO-254 “Design Assurance Guidance
for Airborne Electronic Hardware.” Specifically, certification
issues in real-time operating systems, programming languages,
software development tools, complex electronic hardware and
tool qualification are discussed. Results of an independent in-
dustry survey done by the authors are also presented.

I. INTRODUCTION

ERTIFICATION is the hot issue in many industries that
rely on the use of computers and software in embedded

systems that control safety-critical equipment. The term
“certification” in software engineering is typically associated
with three meanings: certifying product, process, or
personnel. Product and process certification are the most
challenging in developing software for real-time safety
critical systems, such as flight control and traffic control,
road vehicles, railway interchanges, nuclear facilities,
medical equipment and implanted devices, etc. These are
systems that operate under strict timing requirements and
may cause significant damage or loss of life, if not operating
properly. Therefore, the society has to protect itself, and
governments and engineering societies initiated establishing
standards and guidelines for computer system developers to
follow them in designing such systems in several regulated
industries, including aerospace, avionics, automotive, medi-
cal, nuclear, railways, and others.

C

Consequently, the U.S. government and international
agencies that regulate respective industries have issued a
number of standards, guidelines, and reports related to certi-
fication and/or other aspects of software assurance, such as
licensing, qualification, or validation, in their specific areas
of interest. Two such guidance documents for civil aviation,
DO-178B [1] and DO-254 [2], developed by RTCA, Inc.,
describe the conditions for assurance in designing software
and electronic hardware in airborne systems. The guidelines
are adopted by the U.S. Federal Aviation Administration

The presented work was supported in part by the Aviation Airworthiness
Center of Excellence under contract DTFACT-07-C-00010 sponsored by
the FAA. Findings contained herein are not necessarily those of the FAA.

(FAA) and the European EUROCAE, as mandatory for
design and implementation of airborne systems.

In this paper we present an overview of current practices
in civil aviation industry and discuss issues related to certifi-
cation of software and hardware to meet the guidance re-
quirements. Section 2 discusses the role of guidance in certi-
fication, and sections 3 and 4 review the certification issues
according to DO-178B and DO-254, respectively. Section 5
provides some conclusions.

II. THE ROLE OF STANDARDS IN CERTIFICATION

The RTCA, Inc., previously known as the Radio-Telecom-
munication Committee for Aviation, is a non-profit corpora-
tion formed to advance the art and science of aviation and
aviation electronic systems for the benefit of the public. The
main RTCA function is to act as a Federal Advisory Com-
mittee to develop consensus-based recommendations on
aviation issues, which are used as the foundation for Federal
Aviation Administration Technical Standard Orders control-
ling the certification of aviation systems.

In 1980, the RTCA, convened a special committee
(SC-145) to establish guidelines for developing airborne sys-
tems and equipment. They produced a report, “Software
Considerations in Airborne Systems and Equipment Certifi-
cation,” which was subsequently approved by the RTCA Ex-
ecutive Committee and published in January 1982 as the
RTCA document DO-178. After gaining further experience
in airborne system certification, the RTCA decided to revise
the previous document. Another committee (SC-152) drafted
DO-178A, which was published in 1985. Due to rapid ad-
vances in technology, the RTCA established a new commit-
tee (SC-167) in 1989. Its goal was to update, as needed,
DO-178A. SC-167 focused on five major areas: (1) Docu-
mentation Integration and Production, (2) System Issues, (3)
Software Development, (4) Software Verification, and (5)
Software Configuration Management and Software Quality
Assurance. The resulting document, DO-178B, provides
guidelines for these areas [1].

RTCA/EUROCAE DO-254/ED-80 [2] was released in
2000, addressing design assurance for complex electronic
hardware. The guidance is applicable to a wide range of
hardware devices, ranging from integrated technology hybrid
and multi-chip components, to custom programmable micro-
coded components, to circuit board assemblies (CBA), to en-

978-83-60810-14-9/08/$25.00 © 2008 IEEE 19

Software Certification for Safety-Critical Systems: A Status Report

Andrew Kornecki
Dept. of Computer and Software Engineering

Embry-Riddle Aeronautical University
Daytona Beach, FL 32614, USA

kornecka@erau.edu

Janusz Zalewski
Department of Computer Science

Florida Gulf Coast University
Fort Myers, FL 33965-6565, USA

zalewski@fgcu.edu

20 PROCEEDINGS OF THE IMCSIT. VOLUME 3, 2008

tire line replaceable unit (LRU). This guidance also ad-
dresses the issue of COTS components. The document’s ap-
pendices provide guidance for data to be submitted, includ-
ing: independence and control data category based on the as-
signed assurance level, description of the functional failure
path analysis (FFPA) method applicable to hardware with
Design Assurance Levels (DAL) A and B, and discussion of
additional assurance techniques, such as formal methods to
support and verify analysis results.

III. SOFTWARE CERTIFICATION ACCORDING TO DO-178B

There are three essential categories of software that im-
pact the certification process, due to their different function-
ality: real-time operating systems, programming languages
(with their compilers), and development tools.

A. Real-Time Operating Systems

There is an evident trend to adopt the Real-Time Operat-
ing System (RTOS) kernels to increasing scrutiny of regula-
tory demands. The vendors have quickly “jumped on the
bandwagon” and attempted to comply with requirements of
DO-178B, claiming certifiability. This includes VxWorks
from Wind River Systems [3-5], as well as LynxOS from
LynuxWorks, Integrity from Green Hills Software, Linux
and RTLinux, RTEMS and microC.

Romanski reports [3] on certification attempts of Vx-
Works that started in 1999. At the start of the project, the
specifications, documentation, and source code were all ana-
lyzed to determine which features need to be removed or
changed to support the certification. The analysis showed
that the core OS could be certified and many of the support
libraries could be included as well, with some restrictions,
for example on memory allocation/deallocation functions.
The process was largely automated, with a database and CD-
ROM materials deliverable to the auditors. Further, Fachet
[4] reports on the VxWorks certification process to meet the
criteria of IEC 61508, and Parkinson and Kinnan [5] de-
scribe the entire development platform for a specific version
of the kernel VxWorks 653 to be used in the integrated
modular avionics.

Not much information, except articles in trade magazines,
is available on other real-time kernels. Applying the defini-
tion of certification as “procedure by which a third-party
gives written assurance that a product, process or service
conforms to specified requirements”, Moraes et al. [6] use
the risk assessment technique FMEA (Failure Mode and Ef-
fect Analysis) to create a metric and analyze data for two
kernels RTLinux and RTEMS. The analysis shows that if
the threshold to certify the software is set to an estimated risk
lower than 2.5%, only RTEMS would be certified.

Interestingly, a well described process of selecting an
RTOS according to DO-178B guidelines [7] led to a choice
of microC/OS kernel, a relatively unknown although well
documented RTOS, available for many years but not much
advertised. Verification of this RTOS has been contracted to
an independent organization and all requirements-based tests
have been completed in 2003.

B. Programming Languages

A similar trend among vendors is visible in the area of
programming languages and compilers. In an earlier article,
Halang and Zalewski [8] present an overview of program-
ming languages for use in safety-related applications up to
2002, focusing on PEARL, originated and predominantly
used in Germany. Their observation with respect to
DO-178B and other standards is that “ because verification is
the main prerequisite to enable the certification of larger
software-based solutions, only serious improvements aiming
to support the process of program verification will be a step
in the right direction.”

There are essentially three contenders among languages
used in safety-critical systems: Ada, C/C++ and Java, for
which DO-178B certifiability is claimed. Due to limited
space, we only address Ada and C/C++. The most advanced
in this respect seems to be Ada, whose certification attempts
go back to the eighties, with roots in compiler validation [9].

Ada and Compiler Certification. Santhanam [10] answers
the question, what does it mean to qualify a compiler tool
suite per DO-178B requirements, and lists the requirements
on the object code and the development process, estimating
the overwhelming cost of providing evidence. Therefore,
defensive techniques are advocated, to assure confidence in
the compiler correctness with the use of assertions, optimiza-
tions turned off, no suppression of run-time checks, avoid-
ance of nested subprograms, etc.

Features of the object model of Ada 2005 are claimed to
be “well suited for applications that have to meet certifica-
tion at various levels” [11]. It meets the safety requirement,
which means that programmers are able “to write programs
with high assurance that their execution does not introduce
hazards” [12], in order “to allow the system to be certified
against safety standards”, such as DO-178B. However, the
common opinion, expressed by the same authors, who actu-
ally developed compilers, is that compilers “are far too com-
plex to be themselves certified” [11]-[12].

One version of Ada, which makes use of its severely lim-
ited subset, named SPARK, seems to have gained some
popularity in safety-critical applications, because of the exis-
tence of its formal definition. Amey et al. [13] report on
multiple applications of SPARK in industry, including one to
the DO-178B Level A.

The C/C++ Certification Issues. In the C/C++ world,
there have not been many reports on the successful uses of
these languages in safety-critical applications that would
pass or be aimed at any certification efforts. The languages
are being widely criticized for having features not necessar-
ily suitable for safety-critical systems.

Hatton [14] gave an overview of safer C subsets and
MISRA C, in particular, following his crusade towards make
C a safer language. His premise was that “C is the perfect
language for non-controversial safer subsetting as it is known
to suffer from a number of potential fault modes and the fault
modes are very well understood in general.” He analyzed
the standards with respect to style related rules, divided fur-
ther into rules based on “folklore” and those based on known
failures. He observes “MISRA C does not address all known

ANDREW KORNECKI ET. AL.: SOFTWARE CERTIFICATION FOR SAFETY-CRITICAL SYSTEMS: A STATUS REPORT 21

fault modes, and does not incorporate the full range of
analysis checks that it might.”

Despite the enormous popularity of C++, the number of
C++ applications in avionics is relatively low, perhaps due to
the multitude of known language problems. Subbiah and
Nagaraj [15] report on the issues with C++ certification for
avionics systems, focusing on structural coverage, whose in-
tent is “to ensure that all output of the compiler is tested dur-
ing the execution of the requirement-based tests, so as to pre-
clude the possibility that some instruction or data item pro-
duced by the compiler is first depended upon during opera-
tion.“

C.Software Development Tools

Regarding the use of tools, the FAA recently released a
comprehensive report by the current authors on “ Assessment
of Software Development Tools for Saf ety-Critical Real-
Time Systems” [16], which has been summarized in [17] and
briefed in [18] regarding tool qualification. The experimen-
tal part of this work involved collecting data from the usage
of six software design tools (as opposed to verification tools
[19]), in a small-scale software development project, regard-
ing four software quality criteria. Assuming these criteria
were direct metrics of quality, the following specific mea-
sures to evaluate them were defined and used in the experi-
ments:

• usability measured as development effort (in hours)
• functionality measured via the questionnaire (on a 0–5

point scale)
• efficiency measured as code size (in Lines of Code,

(LOC))
• traceability measured by manual tracking (in number

of defects).
• collection and analysis of results.
Since then, a good number of articles have been written on

tool verification, qualification and certification attempts.
Regarding software, the tool qualification process must ad-
dress the requirements of the DO-178B. In particular, the
decision must be made, whether tool qualification is neces-
sary (see Fig. 1).

A tool is categorized as the development tool, if it can in-
sert an error in the airborne system, or as the verification
tool, if it may only fail to detect an error. In the following,
we try to cover issues related to software verification tools.

For verification tool qualification, several interesting pa-
pers have been published in the last few years. As Dewar
and Brosgol [20] point out in their discussion of static analy-
sis tools for safety certification, a tool as fundamental as the
compiler can be certainly treated as a development tool, but
also as a verification tool, since compilers “often perform
much more extensive tasks of program analysis.” As a per-
fect counterexample they refer to the Spark’s Examiner,
which is not a usual kind of compiler, because it does not
generate code at all. It is only used for checking the pro-
gram, nevertheless is a part of a software development
process. Furthermore, they ask the question should the tools
“be certified with the same rigorous approach that is used for
safety-critical applications?” Their answer is that this is not
practical, and they support this view by stating that even “the

compilers themselves are out of reach for formal safety
certification, because of their inherent complexity.”

Fig. 1 Tool qualification conditions according to DO-178B [1].

Dewar supports this view in another article [21], elaborat-
ing more on the tools for static analysis of such properties as
schedulability, worst-case timing, freedom from race condi-
tions, freedom from side effects, etc. He also offers his
views on the use of testing, object-oriented programming,
dynamic dispatching, and other issues in developing safety-
critical systems. He elaborates on the role of the Designated
Engineering Representatives (DER’s), whose job is to work
with software development companies and the certification
authorities on the qualification and certification issues, stat-
ing that DER’s “are the building inspectors of the software
engineering industry.”

In another article, Santhanam [22] describes a toolset
called Test Set Editor (TSE), which automates the compiler
testing process and working in combination with the Excel
spreadsheet and the homegrown scripts in Tcl/tk signifi-
cantly contribute to cost savings in constructing structural
tests to satisfy FAA certification requirements.

A recent FAA report [19] provides an overview of the
verification tools available up to the time of report’s publica-
tion. One tool not covered in this report, Astrée, is described
in [23]. It is a parametric, abstract interpretation based,
static analyzer that aims at proving the absence of run-time
errors in safety-critical avionics software written in C. The
authors, representing Airbus, claim that they succeeded on
using the tool on a real-size program “as is”, without altering
or adjusting it before the analysis. Other issues addressed
with this tool, although not described in the paper, include:
assessment of worst-case execution time, safe memory use,
and precision and stability of floating-point computations.
In all that, automatically generated code should be subjected
to the same verification and validation techniques as hand-
written code.

It may be also worth noting that all established tool ven-
dors have been addressing the DO-178B issues for some
time now. One such interesting example is McCabe Soft-
ware [24]. Their document provides a summary of McCabe
IQ tool functionality and explains how the tool can be used

22 PROCEEDINGS OF THE IMCSIT. VOLUME 3, 2008

to support the DO-178B guidelines. Several other vendors
do the same, and the current list of safety-critical software
tools can be found on the web [25].

IV. CERTIFICATION ACCORDING TO DO-254

A.Circuitry Compliance with DO-254

General Issues . With the progress of microelectronic
technologies, the avionics hardware is typically custom gen-
erated using programmable logic devices. Field Program-
mable Logic Arrays (FPGA) and Application Specific Inte-
grated Circuits (ASIC) are two leading implementation tech-
nologies. More often the devices include also components
containing Intellectual Property (IP) chips with dedicated al-
gorithms or custom made solutions resembling general pur-
pose embedded microprocessor’s functionality. All this
caused an emergence of RTCA document DO-254 [2], which
deals with safety assurance for hardware used in avionics
and can be used for other safety-critical applications.

What also contributed to the origins of DO-254 is the fact
that avionics companies and designers, facing the rigors of
DO-178B requirements, began moving device functionality
from software to hardware [26]. As reported by Cole and
Beeby in 2004 [27], “There are several schemes that have
been used by some to take advantage of a current loophole
that allows airborne software functionality to be embedded
in firmware or programmable devices. This loophole affec-
tively sidesteps the need to adhere to DO-178B as a software
standard.” Thus, a new document was introduced that forms
the basis for certification of complex electronic hardware, by
identifying design lifecycle process, characterizing the objec-
tives, and offering means of complying with certification re-
quirements. The Advisory Circular published subsequently
by the FAA [28] clarifies the applicability of DO-254 to cus-
tom microcoded components, such as ASIC, PLD, FPGA,
and similar. In this section, we discuss recent approaches to
hardware certification according to DO-254 covered in the
literature.

Miner et al. [29] considered compliance with DO-254, be-
fore even the guidance was officially released. In a joint
project with the FAA, NASA Langley was developing hard-
ware to gain understanding of the document and to generate
an example for training. A core subsystem of the Scalable
Processor-Independent Design for Electromagnetic Re-
silience (SPIDER) was selected for this case study.

Hilderman and Baghai [26] offer an advice to manufactur-
ers to map their existing development processes to those of
DO-254. The strategy they recommend is “to focus on en-
suring correctness at the conceptual design stage and then
preserve the design integrity” as one proceeds through the
development stages. Each individual vendor or designer
faces multiple specific design problems that must be ad-
dressed to meet the DO-254 requirements. How they pro-
ceed depends on the vendor and the type of problem.

In the white paper of the DO-254 Users Group [30],
Baghai and Burgaud offer a package including the following
items designed to assist in the qualification process:

• The processes documents, that help define, bench-
mark and improve the industrial design, verification,
validation, and quality assurance processes

• The quality assurance checklists, for reviews and au-
dits, ensuring that each project is compliant with the
defined industrial process

• The tools for requirements management and traceabil-
ity, checking compliance of HDL code with coding
standards, HDL code verification, and test suite opti-
mization

• The tools integration into the industrial process, until
their qualification (interfaces, report generation for a
certification audit, trainings, tools assessment, etc.),
and the DO-254 TRAINING by consulting partners.

Cole and Beeby [27] studied DO-254 compliance for
graphic processors, considered common off-the-shelf com-
ponents (COTS), and proposed a multiphase approach to
meet DO-254 requirements:

• Provision of a DO-254 COTS data pack to support the
use of a given electronic part.

• Provision of a DO-254 compliance statement.
• Process improvement and further analysis.
• Ongoing support for new parts and processes.
Glazebook [31] discussed certification according to

DO-254 in the British context, especially the 26 data items
listed in the standard as the compliance suite, of which four
are required for submission: (a) Plan for Hardware Aspects
of Certification; (b) Hardware Verification Plan; (c) Top
Level Drawings; and (d) Hardware Accomplishment Sum-
mary. He made eight recommendations summarized in the
paper.

Barco-Siles S.A. [32] report on the way the company
deals with increasing demands related to implementing
DO254 causing non-negligible cost, but bringing some ad-
vantages. The guidance obliges the supplier to analyze in de-
tail processes, methodologies and tools and to apply a rigor-
ous quality assurance. It also allows the supplier to adapt its
set of internal processes to the design assurance level tar-
geted, to optimize efforts while requiring the subcontractor
to respect a structured development processes. The resulting
products have improved quality and the development cycles
are optimized. Verification is focused on design errors, and
effort and resources are better distributed. Applying the
DO254 gives the assurance that the applicant can obtain
from the subcontractor a good level of quality, good docu-
mentation, and the ability to reuse the design, if necessary.

When the complexity of designs increases, it is more and
more difficult to verify the correctness of circuits and thus
their compliance with the specifications. As Karlsson and
Forsberg point out [33], “…tests and deterministic analysis
must demonstrate correct operation under all combinations
and permutations of conditions down to the gate level of the
device.” To comply with the requirements of DO-254 they
developed a design strategy that relies on a semi-formal solu-
tion, a hybrid of static and dynamic assertion based verifica-
tion. They believe that by such independent assessment using
their method of tool outputs, the tool qualification will
become unnecessary.

ANDREW KORNECKI ET. AL.: SOFTWARE CERTIFICATION FOR SAFETY-CRITICAL SYSTEMS: A STATUS REPORT 23

EDA Industry Views . Chip and board manufacturers are
eager to comply with DO-254, due to their concerns about
the market share. Since compliance with the guidance is
considered a technological advantage, most of the vendors
began changing their development processes towards meet-
ing the DO-254 criteria. Several companies announced their
readiness to comply with certification requirements.

Mentor Graphics is particularly aggressive in providing
compliance of their products with DO-254. Lange and Boer
[34] give an overview of functional hardware verification
methodologies, as a part of the design process. They observe
that the verification techniques that served well the designs
10-15 years ago are no longer adequate due to a tremendous
increase in design complexity and integration. As a conse-
quence, design verification has become a limiting factor in
safety-critical systems, with respect to such issues as: com-
plexity, concurrency and metastability. Latest verification
techniques are described that handle problems such as state
explosion, design traceability and the effectiveness of cover-
age.

Advanced Verification Methodology (AVM), consisting
of constraint random test generation, a total coverage model,
design intent specification, and formal model checking, de-
scribed in [35], has been used on a practical design of
FPGA based DMA engine at Rockwell-Collins. The ap-
proach based on an open source Transaction Level Modeling
(TLM) class library, is vendor neutral and supports Sys-
temVerilog and SystemC standard languages. Due to the
open source nature AVM allows code inspections that may
be required for certification. Although the project has not
been fully completed at the time of this writing, it is believed
that AVM helps not only demonstrate that the DO-254
guidelines are followed, but also assists in shortening design
cycles.

These verification steps/techniques must be performed in
concert with the RTL design, ultimately leading to automatic
circuit synthesis [36]. Since automatic synthesis and conver-
sion to gate-level designs is often done with optimizations by
the hardware design tools, it may be counterproductive in
safety-critical designs, which mandate strict adherence to the
guidance. DO-254 defines tool qualification, “to ensure that
tools used to design and verify hardware perform to an ac-
ceptable level of confidence on the target project.” The pa-
per comments on three methods of DO-254 allowed tool as-
sessment: relevant history, independent output assessment,
and tool qualification. Since proving relevant history and
qualifying the tool are both tedious and expensive processes,
requiring the submittal of data, which may not be easily
available, the paper suggests the product assessment route to
demonstrate that “the hardware item must be thoroughly
verified against the functional requirements”, thus, the inde-
pendent tool assessment is not necessary. In the opinion of
current authors, the tool output is still an abstract entity, not
the hardware item yet, and may contain errors that cannot be
detected during verification.

Lee and Dewey [37] shed more light on meeting DO-254
guidance in a form acceptable to the DER, by explicitly
proposing:

• requirements management and tracking, with the use
of such tools as Reqtify or DOORS

• Register Transfer Level (RTL) code validation, with
an automated method to measure RTL to a company
standard

• verification process assurance, with the use of AVM,
and

• producing design documentation, from requirements,
to the RTL code, to the bit streams or Graphic Data
System (GDS) II file format.

The mindset of the paper is that “DO-254 is not a burden but
a set of guides that helps standardize hardware systems as-
surance, making flight systems safe.”

Aldec and Actel, working in alliance, published some in-
formation on their efforts towards making their products
DO-254 certifiable. Sysenko and Pragasam [38] outlined
their process for airborne systems design assurance which re-
lies on the verification methodology called Hardware Em-
bedded Simulation (HES) and follows two traditional steps:
RTL simulation and gate-level simulation. It is a hardware-
software simulation platform driven by software that facili-
tates the implementation of the design in a reconfigurable
hardware, such as an FPGA, and then verification of the de-
sign functions. Earlier, Land and Bryant [39] presented
more details on the process, with MIL-STD-1553 bus chip
design as an example to comply with DO-254.

Lundquist in his thesis [40] looked at the problems that
arise when trying to DO-254 certify system-on-chip solu-
tions. Since more than 700 Actel FPGAs are used in the Air-
bus A380 commercial airliner, the Actel Fusion FPGA chip
with integrated analog and digital functionality was tested
according to the verification guidance. The results have
shown that a certification procedure for a standard non-em-
bedded FPGA based safety critical system is possible. How-
ever, the question of how these embedded chips could pass
certification to be used in safety-critical systems has not been
answered.

B.Tool Certification against DO-254

Since the growing complexity of electronics hardware re-
quires the use of automatic software tools, the DO-254 docu-
ment also includes a section on tool qualification. It distin-
guishes between design tools, which can introduce errors
into the product, and verification tools, which do not intro-
duce errors into the product but may fail detecting errors in
the product. The qualification process tool vendors have to
comply with is shown in Figure 2.

Several vendors recently began dealing with tool qualifi-
cation. Aldec [41] used a sample design of a system contain-
ing two connected boards: Aldec HES board (HES-
3X3000EX) generating stimuli and collecting results for De-
sign Under Test (DUT) and the second user designed board.
The verification process contained three independent stages:
simulation, verification, and comparison.

Lange [42] addresses circuit metastability in the context of
DO-254 tool certification. Metastability describes what hap-
pens in digital circuits when the clock and data inputs of a
flip-flop change values at approximately the same time. This

24 PROCEEDINGS OF THE IMCSIT. VOLUME 3, 2008

1. Identify the tool 2. Identify the process
the tool supports

6. Establish
qualification
baseline and

problem reporting

7. Basic tool
qualification

9. Design tool
qualification

yes

yes

no

no

no

10. Complete
the process

DO-254/ED-80
Tools

Assessment and
Qualification

Process

3. Independent
assessment?

4. Tool is design A/B/C
or verification A/B?

5. Relevant tool
history?

8. Tool is design tool
A/B?

no

yes

yes

Fig. 2 Tool assessment and qualification process according to
DO-254 [2].

leads to the flip-flop output oscillating and not settling to a
value within the appropriate delay window. This happens in
designs containing multiple asynchronous clocks, when two
or more discrete systems communicate. Metastability is a se-
rious problem in safety-critical designs as it causes intermit-
tent failures. A comprehensive verification solution is of-
fered by Mentor Graphics 0-In Clock Domain Crossing
(CDC) tool. The tool provides an added assurance that the
design will function correctly within the intended system. If
one has a specific requirement from the customer or a DER
to verify the clock domain crossings and identify and elimi-
nate instances of metastability, then one has to use one of the
tool assessment methods. Again, the one suggested is the In-
dependent Output Assessment.

Another verification tool from Mentor Graphics, Model-
Sim, is discussed by Lange [43] in a view of meeting the
DO-254 guidance. The paper outlines the exact ten steps to
go through the DO-254 assessment and qualification process,
as presented in Figure 2. The suggested way to proceed with
tool assessment is to avoid qualification by using an indepen-
dent output assessment method (Step 3 in Figure 2).

TNI [44] presents Reqtify, tool supporting requirement
traceability, impact analysis and automated documentation
generation which a ccording to DO-254 classification is a
verification tool. Prior to the use of the tool, a tool assess-
ment should be performed to ensure that the tool is capable
of performing the particular verification activity to an ac-
ceptable level of confidence. The assessment is limited to
those functions of the tool used for a specific hardware life
cycle activity, not the entire tool.

Dellacherie et al. [45] describe a static formal approach
that could be used, in combination with requirements trace-
ability features, to apply formal methods in the design and
verification of hardware controllers to support such proto-
cols as ARINC 429, ARINC 629, MIL-STD-1553B, etc. A
tool name imPROVE-HDL, a formal property checker, has
been used in the design and verification of airborne elec-
tronic hardware. Reqtify tool has been used to track the re-
quirements throughout the verification process and to pro-

duce coverage reports. According to the authors, using im-
PROVE-HDL coupled with Reqtify gives confidence that the
designers can assure that their bus controllers meet the
guidelines outlined in DO-254.

C.Tool Questionnaire

To identify issues and concerns in tool qualification and
certification, and help understand the underlying problems,
we conducted a survey to collect data on the experiences and
opinions concerning the use of programmable logic tools as
applied to design and verification of complex electronic har-
dware according to the RTCA DO-254 guidelines. The ob-
jective was to collect feedback, from industry and certificati-
on authorities, on assessment and qualification of these tools.

The questionnaire has been developed and distributed dur-
ing the 2007 National FAA Software & Complex Electronic
Hardware Conference, in New Orleans, Louisiana, in July
2007, attended by over 200 participants. In subsequent
months, we have also distributed this questionnaire to the
participants of two other professional events. It has been
made available via DO-254 Users Group website (
http://www.do-254.org/?p=tools). As a result of
these activities a sample of almost forty completely filed re-
sponses was received. Even though this may not be a sample
fully statistically valid, the collected results make for several
interesting observations.

The survey population, by type of the organization, in-
cluded the majority of respondents from avionics or engine
control developers (65%). Over 95% of respondents have
technical background (55% bachelor and 45% master de-
grees) and over 72% have educational background in elec-
tronics. While 97% of respondents have more than three
years of experience, 59% have more than 12 years. The most
frequent respondents’ roles relevant to the complex
electronics tools include:

• use of the tools for development or verification of sys-
tems (62%)

• managing and acting as company’s designated engi-
neering representative (26%)

• development of the tools (2%)
• development of components (12%).

The respondents’ primary interest was divided between veri-
fication (32%), development (27%), hardware (22%) and
concept/architecture (18%).
Considering criteria for the selection of tools for use in
DO-254 projects (Figure 3), as the most important have been
reported the following: the available documentation, ease of
qualification, previous tool use, and host platform, followed
by the quality of support, tool functionality, tool vendor
reputation, and the previous use on airborne project. Selec-
tion of a tool for the project is based either on a limited fa-
miliarization with the demo version (50%) or an extensive
review and test (40%). The approach to review and test the
tool by training the personnel and using trial period on a
smaller project seems to be prevailing.

For those who have experienced effort to qualify program-
mable logic tools (only 14% of respondents), the quality of
the guidelines is sufficient or appropriate (62%), so is the

ANDREW KORNECKI ET. AL.: SOFTWARE CERTIFICATION FOR SAFETY-CRITICAL SYSTEMS: A STATUS REPORT 25

ease of finding required information (67%), while the in-
crease of workload was deemed negligible or moderate

Fig. 3 Tool selection criteria in DO-254 projects (from left to right:
vendor reputation, functionality, acquisition cost, compatibility with
existing tools, compatibility with development platform, reliability,
availability of training, amount of training needed, documentation
quality, quality of support, previous familiarity with the tool, perfor-
mance on internal evaluations, host platform, compatibility with PLDs,
previous use on airborne products, tool performance, ease of qualifica-
tion, other criteria).

(80%). An interesting observation concerns the scale of
safety improvement due to qualification: marginal (43%),
moderate (21%), noticeable (7%) and significant (29%).
Similarly, the question about errors found in the tools may be
a source for concern: no errors (11%), few and minor errors
(50%), significant and numerous (17%). Despite all this, the
satisfaction level towards programmable logic tools was
high: more than 96% of respondents marked their satisfac-
tion level as 4 out of 5.

Overall, it is obvious that software tools used in design
and verification of complex electronics in safety-critical ap-
plications should be scrutinized because of concerns that
they may introduce design errors leading to accidents. How-
ever, the conducted survey indicated that the most important
criteria for tool selection are considered to be: available
documentation, ease of qualification, and previous tool use,
none of which is technical. In this view, work should be
done on developing more objective criteria for tool qualifica-
tion and conducting experiments with tools to identify their
most vulnerable functions that may be a source of subse-
quent design faults and operational errors. Some of the au-
thors specifically point out that the lack of research invest-
ment in certification technologies will have a significant im-
pact on levels of autonomous control approaches that can be
properly flight certified, and could lead to limiting capability
for future autonomous systems.

V. SUMMARY AND CONCLUSION

The paper makes an attempt to show the role of software
certification in development of dependable systems, both
from the software and hardware perspective. An important
observation is about the increasing role of software tools,
which are used to create and verify both software and hard-
ware. An extensive literature review has been presented, fo-
cusing on the issues of civil aviation guidance requiring

specified level of assurance for the airborne systems, both
from the software and hardware perspective.

Both DO-178B and DO-254 guidelines serve industry
well and promote rigor and scrutiny required by highly criti-
cal systems. However, the relative vagueness of these guide-
lines causes significant differences in interpretation by indus-
try and should be eliminated. RTCA called a new committee,
SC-205, with a charge to revise DO-178B guidance. Possi-
bly, a common ground should be found between RTCA
DO-254 and DO-178B guidelines.

REFERENCES

[1] RTCA DO-178B (EUROCAE ED-12B), Software Considerations in
Airborne Systems and Equipment Certification, RTCA Inc., Wash-
ington, DC, December 1992.

[2] RTCA DO-254 (EUROCAE ED-80), Design Assurance Guidance
for Airborne Electronic Hardware , RTCA Inc., Washington, DC,
April 2000.

[3] Romanski G., Certification of an Operating System as a Reusable
Component, Proc. DASC’02, 21st Digital Avionics Systems Conf.,
Irvine, Calif., October 27-21, 2002, pp. 5.D.3-1/9.

[4] Fachet R., Re-use of Software Components in the IEC-61508 Certifi-
cation Process, Proc. IEE COTS & SOUP Seminar, London, October
21, 2004, pp. 8/1-17.

[5] Parkinson P., L. Kinnan, Safety-Critical Software Development for
Integrated Modular Avionics, White Paper, Wind River Systems,
Alameda, Calif., November 2007.

[6] Moraes R. et al., Component-Based Software Certification Based on
Experimental Risk Assessment, Proc. LADC 2007, 3rd Latin-Ameri-
can Symposium on Dependable Computing, Morelia, Mexico, Sep-
tember 26-28, 2007, pp. 179-197.

[7] Maxey B., COTS Integration in Safety Critical Systems Using RTCA/
DO-178B Guidelines, Proc. ICCBSS 2003, 2nd International Confer-
ence on COTS-Based Software Systems, Ottawa, Ont., February
10-13, 2003, pp. 134-142.

[8] Halang W., J. Zalewski, Programming Languages for Use In Safety
Related Applications, Annual Reviews in Control, Vol. 27, pp. 39-45,
2003.

[9] Goodenough J.B., The Ada Compiler Validation Capability, ACM
SIGPLAN Notices , Vol. 15 , No. 11, pp. 1-8, November 1980.

[10] Santhanam V., The Anatomy of an FAA-Qualifiable Ada Subset
Compiler, Ada Letters, Vol. 23, No. 1, March 2003, pp. 40-43 (Proc.
SIGAda’02, Houston, Texas, December 8-12, 2002).

[11] Comar C., R. Dewar, G. Dismukes, Certification & Object Orienta-
tion: The New Ada Answer, Proc. ERTS 2006, 3rd Embedded Real-
Time Systems Conference , Toulouse, France, January 25-27, 2006.

[12] Brosgol B.M., Ada 2005: A Language for High-Integrity Applica-
tions, CrossTalk – The Journal of Defense Systems , Vol. 19, No. 8,
pp. 8-11, August 2006.

[13] Amey P., R. Chapman, N. White, Smart Certification of Mixed Criti-
cality Systems, Proc. Ada-Europe 2005, 10th Intern. Conf. on Reli-
able Software Technologies, York, UK, June 20-24, 2005, pp.
144-155.

[14] Hatton L., Safer Language Subsets: An Overview and Case History -
MISRA C, Information and Software Technology, Vol. 46, No. 7, pp.
465-472, 2004.

[15] Subbiah S., S. Nagaraj, Issues with Object Orientation in Verifying
Safety-Critical Systems, Proc. ISORC’03, 6th International IEEE
Symposium on Object-Oriented Real-Time Distributed Computing ,
Hakodate, Hokkaido, Japan, May 14-16, 2003.

[16] Kornecki A., N. Brixius, J. Zalewski, Assessment of Software Devel-
opment Tools for Safety-Critical Real-Time Systems, Technical Re-
port DOT/FAA/AR-06/36, Federal Aviation Administration, Wash-
ington, DC, July 2007.

[17] Kornecki A., J. Zalewski, Experimental Evaluation of Software De-
velopment Tools for Safety-Critical Real-Time Systems, Innovations
in Systems and Software Engineering – A NASA Journal, Vol. 1, No.
2, pp. 176-188, September 2005.

[18] Kornecki A., J. Zalewski, The Qualification of Software Development
Tools from the DO-178B Certification Perspective, Crosstalk - The
Journal of Defense Software Engineering, Vol. 19 , No. 4, pp. 19-23,
April 2006.

26 PROCEEDINGS OF THE IMCSIT. VOLUME 3, 2008

[19] Santhanam V. et al, Software Verification Tools Assessment Study,
Technical Report DOT/FAA/AR-06/54, Federal Aviation Administra-
tion, Washington, DC, June 2007.

[20] Dewar R., B. Brosgol, Using Static Analysis Tools for Safety Certifi-
cation, VMEbus Systems , pp. 28-30, April 2006.

[21] Dewar R.B.K., Safety Critical Design for Secure Systems, EE Times-
India, July 2006.

[22] Santhanam U., Automating Software Module Testing for FAA Certi-
fication, Ada Letters, Vol. 21, No. 4, pp. 31-37, December 2001
(Proc. SIGAda’01, Bloomington, MN, Sept. 30 – Oct. 4, 2001).

[23] Souyris J., D. Delmas, Exterimental Assessment of Astreé on Safety-
Critical Avionics Software, Proc. SAFECOMP 2007, 26th Intern.
Conf. on Computer Safety, Reliability and Security, Nuremberg, Ger-
many, Sept. 18-21, 2007.

[24] DO-178B and McCabe IQ, McCabe Software, Warwick, RI, Decem-
ber 2006.

[25] Safety Critical Systems Club Tools Directory, London, UK,
http://www.scsc.org.uk/tools.html

[26] Hilderman V., T. Baghai, Avionics Hardware Must Now Meet Same
FAA Requirements as Airborne Software, COTS Journal, Vol. 5, No.
9, pp. 32-36, September 2003.

[27] Cole P., M. Beeby, Safe COTS Graphics Solutions: Impact of
DO-254 on the Use of COTS Graphics Devices for Avionics, Proc.
DASC’04, 23rd Digital Avionics Systems Conference, Salt Lake City,
Utah, October 24-28, 2004, pp. 8A2-8.1/7.

[28] Federal Aviation Administration, Advisory Circular AC 20-152,
RTCA Document RTCA/DO-254 Design Assurance Guidance for
Airborne Electronic Hardware, June 30, 2005.

[29] Miner P.S. et al., A Case-Study Application of RTCA DO-254: De-
sign Assurance Guidance for Airborne Electronic Hardware, Proc.
DASC 2000, 19th Digital Avionics Systems Conference, Philadelphia,
PA, October 7-13, 2000, Vol. 1, pp. 1A1/1 – 1A1/8.

[30] Baghai T., L. Burgaud, DO254 Package Process and Checklists:
Overview & Compliance with RTCA/DO-254 Document, White Pa-
per, DO-254 Users Group, March 2004.

[31] Glazebrook I., The Certification of Complex Hardware Program-
mable Logic Devices (PLDs) for Military Applications, White Paper,
DNV UK, London, 2007.

[32] Pampagnin P., J.F. Menis, DO254-ED80 for High Performance and
High Reliable Electronic Components, Internal Paper, Barco-Siles
S.A., Peynier, France, 2007.

[33] Karlsson K., H. Forsberg, Emerging Verification Methods for Com-
plex Hardware in Avionics, Proc. DASC ‘05, 24th Digital Avionics
Systems Conference, Washington, DC, Oct.-30-Nov. 3, 2005, Vol. 1,
pp. 6.B.1-1/11.

[34] Lange M., T.J. Boer, Effective Functional Verification Methodolo-
gies for DO-254 Level A/B and Other Safety-Critical Devices, White
Paper, Rev. 1.1, Mentor Graphics, Wilsonville, Ore., 2007.

[35] Keithan J.P. et al., The Use of Advanced Verification Methods to Ad-
dress DO-254 Design Assurance, Proc. 2008 IEEE Aerospace Con-
ference, Big Sky, Montana, March 1-8, 2008.

[36] Lange M., T. Dewey, Achieving Quality and Traceability in
FPGA/ASIC Flow for DO-254 Aviation Projects, Proc. 2008 IEEE
Aerospace Conference , Big Sky, Montana, March 1-8, 2008.

[37] Lee M., T. Dewey, Accelerating DO-254 for ASIC/FPGA Designs,
VME and Critical Systems, pp. 28-30, June 2007.

[38] Sysenko I., R. Pragasam, Hardware-based Solution Aides: Design As-
surance for Airborne Systems, Military Embedded Systems, pp.
26-28, July 2007.

[39] Land I., I. Bryant, FPGA IP Verification for Use in Severe Environ-
ments, Proc. 2005 Annual MAPLD International Conference, Wash-
ington, DC, Sept. 7-9, 2005.

[40] Lundquist P., Certification of Actel Fusion according to RTCA
DO-254. Master Thesis, Report LiTH-ISY-EX-ET-07/0332-SE,
Linköping University, Sweden, May 4, 2007.

[41] Aldec Corp., DO-254 Hardware Verification: Prototyping with Vec-
tors Mode. White Paper, Rev. 1.2, Henderson, Nevada, June 2007.

[42] Lange M., Automated CDC Verification Protects Complex Electronic
Hardware from Metastability Issues, VME Critical Systems, Vol. 26,
No. 3, pp. 24-26, August 2008.

[43] Lange M., Assessing the ModelSim Tool for Use in DO-254 and
ED-80 Projects, White Paper, Mentor Graphics Corp., Wilsonville,
Ore., May 2007.

[44] Baghai T., L. Burgaud, Reqtify: Product Compliance with
RTCA/DO-254 Document, TNI-Valiosys, Caen, France, May 2006

[45] Dellacherie S., L. Burgaud, P. di Crescenzo, Improve – HDL: A
DO-254 Formal Property Checker Used for Design and Verification
of Avionics Protocol Controllers, Proc. DASC’03, 22nd Digital
Avionics Systems Conf., Indianapolis, Oct. 12-16, 2003, Vol. 1, pp.
1.A.1-1.1-8.

http://www.scsc.org.uk/tools.html

