

Abstract— This paper addresses the problem of educating
software engineering professionals who can efficiently and
effectively develop real-time software intensive control systems in
the global community. A framework for developing curricula that
support such education is presented. The curriculum framework
is based on the work of two education projects: the ILERT
(International Learning Environment for Real-Time Software
Intensive Control System) project, and the software engineering
efforts of the ACM/IEEE-CS Joint Task Force on Computing
Curricula. The authors describe a curriculum framework that
integrates principles, content, and organization from the two
projects, and which satisfies the intent and requirement of both
projects.

I. INTRODUCTION

HE development of software for real-time, embedded,
safety-critical systems (such as for controlling and

supporting systems in aviation and space, medicine and
health, and atomic energy) is a complex and challenging
problem. The health, safety, welfare, and productivity of the
public and the world economy increasingly depend on
software-intensive systems – the dependability of these
systems is paramount. Unfortunately, software developers
do not consistently provide safe, secure, and reliable
systems; such systems are often of poor quality, and cost
and schedule overruns are common. There has been
significant improvement in software development methods
and practices in the last twenty years. The application of
software engineering best practices to such development has
proven the value of such practices [1]-[3]. In order to
enhance such capabilities for software engineering
professionals there have been numerous calls to improve
software engineering education, especially in the area of
real-time embedded systems [4]-[6].

The last twenty years have also witnessed significant
advancements in the state of computer science education
(and in allied fields such as computer engineering,
information systems, and software engineering). The
Association for Computing Machinery (ACM), the IEEE

Computer Society (IEEE-CS), and CSAB (which determines
criteria for accreditation of programs in computer science
and software engineering) have provided encouragement,
support, and guidance in developing quality curricula that
are viable and dynamic. Degree programs have moved from
language- and coding-centered curricula to those that
emphasize theory, abstraction, and design. To address the
problems in software development the ACM/IEEE-CS Joint
Task Force on Computing Curricula has produced
guidelines for curricula in computer engineering, computer
science, information systems, information technology, and
software engineering. The software engineering guidelines,
SE2004 (Software Engineering 2004, Curriculum
Guidelines for Undergraduate Degree Programs in
Software Engineering) [7], provide information and
guidance on various curriculum issues: objectives, content,
organization, courses, and pedagogy.

More recently the ILERT (International Learning
Environment for Real-Time Software Intensive Control
System) project [8] has been involved in the creation of an
international curriculum framework centered on RSIC
(Real-Time Software-Intensive Control) systems. The
ILERT study explores a mechanism for involving students
from multilingual, geographically separated institutions in a
coordinated educational experience. The ultimate objective
is the creation of a RSIC curriculum model, which can be
used by engineering schools both in the USA and the EU.

The purpose of this paper is to discuss how the work of
the ILERT project might be used to develop an SE2004
software engineering curriculum which satisfies the RSIC
framework. In the following sections we provide additional
detail about ILERT, the SE2004 guide, and the RSIC
curriculum framework. Then, this material is integrated to
outline a curriculum which satisfies both the SE2004 and the
RSIC frameworks.

T

An RSIC-SE2004 Curriculum Framework

Thomas B. Hilburn
Embry-Riddle Aeronautical
University, U.S.A., Email:

hilburn@erau.edu

Andrew Kornecki
Embry-Riddle Aeronautical
University, U.S.A., Email:

kornecka@erau.edu

Jean-Marc Thiriet
Grenoble Université, France, Email:

jean-marc.thiriet@ujf-grenoble.fr

Wojciech Grega
AGH University of Science &

Technology, Poland, Email:
wgr@agh.edu.pl

Miroslav Sveda
Brno University of Technology,

Czech Republic, Email:
sveda@fit.vutbr.cz

II. THE ILERT PROJECT
The analysis, design, implementation, administration, and

assessment of international curricula will become
increasingly important in the global community of the 21st
century. In support of this critical issue, the European
Commission and the US Department of Education have
funded the ATLANTIS initiative to promote collaboration in
higher education between European and American
universities. One American (Embry-Riddle Aeronautical
University, Daytona Beach, FL) and three European
Universities (AGH University of Science and Technology,
Krakow, Poland; Brno University of Technology, Czech
Republic; and The University of Grenoble, France) are
currently working on the framework of a new common
curriculum in real time-software systems. This two-year
project "Toward International Learning Environment for
Real-Time Software Intensive Control Systems" (EC grant:
2006-4563/006 001, US grant: P116J060005,
http://www.ilert.agh.edu.pl) was launched in January 2007.
Project work is concerned with program objectives and
outcomes, curriculum content and pedagogy, program
administration (academic credit, course schedules, exchange
of students and staff, etc.), and program assessment and
accreditation. Thus far, the project has produced the
following deliverables:
• An analysis of industry requirements for graduates in

the RSIC domain
• An identification of the RSIC learning objectives and

student outcomes
• An analysis of European Credit Transfer System

(ECTS) and the mechanism of credit transfer at U.S.
Colleges and Universities

• An identification of activities and data for program
assessment and evaluation, and those issues and
elements required to consider program accreditation

• A description of an international, interdisciplinary RSIC
curriculum framework

• A preliminary design for a selected unit supporting the
proposed RSIC curriculum.

For the analysis of industry requirements, a survey of
USA and European industry engaged in real-time software-
intensive control systems was conducted [9]. The survey
consisted of two parts: General Skills and Attitudes (10
items), and Technical Knowledge Areas (15 items). For
example, one of the Technical Items was “Knowledge of
software design and development concepts, methods and
tools”. Respondents were ask to select “Essential, Important,
Unrelated, or Unimportant”, with a possibility to provide
comment.

Survey results from 43 companies were analyzed and
summarized. In the General Skills part, the highest rated
skills as follows:
• Work as a part of a multidisciplinary team
• Analyze, understand and define the problem

For the Technical Knowledge part, the following were

rated the highest:
• Software design and development concepts, methods

and tools

• System specification and design methods
Project work continues on experimental concurrent

delivery of the designed RSIC unit at the four partner sites.
Finally, the project will provide reflection on a process and
methodology for creation of multidisciplinary, transatlantic
engineering programs, including guidelines for extension of
the approach to other engineering disciplines.

TABLE I.
RSIC COMPONENTS

Software Engineering (SoftEng-)

Software engineering concepts and practices, software lifecycle
models, project management, software processes, software
construction methods and practices, software modeling and formal
representation; software requirements; software architectural and
module design; testing and quality assurance; software maintenance;
and notations and tools.

Digital Systems (DigSys-)

Digital system concepts/operation, design of combinatorial/sequential
circuits, concepts and operation of microcontrollers/microprocessors,
assembly language, rudimentary interfacing and exception handling,
large scale integration devices and tools, interfacing, advanced
memory management, fault tolerant hardware.

Computer Control (CompCtrl)

Concepts of feedback control, time and frequency domains,
continuous and discrete models of dynamical systems, state analysis,
stability, controllability and observability, controller design,
implementing control algorithms in real-time, integrated control
design and implementation use of analysis and design tools.

Real-Time Systems (RTSys)
Timing and dependability properties of software intensive systems,
RTOS concepts and applications, concurrency, synchronization and
communication, scheduling, reliability and safety, etc.

Networking (Network)
Data communication, network topology, analysis and design,
information security, algorithms, encryption, bus architectures,
wireless, etc. distributed control and monitoring

System Engineering (SysEng)
System engineering concepts, principles, and practices; system
engineering processes (technical and management); system
requirements, system design, system integration, and system testing;
special emphasis on the development of a RSIC system and the
integration of RSIC system elements.

III. THE RSIC CURRICULUM FRAMEWORK
This section provides information on the organization and
content of the RSIC curriculum framework. The framework
is a high-level curriculum specification that is detailed
enough to guide the development of a RSIC program, which
supports the RSIC objectives and outcomes, and yet is

flexible enough to account for specializations, constraints,
and requirements of various programs, institutions, and
regions.

The basic organizational unit for the framework is a RSIC
“component”. A RSIC component is a curriculum unit
which covers theory, knowledge and practice which
supports the RSIC curriculum objective and outcomes.

TABLE II.
SOFTWARE ENGINEERING

Description Software engineering concepts and practices, software lifecycle models, project management, software processes,
software construction methods and practices.

Prerequisite
Knowledge

Ability to design, implement and test small programs (100 lines of code), written in a commonly used high-level
programming language.

Learning
Outcomes

Upon completion of this component, students should be able to
• Describe the major problems in the development of a large, complex software system.
• Describe and discuss issues, principles, methods and technology associated with software engineering theory and

practices (e.g., planning, requirements analysis, design, coding, testing, quality assurance, risk assessment, and
configuration management).

• Working as part of a team, use a defined software development process to develop a high-quality modest sized
software product (1000 lines of code).

• Describe issues, principles, methods and technology associated with the use of formal modeling in software
engineering.

• Describe, discuss, and apply the commonly accepted principles of software quality assurance (reviews, inspections
and testing).

• Apply requirements engineering principles of elicitation, analysis, and modeling to the development of a
requirements specification.

• Describe and analyze different software architectures views and styles.
• Describe and discuss the structured and object-oriented design methodologies.
• Describe and discuss the principles, methods and practices of software evolution.
• Show capability with various software engineering tools used for formal software modeling, requirements

engineering and software design.
Facilities and
Equipment

No special equipment or laboratory is required for this component.
Students will need access to a computer system equipped with a program development environment (such as Eclipse).
There may be a need for process, management and formal modeling tools; but, typically word processors, spreadsheets
and simple scheduling tools should be sufficient.

Guidelines and
Suggestions

The emphasis in this component is for students to know and understand how large complex systems should be developed,
not, at this point, to be able to develop such systems. For instance, they should understand and be able to describe and
discuss the activities and practices that take place in each software development life-cycle phase; they should understand
the importance of requirements and the problems that ensue if requirements are not properly elicited and specified; they
should understand the various elements of project management; they should come to realize that testing is not the only
way to ensure quality; they should come to see software development as an engineering discipline; and they should
understand the importance of discipline and process to the development of software.
Case studies are particularly helpful in teaching software engineering principles – when students study examples of
actual requirements, design, test and planning documents, they better understanding the nature of software engineering
and what it takes to develop high-quality software products. There are many introductory software engineering textbooks
that contain such examples (Pressman, Somerville, Lethbridge, Pfleeger)
This component should include a software team project. It is extremely important that the software product developed be
modest in scope and functionality. The purpose of the project is for students to learn about working as part of the team,
to experience the software-life cycle, to see how to assure quality, to use planning and process procedures, to document
the team’s work, and to appreciate the difficulty of developing a high-quality software product. The emphasis should be
on teamwork, quality and process.
This component is intended to provide more in-depth coverage of software engineering topics than the Basic Level
component. However, the coverage still must be at a level that can be covered in one or two courses. It is not intended
that there would be an in-depth study of each of the separate areas of formal modeling, requirements, architecture and
design, and quality and testing. Such in-depth coverage would require three or four course of study.
A development project could involve the creation of a requirements and architecture specification for a software system
with more complexity than the Basic level team project.
This component would benefit from the use of case study documents (requirements, architecture, module design, code,
test plans, project plans, etc.) for a reasonably complex system. Analysis and maintenance problems focused on the case
study documents would be helpful in achieving the component learning outcomes.

Table I describes the RSIC components in six identified
RSIC areas: Software Engineering, Digital Systems,
Computer Control, Real-Time Systems, Networking, and
Systems Engineering.

 The RSIC Curriculum Framework does not specify the
way in which component topics might be formed into
modules or courses. Component topics might be focused in
one or two courses, or spread among several courses, along
with other non-RSIC topics. Depending on the course rigor
and the required prerequisite knowledge, the material can be
at either a basic or an advanced level. The curriculum
framework includes more detailed specifications of each
component: prerequisite knowledge, component learning
objectives, information about required facilities and
equipment, and guidelines and suggestions for course design
and delivery. Table II is an example of one such component
specification. The full details of each competent

specification will be included in the final ILLERT project
report.

The RSIC curriculum framework also makes
recommendations about non-RSIC courses or units that
should be part of a RSIC program, as prerequisite courses or
to supplement the components as part of a full degree
program. The recommendations call for courses in the
following areas:
• Mathematics (Differential and Integral Calculus,

Differential Equations, Discrete Mathematics, Statistics,
Linear Algebra)

• Physics (mechanics, E&M, thermo, fluids)
• Electrical Engineering (circuit analysis, basic

electronics)
• Engineering Economics
• Introduction to Computer Science with Programming

IV. THE SE 2004 CURRICULUM FRAMEWORK
The software engineering guidelines document, SE2004

[7], provides a comprehensive and detailed set of material to
support the development of an undergraduate curriculum in

software engineering. Specifically it includes chapters on the
following:
• The Software Engineering Discipline
• Guiding Principles
• Overview of Software Engineering Education

Knowledge (SEEK)
• Guidelines for SE Curriculum Design and Delivery
• Courses and Course Sequences
• Adaptation to Alternative Environments
• Program Implementation and Assessment

The SEEK describes the body of knowledge that is

appropriate for an undergraduate program in software
engineering. It designates “core” material which SE2004
recommends is necessary for anyone to obtain an
undergraduate degree in the field. It designates Bloom’s
levels for the knowledge units [10] and makes a time
allocation of “contact” hours. Table III lists the knowledge
areas that make up the SEEK and indicates the minimum
total time recommended for each area. The SE2004 contains

a more detailed description of the content and organization
of each area.

In addition to the core materials, undergraduates are
encouraged to specialize in some area related to software
engineering application. The following specialties are
presented in the SE 2004 volume:

a. Network-centric systems
b. Information systems and data processing
c. Financial and e-commerce systems
d. Scientific systems
e. Telecommunications systems
f. Fault tolerant and survivable systems
g. Highly secure systems
h. Safety critical systems
i. Embedded and real-time systems
j. Biomedical systems

TABLE IIIII.
SEEK KNOWLEDGE AREAS

Knowledge Area Hours
 Computing Essentials 172
 Mathematical & Engineering Fundamentals 89
 Professional Practice 35
 Software Modeling & Analysis 53
 Software Design 45
 Software V & V 42
 Software Evolution 10
 Software Process 13
 Software Quality 16
 Software Management 19

total hours 494

TABLE IV.
SE2004 CORE COURSES

Number Title
SE101 Software Engineering and Computing I
SE102 Software Engineering and Computing II
SE103 Software Engineering and Computing III
SE211 Software Construction

SE212 Software Engineering Approach to Human Computer
Interaction

SE311 Software Design and Architecture
SE321 Software Quality Assurance and Testing
SE322 Software Requirements Analysis
SE323 Software Project Management
SE400 Software Engineering Capstone Project

k. Avionics and vehicular systems
l. Industrial process control systems

Of these, several certainly correlate strongly with the

RCIS components. This provides the motivation and
rationale for proposing a framework for an SE 2004 RSIC
curriculum.SE2004 also includes a set of courses and their
descriptions which, when grouped together, provide for a set
of courses which cover the SEEK core knowledge. Table IV
describes one such set of courses.

Courses SE101, SE102 and SE103 provide an overview
of software engineering with topics typically included in
introductory courses in computer science, low level design,
and programming. Each course, except for SE400, was
envisioned to be offered over approximately 14 weeks, with
3 contact hours per week. SE400 covers a full academic year
of work. Other schedules and timelines are possible. SE2004
provides detailed descriptions of each course.

In addition, SE2004 contains several models (or patterns)
of how the courses could be arranged into a full three or four
year curriculum. The models include three-year and four-
year patterns, with versions for North America, Europe,
Japan, Australia, and Israel, Table V depicts a four year
“North American” curriculum pattern. In addition to the SE
core courses in Table V (shaded gray), the SE2004 also
contains course descriptions for supporting courses such as
Discrete Math I and II, Data Structures and Algorithms,
Database Systems, Computer Architecture, Operating
Systems and Networking, etc.

V. A COMBINED SE 2004-RSIC CURRICULUM
In this section we present a curriculum that incorporates

the RSIC requirements within the SE2004 requirements.
Table VI outlines a four year RSIC-SE2004 curriculum. It
represents a modification of Table V: all of the software
engineering core courses were retained; and technical
electives and science electives items were replaced with
courses which cover the RSIC curriculum components.

The courses in bold type in Table VI represent courses
that directly address the requirements of the RSIC
components: for example, DigSys-1 and DigSys-2 would
cover the Digital Systems Component. Notice that SoftEng
is designated in several courses. This was necessary in order
to cover all the RSIC SE advanced topics. Due to the nature
of this specific SE program, such topics would be covered in
more depth than strictly required by the RSIC Framework.
In addition, a number of course were added in order to
support prerequisite requirements for RSIC courses:
differential equations, electrical engineering and linear
algebra.

The course “Prof RSIC Practice” is a replacement for the
course NT291 (Professional Software Engineering Practice -
knowledge, skills, and attitudes that software engineers must
possess to practice software engineering in a professional,
responsible, and ethical manner.). The RSIC course would
contain much of the material from NT291; however, it
would also furnish students with material and activities that

TABLE V
SE2004 NORTH AMERICAN CURRICULUM PATTERN

Year 1 Year 2 Year 3 Year 4

Sem 1A Sem 1B Sem 2A Sem 2B Sem 3A Sem 3B Sem 4A Sem 4B

SE101 SE102 SE 200 SE 211 SE 212 SE 311 SE400 SE400

Dis Math I Dis Math II Data Str & Alg Database SE 321 SE 322 SE 323 Tech Elect

Calc 1 Calc 2 Physics 1 Physics 2 Comp Arch Prof SE Practice OS &
Network Tech Elect

Gen Ed Gen Ed Gen Ed Statistics Sci Elect Tech Elect Eng Econ Open Elect

Gen Ed Gen Ed Gen Ed Sci Elect Sci Elect Gen Ed Gen Ed Open Elect

TABLE VI
A RSIC-SE2004 CURRICULUM

Year 1 Year 2 Year 3 Year 4

Sem 1A Sem 1B Sem 2A Sem 2B Sem 3A Sem 3B Sem 4A Sem 4B

SE101 SE102
SE 200
SoftEng-1

SE 211
SoftEng-2

SE 212
SoftEng-3

SE 311
SoftEng-5

SE400
SysEng-1

SE400
SysEng-2

Dis Math I Dis Math II Data Str & Alg DigSys-1
SE 321
SoftEng-4

SE 322
SoftEng-6

SE 323
SoftEng-7

Tech Elect

Calc 1 Calc 2 Physics 1 Physics 2 DigSys-2 RTSys Prof RSIC
Practice Tech Elect

Gen Ed Gen Ed Gen Ed Statistics CompCtrl Network Eng Econ Open Elect

Gen Ed Gen Ed Diff Eqns Elec Eng OS & Network Lin Alg Gen Ed Gen Ed

support two of the non-technical RSIC curriculum
outcomes:
• An ability to work effectively in an international

environment
• An understanding of the impact of engineering solutions

in a global and societal context

One other important item in Table VI is that SysEng was
designated as part of the SE400. SE400 is a capstone project
course and it is envisioned that the project will be a real-
time software intensive control system. It relies on and will
bring together the knowledge and practices learned by
students in the other RSIC courses. Although students will
have been introduced to some system concepts in other
courses, SE400 is the ideal place to focus on system issues:
requirements require system level decisions about allocation
and specification; the system architecture will involve
software and hardware subsystems and components; systems
quality assurance measures will have to be instituted; and
the procedures and activities’ involved in system integration
will be critical.

Although Table VI provides an outline of a RSIC-SE400
curriculum, much more analysis and detail is needed to
support implementation of such a curriculum. However, it is
the hope of the authors that this paper, along with the other
work of the ILERT project, will motivate and support
faculty who wish to create and implement educational
programs which will improve the development of RSIC
systems.

VI. CONCLUSION
Creation of RSIC systems engages a large variety of

engineering disciplines. Due to worldwide implementation
of such systems, a well prepared workforce of scientists and
engineers is required. They must be able to work
cooperatively in multi-disciplinary and international
settings. The software intensive nature of RSIC systems
require engineers who understand and can use the software
engineering knowledge and practices required to build such
systems. The authors feel that the RSIC-SE2004 the
potential to have broad impact on the future of engineering
education and on the efficient and effective development of
RSIC systems.

In addition, the process and format of the RSIC-SE2004
curriculum framework could be used as a model for the
development of other “integrated” curricula (e.g., a RSIC
curriculum for computer engineering, or a RSIC curriculum
for control engineering).

ACKNOWLEDGMENT
The authors would like to thank the European Commission,
the US Department of Education and the ATLANTIS
program for their support of ILERT project: "Toward
International Learning Environment for Real-Time Software

Intensive Control Systems" (EC grant: 2006-4563/006 001,
US grant: P116J060005, http://www.ilert.agh.edu.pl).

REFERENCES
[1] M. Cusumano, A. MacCormack, C. Kemerer, and B. Crandall,

“Software Development Worldwide: The State of the Practice”, IEEE
Software, pp.28-34, vol. 20, no. 6, Nov./Dec. 2003.

[2] N. Davis, N. and J. Mullaney, The Team Software Process (TSP) in
Practice: A Summary of Recent Results, CMU/SEI-2003-TR-014,
Software Engineering Institute, Carnegie Mellon University, Sep.
2003.

[3] C. Jones, “Variations in Software Development Practices”, IEEE
Software, pp.22-37, vol. 20, no. 6, Nov./Dec. 2003.

[4] W. Humphrey and T. Hilburn, “The Impending Changes in Software
Education”, IEEE Software, Vol. 19 , No. 5, pp. 22-24, Sep. / Oct., 22
– 24, 2002

[5] J. Knight, N. Leveson, “Software and Higher Education”, Inside Risks
Column, Communications of the ACM, p. 160, vol. 49, no. 1, Jan.
2006.

[6] L. Long, “The Critical Need for Software Engineering Education”,
CrossTalk: The Journal of Defense Software Engineering, pp. 6-10,
Jan. 2006.
(http://www.stsc.hill.af.mil/crosstalk/2008/01/0801Long.pdf)

[7] ACM/IEEE-CS Joint Task Force on Computing Curricula, Software
Engineering 2004,Curriculum Guidelines for Undergraduate Degree
Programs in Software Engineering, Aug. 2004.
(http://www.acm.org/education/curricula.html)

[8] W. Grega, A. Kornecki, M. Sveda, and J. Thiriet, “Developing
Interdisciplinary and Multinational Software Engineering
Curriculum”, Proceedings of the ICEE’07, Coimbra, Portugal, Sep. 3-
7, 2007.

[9] A. Pilat, A. Kornecki, J. Thiriet, W. Grega, and M. Sveda, “Industry
Feedback on Skills and Knowledge in Real-Time Software
Engineering”, Proceedings of 19th EAEEIE Annual Conference,
Tallinn, Estonia, Jun29 - Jul 2, 2008.

[10] B. S. Bloom, Editor, Taxonomy of Educational Objectives: The
Classification of Educational Goals: Handbook I, Cognitive Domain,
Longmans, 1956.

