
Learning Real-Time Programming Concepts through VxWorks Lab
Experiments

Andrew J. Kornecki
 <korn@db.erau.edu>

Embry Riddle Aeronautical University,
Daytona Beach, FL

Janusz Zalewski
<jza@ece.engr.ucf.edu>

University of Central Florida, Orlando, FL

Daniel Eyassu
<Daniel.Eyassu@lmco.com>

Lockheed-Martin Information Systems, Orlando, FL

Abstract

The paper describes activities leading to support of an
academic instruction and industrial training in the area
of time critical software development. Most of the
modern software deals with external interfaces and has
to consider various timing implications. Familiarity with
real-time concepts and proper use of software
engineering process to develop real-time software
became the critical component of modern software
engineering. We describe a dedicated real-time
laboratory infrastructure, the organization of the
coursework, necessary Internet support, and the
experiences of over five years offering real-time
instruction in the context of software engineering
focused undergraduate and graduate academic
programs.

1. Introduction

Proliferation of computer technology affects nearly all
areas of human endeavor. More and more applications
use computers that interface with various external
devices, react to the external stimuli, and often control the
environment in a closed loop fashion. This feature
requires the software to be developed using tools and
methods beyond the scope of conventional programming

classes. It requires knowledge of software development
for the embedded real-time systems.

Examples of such systems are: medical equipment, aircraft
avionics, air traffic control, weapon control, nuclear power
stations – to name a few. The software developers must
be at ease with the basic concepts distinguishing the
real-time applications from the applications where the time
criticality, safety, and response to external stimuli is not
an issue. Such concepts as timing, concurrency,
synchronization and communication, resource sharing,
and external device handling are of critical importance.

In an effort to provide students with such knowledge,
several universities use industry equipment grants to
offer courses supporting the missing component. In many
cases the only college level education on embedded
systems can be obtained from electrical engineering or
hardware-focused computer engineering programs. The
students and faculty have good grasp of the designed
system hardware but too often the software component
of the system is of marginal quality. The faculty and
students do not have enough background and experience
to produce quality software. The truth is that the software
is responsible for most of the system functionality.
Software became major component of the modern system
and the quality of software, more than the hardware is the
critical element of the system success.

University laboratories are usually equipped with general
purpose operating systems (Windows or UNIX) on a
network in a multi-user setup. Such configuration may set
limits on the type of software to be developed (only a
standard data processing using conventional
input/output devices). However, the industry badly needs
engineers with knowledge of specialized time-critical
reactive systems. Graduates who understand how the
software will interact with the operating system and the
environment are in high demand.

2. Laboratory Infrastructure

A dedicated real-time laboratory supporting the
development of real-time software, is the important
component of modern computer science and engineering
education. Such laboratory has to include a platform for
development of embedded system in a host-target
environment. The students shall have access to a
development environment supporting all lifecycle
including requirements, design, implementation, and
testing. As a critical element of the lab the students must
be able to develop code on the host and download,
debug and test on the target. The target run time system
must have characteristics of a real-time operating system
supporting concurrency, synchronization and
communication primitives, interrupt handling, pre-emptive
scheduling and deterministic behavior.

The above mentioned environment can be acquired for a
relatively low cost thanks to the current policies of many
vendors offering special university programs. Such
programs provide free unsupported software licenses
holding usually heavy price-tag when acquired by
industry site. Typical software components of the lab are
CASE tools, development tools (including compilers,
debuggers, and integrated developer interfaces), real-time
kernels, performance analysis tools, etc. There have been
also possibilities to secure hardware donations from
industry partners or an additional funding supported by
a grant sponsoring organizations. The hardware usually
requires standard host development platform (Windows
or UNIX based) and an appropriate target systems.

Both Embry Riddle Aeronautical University and the
University of Central Florida developed appropriate labs
allowing their undergraduate and graduate students to
develop expertise in host-target real-time software
development. The selected environment is
Tornado/VxWorks, courtesy of the software grant from
Wind River System Academic Program. The details of
implementation are described below.

3. Tornado Features
VxWorks, the run-time component of the Tornado
embedded development environment, is a widely adopted
real-time operating system (RTOS) in the embedded
systems industry. VxWorks is flexible, with powerful

Fig 1. Tornado Architecture (from Wind River Systems promotional literature)

application programming interfaces (APIs); scalable, from
the simplest to the most complex product designs. It is
extremely reliable, used in mission-critical applications
ranging from anti-lock break systems to inter-planetary
exploration, and available on the most popular CPU
platforms [1]

The VxWorks microkernel supports a full range of real-
time features including fast multitasking, hardware
interrupts, and both priority-preemptive and round-robin
scheduling. The microkernel design minimizes system
overhead and enables fast, deterministic response to the
external events. The run-time environment also provides
efficient intertask communication mechanisms, permitting
independent tasks to coordinate their actions within a
real-time system. The developer may design applications
using shared memory (for simple sharing of data),
message queues and pipes (for intertask messaging
within a CPU), sockets and remote procedure calls (for
network-transparent communication), and signals (for
exception handling). For controlling critical system
resources, several types of semaphores are provided –
binary, counting, and mutual exclusion with priority
inheritance

VxWorks powerful Tornado integrated development
environment is available for a variety of hardware
platforms and widely used by industry. The basic
components of Tornado include:

• Kernel (VxWorks) – to provide task scheduling and
configurable real-time operating systems utilities on
the target

• Boot ROM – to support target initialization and boot
procedure

• Network Facilities with Target Server – to provide
target connection with development environment

• Module Loader and Symbol Table – to incrementally
 load object modules into a target system and keep
the operating system and application software
information visible to the development environment

• Project Facility (Configurator) – to provide graphical
interface automating configuration of the operating
system and building VxWorks applications,

• Shell (WindSh) – to interpret and execute C-
language expressions giving an easy-to-use interface
to the target environment

• Graphic debugger (CrossWind) – to debug the
programs graphically with GNU gdb debugging
engine

• Browser – to present graphical information and
monitor the state of the target operating-system
objects

• Integrated Simulator (VxSim) – to begin developing
and debugging code even if target hardware is
unavailable

• Logic Analyzer (WindView) – to provide graphical
representation of the application dynamic behavior
displaying the timing diagrams

The host development environment can be installed on
either WindowNT or UNIX workstation (SOLARIS, HP).
The development environment is an integrated suite of
host tools with Editor, Shell, Debugger, Browser, and
Configurator. The Target Server component is
responsible for the connection to the target. On the target
side, in addition to the CoreOS with microkernel and the
Board Support Package (BSP), there is a minimal Debug
Agent responsible for the communication (Fig.1). The
VxWorks kernel and the application run on the target with
only minimal interference of the Debug Agent tasks.

4. Experiment Format

Once such environment is in place, the challenge is to
create an infrastructure to allow students easy access and
include the lab experiments in the course sequence. The
critical task is to teach students basic real-time concepts.

At ERAU, we created a series of laboratory experiments
to be performed by the students. The sequence addresses
the issues of timing, multi-tasking, shared resources and
locking, communication, signals and interrupts, and
scheduling. As the operating system plays an important
role in developing real-time software, the experiments
focus on using the kernel primitives by the application
program. The experiments are designed to be completed
by a student during a single semester, or during a course
of independent study, while learning the appropriate
theory component in the classroom. The earlier version of
the course offering used UNIX SystemV as the base, with
the real-time experiments implemented in C/POSIX and
Ada [2].

The key issue was how to make the laboratory description
available to the students. The widespread use, easy
access and popularity of Internet gave an easy answer.
Making the lab accessible from the university Real-Time
Lab Web server provides an easy access to the
experiments both from the laboratory and from home. In
addition, the hypertext ability to cross-link documents
provides better learning environment than a standard text

document could provide. Since the source code is
available on-line, the example programs can be easily
accessed (no retyping is required).

Each lab experiment contains the following sections: (a)
introduction, (b) objectives, (c) description, (d) example
program, (e) procedures, (f) follow on experiment, and (g)
additional information. The introduction section gives a
brief description of the experiment and how it applies to
a real-world situation. The objective describes what
should be learned from the experiment. The description
section touches the theory behind the real-time concept
– the topic of the lab experiment. It also explains the terms
and operating system constructs used to implement the
example program. The example program is a fully
functional program that the student can compile and run.
The program demonstrates the real-time concept - the
objective of the experiment. The follow-on is to be
completed by the student. The student may either modify
the existing program or write a new one.

By experimenting with the demo and modifying the
program, students gain experience in dealing with a
real-time environment. At the same time, the design and
coding time is reduced since most of the code is already
written. Student can focus on experimenting and learn
“how does it work”.

A laboratory report must be submitted with each
experiment. The report has a pre-defined format. The
report presents the results of running both the example
program and the student's modified/derived program.
Finally, the report requires an analysis. In this way, the
student not only has to complete the experiments, but
also think about them.

5. Real Time Concepts

The real-time concepts have extensive literature.
However, to meet the educational objectives, we limited
the experiments to a few core concepts [3]. The concepts
to be taught and experimented with include: timing, multi-
tasking, semaphores/mutexes, message queues, task
scheduling (round-robin and preemptive priority based),
priority inversion, and signals and interrupt handling

We start with timing - determining the execution time is a
base for analyzing the task deadlines. Next comes the
ability to create, manage and handle multiple concurrent
tasks - critical for modern real-time systems. Shared
resources, message queues, and signals are used for task
synchronization, data communication and information

transfer. An access to critical resources is controlled
using semaphores and mutex constructs. Scheduling with
time slicing or with priorities show how tasks are meeting
their timing constraints. Responding to external stimuli
requires interrupt handling.

Nine experiments were developed. Focus of each
experiment is a different real-time concept. The detailed
description is available of the Internet from
http://rt.db.erau.edu/

Experiment #1: Timing - to demonstrate how to estimate
execution time of a running program using VxWorks
execution timer and POSIX timing functions.

Experiment #2: Multi-Tasking - to demonstrate how to
initiate multiple processes using Vxworks tasking routines
constructed as a set of independent thread of execution
and their own set of system resources.

Experiment #3: Semaphores - to demonstrate the use of
VxWorks semaphores which permit multitasking
applications to coordinate their activities and control
access to shared data structures.

 Experiment #4: Message Queues - to demonstrate the
use of VxWorks message queues being the primary
intertask one-way communication mechanism within a
single CPU

Experiment #5: Round-Robin Task Scheduling - to
demonstrate the use of VxWorks round-robin task
scheduling facilities with a user controlled time slice.

Experiment #6: Preemptive Priority Based Task
Scheduling - to demonstrate the use of VxWorks
preemptive priority based task scheduling with user
defined priorities.

Experiment #7: Priority Inversion - to demonstrate
VxWorks' priority inversion avoidance mechanisms
preventing a higher priority task to be blocked while
waiting for a lower priority task to release access to a
shared resource.

Experiment #8: Signals - to demonstrate VxWorks signal
routines asynchronously altering the execution of
program flow with associated signal handling

 Experiment #9: Interrupt Service Routines - to
demonstrate VxWorks' implementation of interrupt service
routines responding to external hardware interrupts.

6. Class Projects

In addition to the lab explorations, after learning the basic
real-time concepts, the students engaged in a small team
project to apply the acquired knowledge and skills. All
projects require the team to produce software lifecycle
artifacts including Software Requirement Specification,
Design, and Testing Documents. The team uses Personal
Software Process and the data on effort are collected and
reported. The project deliverables include also Internet
accessible documentation and in-class presentation with
the system demonstration. In the past we had few
projects implemented on the VxWorks platforms. All
projects resulted in prototypes implemented on VME
VxWorks. target with user interface on a remote UNIX
workstation (using an UNIX-based GUI builder or a Java
applet). Few recent examples are listed on the next page.

6.1 Real-Time Data Acquisition and Control

The project presents a prototype of data acquisition and
control board with networked Java interface (Fig. 2). The

PT-326 process trainer [4] is the object to be controlled.
The objective is to accomplish close-loop proportional
control by setting the SET VALUE voltage, adjust it from
0 to –10 V and measure the deviation value between the
controlled condition and the set value. This signal is sent
to the computer via I/O board. According to the control
algorithm, a certain control signal is sent back to the

User DACS
Client(Web

Browser)

DACS Server
(VME167
Computer) Process Trainer

Input URL

Send Request

Access to server

Send Send Send

Data Acquistion
Send Data back

Send Data back

Display Data

Stop Break Connection

Exit URL

I/O Board

Fig 3. Sequence for Data Acquisition and Control Experiement

DACS
system

Process
trainer

(4)

(2)

(3)(1)

Fig 2. Data Acquisition and Control Experiment (1)-
User Interface, (2)- Communication Link, (3)- Control
Command and (4)- Measurement

Trainer to take the correct action. The data acquisition
is implemented via VMI/VME-4514A analogue I/O
board [5] and VMI/VME-2532 digital I/O board with the
processing on VME Motorola 68040 target board
running VxWorks. Sample sequencing of operations
used for software design purposes is presented in Fig
3.

6.2 Real-Time GUI Implementation

The project involves building a real-time GUI to access
data from workstation over the network, rather than using
a browser. In a data acquisition environment similar to
that in Fig. 3, a socket based message protocol needs to

be designed and implemented to monitor the quantity
controlled via a measuring station running VxWorks. The
experiment consists of a VxWorks real-time data collection
application that reacts to the commands provided by the
user via the remote GUI. The application periodically
sends the input voltage to the GUI for display. The user
is capable of controlling the frequency of the
measurement by entering the time period via a GUI
window. The experiment demonstrates that with a GUI
designed specifically for data acquisition and control the
user can easier monitor the operation of the real-time
model. An example how the user can visualize the
graphical representation of the real-time data acquisition
 process is shown in Fig 4.

 Fig 4. Sample GUI Generated Specifically for Data Acquisition

6.3 TCAS Simulator

The project developed a prototype of Traffic Collision
Avoidance System running on a VME Motorola 68040
board. The prototype simulates the software portion of
the actual TCAS. It provides indication of the relative
position of own aircraft with other aircraft, and based on
the relative position, provides appropriate advisories to
the user. The user interface provides graphical
representation of own aircraft as well as target aircraft.
The graphical representation includes simulated TCAS
symbols based on the position of the target aircraft
relative to own aircraft. In case of a resolution advisory,
the user interface will simulate an audible warning to the
user. Additionally, the user interface provides the user
the option to select the operating mode of the TCAS
system. The user is able to control own aircraft position.
The user interface was implemented on an AIX
workstation.

6.4 Autonomous Lunar Explorer – ALEX

The project used a simulated vehicle in a predefined two-
dimensional environment. The console, allowing the user
interaction, shows the out-of-window view. This vehicle
can move automatically or be controlled from a remote
console. In autonomous mode, the vehicle proceeds to a
given destination without hitting any environment
obstacle. In manual mode, the user sends the commands
to control the vehicle movements through the console. To
test that the commands actually reach the vehicle, external
LED’s are displaying the vehicle movement. The design
was implemented in a distributed environment with the
vehicle functionality implemented on VME Motorola
68040 board with external console connected via digital
interface. The GUI control panel was implemented on AIX
workstation connected over the network with the target
board.

6.5 Web Game

The project developed a prototype of a “battleship” game
where the users can login to the game remotely via the
Java applet. The game server, implemented on VME
Motorola 68040 target board generates the ship positions
for the players and accepts players moves keeping the
status of the board and sending position updates over
the network sockets. The user interface is running on the
AIX workstation and can be accessed from any browser.

7. Conclusions

Using the laboratory, the students can experiment to
facilitate learning real-time concepts. As a prerequisite,
students should have been exposed to the UNIX
operating system and C language. They also should have
enough knowledge to understand and analyze the
example programs. The real-time concepts are new and
that is what the laboratory sequence is designed to teach.
In the project component of the course the familiarity with
the software engineering notation, discipline and process
is required to produce appropriate artifacts.
The experiments support the laboratory as described on-
line in the Real-Time Lab Web site
<http://www.rt.db.erau.edu>. In earlier work [6] we
described the desired real-time laboratory infrastructure
and listed 26 concepts (“a through z”) related to real-time
computing. The lab experiment described above address
such concepts as:

· Reactive and time-critical programming,
· Concurrency of programming tasks,
· Multiprocess and multithread applications,
· Signals and operating system interface,
· Resource contention constructs,
· Implementation of concurrent programs,
· Communication protocols,
· Reactive input/output interface.

The undergraduate and graduate Real-Time courses cover
also more theoretical aspects of real-time systems such as
scheduling with Rate Monotonic Analysis and some
aspects of the distributed systems.

Requiring a report rather than a computer code is a
novelty in Computer Science program. The sample
program encourages experimentation and allows
modifications to be made. The Web interface provides
easy access to the experiments.

The original experiments were tested in special topic
offerings where the individual students (senior CS
undergraduate and MSE graduate) experimented in a self-
paced mode delivering reports and discussing the
concepts with faculty advisor. The experiments went also
through an informal classroom test in the two offering of
graduate real-time class. In the Fall 1999 we are teaching
full fledged version of the undergraduate course with new
six concept-experiments adapted to the class material fully
supported by an upgraded laboratory infrastructure (see
the <http://faculty.erau.edu/korn>)

Students have been generally satisfied with the idea of
laboratory experimentation. In the final evaluation they
commented that the course allowed them to explore and
learn by doing. A warm reception was given to the team
projects, which allowed students to engage in software
development akin to the activities in an industrial
environment. Since the course materials are posted on the
Web, we keep receiving requests from schools and
industrial organizations to use the materials for classes
and in-house training. The materials are readily available
on the Web and a free to use, provided that the proper
credit recognition is given.

References

[1] VxWorks – Programmer’s Guide, Wind River
Systems, Alameda, Ca, 1984-1995

[2] A. Kornecki., “Real-Time Systems Course in
Undergraduate CS/CE Program,” IEEE Transactions
on Education, CD-ROM Supplement, Vol. 40, No. 4,
November,1997, pp. 295-296.

[3] E. Sorton,, A. Kornecki, "Hands-on Software
Design" , IEEE Potentials, vol. 17 (2), April/May
1998, pp. 42-44,

[4] PT-326 Process Trainer. Instruction Manual.
TeqQuipment Inc., Acton, Mass, 1989

[5] VMI/VME-4514A and 2532. User Manual. VMIC
Corporation, Huntsville, Ala., 1996

[6] A. Kornecki and J. Zalewski, “Real-Time Laboratory
in a Computer Science/Engineering Program,” in
Proceeding of IEEE Workshop on Real-Time
Systems Education, IEEE Computer Society Press,
Los Alamitos, CA, 1996, pp. 73-79,

