
SP-680
September 2010

Proceedings of the Fourth IAASS Conference

Making Safety Matter

19–21 May 2010

Huntsville, Alabama, USA

Sponsored by

Canadia Space Agency (CSA ASC)

Centre National d’Etudes Spatiales (CNES)

European Space Agency (ESA)

National Aeronautics and Space Administration (NASA)

Japan Aerospace Exploration Agency (JAXA)

Programme Committee
T. Sgobba (Chair), IAASS President
B. O’ Connor (Co-Chair), NASA
J. Bosma (Co-Chair), ESA
N. Takeuchi (Co-Chair), JAXA

Members:
A. Abiodun (NG)
F. Alby (FR)
W. Ailor (US)
F. Allahdadi (US)
 M. Azeev (RU)
D. Bohle (DE)
V. Chang (CA)
M. Ciancone (US)
V. Feng (US)
M. Ferrante (IT)
D.Finkleman (US)
J. Frost (US)
J. Fragola (US)
G. Gafka (US)
H. Garcia (US)
P. Gaudenzi (IT)
G. Goh (CN)
J. Hatton (UK)
A. Herd (UK)
R. Jakhu (CA)
J. Jeevarajan (US)

P. Kirkpatrick (US)
B. Lazare (FR)
N. Leveson (US)
A. Larsen (US)
R. Malone (US)
Y. Marshall (US)
T. Masson-Zwaan (NL)
D. Mikula (US)
R. Molina (SP)
C. Moura (BR)
A. Menzel (DE)
M. Nati (IT)
S. Newman (US)
G. Ortega (SP)
M. Pedley (US)
T. Pfitzer (US)
J. Pelton (US)
G. Reitz (DE)
L. Ren (CN)
R. Repcheck (US)
N. Ridzuan (MY)

D. Rogers (US)
I. Rongier (FR)
G. Ruff (US)
M. Saemisch (US)
S. Simpson (US)
K-U. Schrogl (AT)
C. Shivers (US)
A. Soons (NL)
K.R. Sridhara Murthi (IN)
C. Stewart (US)
J. Stoltzfus (US)
R. Stuart (US)
M. Surber (US)
J-P Trinchero (FR)
N. Takeuchi (JP)
M. Trujillo (ES)
W. Vantine (US)
P. Vorobiev (RU)
J. Wade (US)
P. Wilde (US)
S. Wolf (US)

Publication Proceedings of the Fourth IAASS Conference ‘Making Safety Matter’

Huntsville, Alabama, USA
(ESA SP-680, September 2010)

Edited by H. Lacoste-Francis

ESA Communications

Published and distributed by ESA Communications
 ESTEC, Noordwijk, The Netherlands

Price EUR 70

ISBN 978-92-9221-244-5
ISSN 1609-042X

Copyright © 2010 European Space Agency

SAFETY CRITICAL SYSTEMS CERTIFICATION:
TOOL QUALIFICATION FOR HARDWARE AND SOFTWARE

Andrew J. Kornecki(1), Joseph Voelmle(2), Janusz Zalewski(2)

(1)Embry-Riddle Aeronautical University, Daytona Beach, FL 32114, USA, kornecka@erau.edu
(2)Florida Gulf Coast University, Fort Myers, FL 33965, USA, zalewski@fgcu.edu

ABSTRACT

The paper discusses issues related to certification of
safety critical systems, focusing on qualification of tools
for software and hardware development in avionics.
The authors discuss general issues related to
certification, with particular emphasis on qualification
of automatic tools for software and hardware
development according to DO-178B and DO-254
standards. Industry views are outlined and results of
experiments on tool quality assessments are discussed.

1. INTRODUCTION

The term “certification” in computing is typically
associated with certifying product, process, or
personnel. Product and process certification are the most
challenging in developing software for real-time safety
critical systems, such as flight control and traffic
control, unmanned aerial vehicles (UAV’s), road
vehicles, railway interchanges, nuclear facilities,
medical equipment and implanted devices, etc. These
are systems that operate under strict timing
requirements and may cause significant damage or loss
of life, if not operating properly. Therefore, the society
has to protect itself, and governments and engineering
societies initiated establishing standards and guidelines
for computer system developers to follow them in
designing such systems in regulated industries.

Researchers and practitioners have recognized the need
of conducting certification processes for such systems
and a number of international workshops have been
organized in the last few years to discuss related issues.
The topic got particular attention since 2004, where the
first major workshop has been conducted, sponsored by
the National Research Council, followed by at least one
each year:

- National Research Council Workshop on Software

Certification and Dependability, Washington, DC,
April 19-20, 2004.

- FAA and Embry-Riddle Software Tool Forum,
Daytona Beach, Fla., May 18-19, 2004.

- ACM SIGSOFT/SIGART Workshop on Software
Certification Management, Long Beach, Calif.,
November 8, 2005.

- IEEE Workshop on Innovative Techniques for
Certification of Embedded Systems, San Jose,
Calif., April 4, 2006.

- McMaster University International Workshop on
Software Certification, Hamilton, Ont., Canada,
August 26-27, 2006.

- International Council of the Aeronautical Sciences
Workshop on UAV-Airworthiness, Certification
and Access to the Airspace, Seville, Spain,
September 24, 2007.

- ETAPS Workshop on Certification of Safety-
Critical Software Controlled Systems, Budapest,
Hungary, March 29, 2008.

- 2nd ETAPS Workshop on Certification of Safety-
Critical Software Controlled Systems, York, UK,
March 29, 2009.

The topics discussed at these workshops are extremely
broad and range from low level compiler code
verification to high level risk assessment. Therefore, in
this paper the authors chose to focus on one particular,
although important issue, of qualification of automatic
tools for software and hardware development in
avionics.

Most airborne systems (e.g., flight controls, avionics, or
engine control) are typical examples of safety-critical,
real-time systems. These systems are extremely
software intensive and continue to become more
complex. They often operate in environments with
diverse ranges of temperature, humidity, air pressure,
vibration and movement, and are subject to aging,
maintenance and weather conditions. Typical
characteristics required of such systems are reliability,
fault tolerance, and deterministic timing behavior. The
software and hardware for such systems is developed
using a variety of tools that must address these issues.
Appropriate tools must be selected to meet the needs of
a specific project. The quality of the tool and the
assurance of tool output are critical for the target system
certification.

The Federal Aviation Administration has focused on
identifying potential safety issues in the assessment and
qualification of tools used in developing software as
well as custom micro-coded complex electronic
hardware components for the aircraft. Software is
typically implemented on dedicated microprocessor

Proc. Fourth IAASS Conference ‘Making Safety Matter’, Huntsville, Alabama, USA

19–21 May 2010 (ESA SP-680, September 2010)

boards. Electronic components are programmable logic
devices (PLD), application specific integrated circuits
(ASIC) and similar circuits used as components of
programmable electronic hardware. The process of PLD
programming is accomplished either by use of an
external dedicated device programmer or on the circuit
board via in-system programming (ISP).

The focus of the paper is to show an impact of modern
complex software tools used both for software and
hardware development, on creation and acceptance of
certified systems in a regulated industries. While
concentrating on aviation with its associated
certification requirements based on the need for safe and
reliable systems, many of the addressed issues might be
extended to other domains with mission-critical and
safety-critical constraints (such as aerospace, nuclear,
medical, automotive, financial, chemical, and military).

The rest of the paper is structured as follows. Section 2
gives the general background on the subject of tools
qualification, Section 3 discusses the qualification in the
context of certification, Sections 4 and 5 present
industry views on tool qualification, and Section 6
outlines experiments conducted by the authors. Section
7 presents conclusions.

2. TOOLS BACKGROUND

Software tools for embedded system development,
including that of complex electronic hardware (CEH),
are used for two different reasons: (a) development of
software that runs on the processors included in the
system, and (b) creation of the system hardware.

RTCA DO-178B [1], defines a software tool as: “A
computer program used to help develop, test, analyze,
produce or modify another program or its
documentation. Examples are an automated design tool,
a compiler, test tools and modification tools.”

The glossary of RTCA DO-254 [2] defines tool
subcategories as follows: “Design Tools - Tools whose
output is part of hardware design and thus can
introduce errors. For example, an ASIC router or a tool
that creates a board or chip layout based on a
schematic or other detailed requirement.”

Modern software development tools have direct and
growing impact on the effective and efficient
development of complex, safety-critical, real-time
avionics systems and consequently on the safety of the
flying public. The developed avionics system software
must be shown to comply with airworthiness
requirements, which include functional, quality of
service, and safety requirements. The development
processes can be extremely complex and provide
opportunities to automate the collection and

documentation of evidence that the system requirements
are met and that the development processes do not
compromise the software and system requirements.

The need for qualified development tools and related
proof of quality for the developed software increased
with proliferation of model-based development (MBD)
and automated code generation (ACG). The existing
FAA software guidelines with regard to development
tool qualification state that the tool must meet the same
objectives and meet the same software assurance level
as the resulting avionics software of the certified
system. These guidelines do not consider the differences
between development environments and the application
environments of the airborne software. A major focus
of the RTCA Special Committee SC205 convened to
update DO-178B is to alleviate these deficiencies.

Although the business case cannot compromise the
safety case, guidance to take advantage of evolving
development tool capabilities may also address the
business case of software development tool
qualification. This could transform the growing cost and
quality concerns into savings and enhanced quality and
safety.

The commercial software development tools market is
rather volatile and confusing to the buyer. Tool vendors,
not being familiar with the FAA guidance, may claim
that a tool is certifiable. It is the airborne system that is
certified using appropriate guidance for both hardware
(DO-254) and software (DO-178B) components. Tools
can only be qualified, meaning that they can be then
used to create certified artifacts without verifying their
output. The tools produce artifacts in a variety of
formats frequently requiring manual and error-prone
translation to pass the intermediate data between the
tools. The software and hardware developers face
problems in an attempt to create a consistent description
of the system properties. Majority of general-purpose
CASE tools were created without understanding or
considering the processes required by the regulated
industries (such as DO-178B), practically preventing
tool qualification under the current guidelines.

Several attempts have been made to create a uniform
tool environment. Almost each time a new tool is
released, claims are made about how its features will
allow easy interface with other tools. The reality does
not match such idealized picture leaving the need for
plenty of gluing between the tools artifacts, i.e., in-
house work by the developer to get the tools to work
with one another. The elements of industry that develop
software intensive systems for aviation are particularly
sensitive to these issues, as the products need to be
highly reliable and meet certification requirements. The
goal of automation (i.e., using tools) is to develop high

quality software more efficiently. By definition, a tool
that has been qualified eliminates, reduces, or automates
a process in the software development effort without the
need that its output be verified in that development
environment.

On the hardware side, likewise, by definition, a
qualified design tool eliminates or reduces activities in
the hardware development effort. The goal of
automation, accomplished by using tools, is to develop
high quality products more efficiently.

Existing guidelines defined by the FAA through
advisory circular AC 20-152 [3] leave room for
interpretation. It should be noted that tool qualification
is only one part of the overall DO-254 and DO-178B
certification process. Different qualification
requirements are placed on tools depending on defined
by the safety assessment Design Assurance Levels
(DAL). However, regardless of the DAL, the tool
qualification is not required if the tool outputs are
independently assessed (DO-254) or verified (DO-
178B).

In general, for the hardware certification independent
assessment of the tool output will occur by analyzing
any simulations that are run, any system debugging that
occurs and normal verification and validation of the
designed system to assure that the system meets the
design requirements. Section 11.4.3 of DO-254 provides
guidance on the need for independent assessment of the
tool outputs: “Using such a design tool without
independent assessment of the tool’s output or
establishing relevant history is discouraged, as it may
prove to be a task as challenging as the development of
the hardware for which the tool is proposed to be used.”

Using a tool without independent assessment of the tool
outputs to assure design correctness is discouraged. The
guidance also notes that the tool qualification process
will be challenging and may be more difficult than the
hardware design. Given that tool qualification is
officially discouraged and known to be a challenging
task, it is surprising to note the number of tool
qualifications that occur each year.

To identify the state of the industry and current views
on the software development, hardware design and
verification tools market, additional questions need to
be addressed, related to the current industrial practice.

3. QUALIFICATION VS. CERTIFICATION

Further explanation of the purpose and the need of tool
qualification can be found in section 12.2 of DO-178B:

“The objective of the Tool Qualification is to ensure
that the tool provides confidence at least equivalent to

that of the process(es) eliminated, reduced or
automated.”

“A tool may be qualified only for use on a specific
system …Use of the tool for other systems may need
further qualification.”

“Only those functions that are used to eliminate,
reduce, or automate software life cycle process
activities, and whose outputs are not verified, need be
qualified.”

Considering the terminology used in airborne systems
development, certification and qualification are
different. One certifies the system while the other may
qualify a tool. Certification declares that the system or
product containing the target software and/or hardware
meets assurance objectives to be used in an aircraft or
avionics application (according to DO-178B or DO-254,
respectively). On the other hand, qualification is used to
ensure that a life cycle process automated by use of the
tool will result in higher or equal quality output as if the
process had been performed manually. A qualification is
defined only for a specific task in a specific project.

3.1 Software Aspects of Certification

The software development process consists of a series
of translations between various artifacts, leading
ultimately to the executable code. The goal is to
accurately implement the systems requirements
allocated to software without introducing faults or
errors. Accurate implementation of a system assumes
that the system requirements themselves are accurate
and have been validated (i.e., the system requirements
should be complete, correct, consistent, traceable,
verifiable, and unambiguous).

The concept of building a software-intensive system by
developing the structural and behavioral models of the
system software is a leading theme in contemporary
literature and practice. By subsequent analysis of these
models, the developers can get assurance of their
appropriate behavior and correct functionality; thus,
provide a credible base for the final system
implementation. This approach also alleviates the issue
of less-than-perfect requirements, since the analysis of
the models may lead to the discovery of missing,
incomplete, confusing, contradicting, or incorrect
requirements.

Software life cycle artifacts range from textual
representation of requirements, to graphical models of
the system and software structure and behavior, to
algorithms represented as graphics or mathematical and
logic formulas, to textual code representation, to binary
version of the executable code. In the past, the

translation between various artifacts was done
manually. The translation relied solely on a developer’s
skills and ingenuity but introduced human error.

A variety of tools have been developed to assist
software developers in these translation tasks. In the
past, compilers and interpreters replaced manual
translation of algorithmic source code into machine
code. The linkers and loaders replaced manual entering
of a series of zeros and ones by translating the machine
code into the target executable code. The design tools
with code generation capability are replacing manual
writing of source code based on design algorithms, in
some scenarios and certain types of systems (e.g. well-
defined control systems).

Patterns are continuously being developed that expand
the type and domain application of these algorithms.
Experience, combined with verification activities
(manual and automated), has given developers
confidence that the source code is translated into its
equivalent binary image. One challenge is to accept the
notion that it is practical to trust similar translation on a
higher level of development hierarchy: from design
constructs to the source code. In an aviation
environment, another challenge is to demonstrate to the
certification authorities why a translator tool can be
trusted in lieu of completely verifying the translator’s
output.

Software engineering tools, commonly known as CASE
tools, provide assistance in the development of software
and systems. A software engineering tool is defined as a
computer program used to help develop, test, analyze,
or maintain another computer program or its
documentation. The current state of the art is
exemplified by a variety of tools, which often support
more than one process of the software development life
cycle. If properly designed and used, software tools may
eliminate or reduce the errors that are often introduced
in software life cycle data. On the contrary, an inferior
defect or improperly used tool may result in a faulty end
product with potential significant impact on target
system reliability and safety.

3.2 Hardware Aspects of Certification

In hardware development, logical design may be
accomplished in three ways: (a) by creating a schematic
diagram with a graphical computer-aided design (CAD)
tool, (b) by using a text-based system to describe a
design in a hardware design language (HDL), or (c) by
the combination of graphical and textual methods. The
initial logic entry, however it is performed, is usually
not optimized. Because the initial design entry might
not be optimized, dedicated algorithms are used to
optimize the circuits. Once the circuits are optimized,

additional algorithms are used to analyze the resulting
logic equations for the purpose of synthesizing the
circuit to fit the design into the PLD.

Simulation is used to verify correct operation of the
circuit, often requiring the user to modify the initial
design entry to correct errors. When a design can be
successfully simulated to verify the correctness of its
simulated behavior, it is loaded into a programming unit
and used to configure the PLD. It is critical to note that
after the original design entry step and any required
design entry corrections performed manually by the
designer, all steps are performed automatically by
software tools.

The more complex programmable hardware
components become the more complex and
sophisticated the tools supporting development and
verification of the design must be. For complex devices
that can accommodate large designs, a mixture of
design entry methods for different modules of a
complete circuit can be used. For example, some
module designs might be described using a low-level
circuit description language, others might be described
graphically using a symbolic schematic capture tool,
while others might be described using a full-featured
HDL such as VHDL or Verilog. These languages
operate using variables and hardware signals in addition
to sequential constructs, including a variety of
concurrency constructs that specify parallel
implementation reflecting the nature of digital circuits.
The necessary software for these tasks is supplied either
by the hardware manufacturer or a dedicated third party
tool vendor.

For FPGAs, additional tools are required to support the
increased complexity of the integrated circuits (IC’s).
The device fitting step includes: (a) mapping from basic
logic gates into the FPGA logic blocks, (b) placement to
select specific FPGA blocks to use, and (c) a router to
allocate the wire segments to interconnect the logic
blocks. With this added complexity, the tool might
require a fairly long period of time (often more than
several hours) to complete the design.

Software tools are critical for the implementation of
CEH circuits and devices. To design any modern
device, one must use a suite of sophisticated tools
including (at a minimum) simulation, synthesis, and
place-and-route. Such tools are typically made available
by an entity external to the developer. Simulation is
supported by accessible and cost-effective tools;
however, place-and-route tools are tightly connected to
the specific hardware silicon architecture and vendor. In
the middle of this hardware development cycle is logic
synthesis. The front-end of the logic synthesis problem
is very complex and not specific to any silicon

architecture, while the back-end stages of synthesis are
architecture specific. A sophisticated technology for
parsing, elaborating, and inferring conceptual logic
design from code written in a hardware description
language, such as VHDL, Verilog, or SystemC,
facilitates both the creation of the desired digital logic
circuit design and the eventual mapping into
architecture-specific physical layout.

4. INDUSTRY VIEWS - SOFTWARE

To understand the industrial practice in tool use,
development and qualification, an industry survey was
developed with the cooperation of the FAA and NASA
Langley Research Center. It was distributed in May
2002 at the FAA Software Conference, Dallas/Ft.Worth,
TX, with a follow-up survey sent in the Fall of 2002.
The next survey was conducted in May 2004 at the
Software Tools Forum, Daytona Beach, FL, with an e-
mail follow-up for the issues prioritization. The
subsequent follow-up was performed in the Fall of
2004.

The 2002 paper survey collected at the FAA Software
Conference included 28 responses. A much broader
follow-up survey was sent in the Fall of 2002 to over
700 professionals on the FAA Software Professionals’
mailing list. The survey resulted in only 14 additional
responses. Such low response rate, less than 2%, has
been attributed to the developers’ limited experience
with development tool qualification. The majority of
respondents represented avionics and engine control
software companies (74%) and the FAA personnel
(14%). Eighty-two percent of the surveys included some
information about development tools. The results of
follow-up were combined with the original paper survey
responses to provide the initial industry feedback.

In addition to the FAA personnel, the survey was
answered by industry representatives from: Airbus,
Aeronautics Corporation, Boeing, Goodrich, Green
Hills, Honeywell, Patmos, Raytheon, Sikorsky, UTRC,
and Verocel. Sample answers are summarized below:

- Criteria for development tool qualification are too

stringent and cost prohibitive.
- The tool software is different from the resulting

airborne target software, and it is used in different
environment and mode of operation.

- Guidance for COTS development tool regarding
their qualification and use in the DO-178B
compliant development process is missing.

- There is evident need for separating the tool
functionality from the platform on which the tool is
running, since the platform typically is not
certifiable.

- For a complex multifunctional tool, qualification is
limited to selected functionality feature.

- Flexibility for tool qualification and a partial credit
for some objectives would help to alleviate the
stringency of the qualification process.

- Qualification of the development tool changes the
subsequent verification steps and needs to be
reflected in the guidelines.

- With development tools supporting Automatic
Code Generation, the issue is what can be
understood as the code and related objectives on
code reviews.

- The MBD approach modifies the lifecycle by
introducing executable specification and model
checking and validation.

- There is a slightly fuzzy boundary between the
requirements and design (at the early stages of
requirements development, some design decisions
are made due to the specific model construction).

- There is misunderstanding of the source code
definition, considering notations used to express the
requirements and design.

- Structural coverage and the methods for analyzing
models need to be redefined.

- Guidelines for model reviews and standards for
model validation need to be established.

- Reuse credit for the development tool software is
too difficult to obtain.

- Formal qualification approval document following
an independent tool qualification outside the
certification project might help to clarify the issues
(a separate TSO?).

- In such a case, a specific list of documents required
for an independent development tool qualification
credit needs to be identified.

- Tool upgrades clearly impact the qualification
status and requalification guidelines are needed.

- Using third party qualification packages may be
confusing for applicant and integrator.

- Issues of certification versus qualification and
concept of qualifiable tools are sometimes
misinterpreted.

- Specific qualification process for ACG technology
would be needed.

- Thorough analysis of the generated code is not
practical (can compilers be trusted?).

- Separate guidelines would be useful for
development tool qualification (i.e., a document
separate from DO-178B).

- No clear guidelines for using nonqualified
development tools.

- A concern has been raised that independence may
be weakened by pervasive use of development tool
possibly leading to common mode errors. The
proprietary nature of lessons learned concerning
tool use makes it difficult for another applicant to
depend on previous successes by other applicants.

The low response rate allows three interpretations to be
made: (1) the representative sample of airborne software
developers and project managers have not considered
qualification of development tools in their work; (2)
development tool qualification, in light of the current
interpretation of the DO-178B, is not preferable and is
rather a rarely used option; and (3) applicants are not
willing to disclose information about the used
development tools, since they provide a significant
advantage and the information is treated as proprietary.

In addition, many respondents may have chosen not to
answer the questionnaire due to their use of in-house
tools. Such software is an integral component of the
certification package and thus tool qualification is a
internal project activity. However: (1) such tools have
only little re-use impact since they are known only to a
limited group within the applicant organization, (2) they
are not maintained properly due to high cost and lack of
dedicated resources within the applicant organization,
(3) their validation and verification is limited to the
small group of users, and (4) information about the tool
is not available outside a small group of insiders.

5. INDUSTRY VIEWS - HARDWARE

Another survey was conducted to collect data on
experiences and opinions concerning the use,
development and qualification of programmable logic
tools as applied to the design or verification of complex
electronic hardware (FPGA, PAL, GAL, PLA, ASIC, or
SoC) according to DO-254 standard. The questionnaire
has been sent out, targeted towards individuals who
have experience with developing or using such tools, or
experience with qualifying such tools. The purpose was
to gather industry and certifying authority feedback on
assessment and qualification of CEH programmable
logic tools.

The questionnaire was distributed first during the 2007
FAA SW&CEH Conference in New Orleans, LA,
attended by over 200 participants. A special session
dedicated to the CEH was attended by 54 individuals,
representing industry and government organizations
interested in the CEH and the application of DO-254. In
addition to distributing and collecting paper copies of
the questionnaire at the conference, a follow-up mailing
was distributed to over 150 individuals engaged in the
development of aviation software and hardware. The
questionnaire was also distributed internally within
several companies engaged in the design of
programmable logic devices.

As a follow-up, surveys were distributed at the
Programmable Logic User Group meeting in
Clearwater, FL, on November 15, 2007. An external
survey was posted on the web followed with an
additional 266 mailings requesting response.

Additionally, the link to the web-survey has been placed
on the DO-254 Users Group website
(http://www.do254.com). Despite the above efforts, the
total number of completed responses was below 30,
hardly justifying validity of statistical results. This has
been a rather disappointing outcome. However, the
collected results provided several interesting
observations.

The majority of respondents work for avionics or engine
control developers with nearly all having a bachelor or
master level technical background (over 70% in
electronics). Nearly all respondents had more than three
years of experience, and more than half of them more
than twelve years of experience.

Over 65% of the respondents’ roles relevant to the CEH
tools were use of the tools for development and
verification of systems. A quarter of them were either
managing project or acting as designated engineering
representative (DER). Only one respondent had
experience with actual development of tools. The
respondents’ primary interest was divided evenly
between verification, development, hardware and
concept/architecture.

The types of devices used include in order of popularity:
FPGA, CPLD, ASIC, PAL, PLA and EPLD. Half of the
respondents used Actel and Xilinx as the hardware
vendors, with Lattice, Cypress, Quick Logic, Altera and
Atmel sharing the other half. Half of the respondents
used tools from Mentor Graphics and Synplify, another
quarter used Synopsys, Aldec and Cadence, and the
remaining quarter used other tools.

The most important criteria for the selection of tools for
use in DO-254 projects, was deemed the availability of
documentation, ease of qualification, previous tool use,
and host platform, followed by the quality of support,
tool functionality, tool vendor reputation, and previous
use on airborne project. Selection of a tool for a project
was based either on a limited familiarization with the
demo version or on an extensive review and test in
nearly equal shares. The approach of reviewing and
testing the tool by training personnel and using the trial
period on a smaller project seems to be prevalent.

Only a fraction (14%) of the respondents had actually
experienced the effort of qualifying programmable logic
tools. Over 60% stated that the quality of the guidelines
and the ease of finding required information have been
considered sufficient or appropriate, while the increase
in workload was deemed negligible or moderate by
nearly 80%. An interesting observation is that over
60% of respondents considered safety improvement as
marginal to moderate and about 30% as significant.
Similarly, the question about errors found in the tools

may be a source for concern: no errors (11%), few and
minor errors (50%), significant and numerous (17%).
Despite all this, the satisfaction level regarding
programmable logic tools was positive and more than
nine out of ten respondents marked their satisfaction
level as 4 (on a scale 1 to 5).

6. TOOL EXPERIMENTS

To explore the practical issues related to application of
software tools for both software and hardware
development, several experiments were conducted in
the 2005-09 timeframe. The main objective of the
experiments was to develop a framework for tool
evaluation and collect data, which would provide an
insight into the process of assessing tool quality.

6.1 Software

For software development tools two phase experiments
were conducted. The preliminary experiment set the
evaluation baseline, while the controlled experiment
allowed us to collect experimental data.

The controlled experiment’s objective was a more
detailed evaluation of the selected six software design
tools with automatic code generation capability. The
sample included six tools from both structural (object-
oriented) and functional (block-oriented) categories.

The developers were graduate software engineering
students familiar with software development
methodologies, software processes, and real-time design
concepts. Developers shared the initial training and the
final reporting. However, each of them developed the
model and implemented code as an individual
assignment.

The experiment consisted of two models. The first
model, a simple hair dryer simulator, was to be used
during the learning phase of the experiment to facilitate
the learning and constitute a capstone for familiarization
with the methodology, tool, and the operating
environment. The second system, a simple microwave
oven software simulator, was used for the actual design
and data collection.

Each developer was required to keep track of
engineering observations during the course of the
experiment to evaluate strengths and weaknesses of the
tool, the process used, and other related elements.
Developers were also required to record the time spent
during each process, to evaluate the effort required to
develop a system while using the tool. The method
employed in the initial experiment of decomposing the
design models into their basic components was again
used in this experiment. Additionally, the developers
filled two questionnaires. The first questionnaire

addressed the documentation, manuals, and support of
the tool under evaluation. The second focused on the
code generation capabilities of the tool.

The results of the controlled experiment included data
on product size and developers’ effort, subjective
assessment of the tool documentation, functionality,
ease of use, and general observations from the
experiment.

Figure 1 illustrates some of the results of the
experiment, showing the tool usability assessment
measured as effort in hours. Developers’ effort seemed
to be related to the paradigm used. For the functional
block-oriented tools the effort is, on average, less than
the effort for the object-oriented tools. It is important to
remember that the tools automatically generated the
code, with little or no manual coding by the developers.
More information of the results of experiments is
included elsewhere [4].

Figure 1. Usability measured as effort assessment [4]

6.2 Hardware

With experiences in tool assessment for software
development, experiments on tools for hardware
development were more focused on two issues: (1)
establishing respective metrics and measures, and (2)
testing procedures for the tools outcomes (designs
developed). Since results of the latter were published
elsewhere [5], herewith we only discuss the issue of
measurements.

Tools from three different vendors, the market leaders
in FPGA development, were used in the assessment, for
a simple project to develop an FGPA based device. The
quality assessment criteria were based on a previous
project for software development tool assessment [5],
and included: functionality, usability and efficiency.
The way they were measured is illustrated in Figure 2.

Figure 2. Criteria used for quality evaluation

Figure 3 compares the usability of all tools. The
preparation for all three tools was essentially the same.
The main differences among the tools were observed
during code development. Since the code for the FPGA
device was written during the learning phase for one of
the software tools, more time was spent for it on writing
the VHDL code and debugging it. One of the tools was
consistently judged least usable due to its hardly
accessible documentation. More information on this
project is included in the FAA report [6].

Figure 3. Comparison of usability of hardware tools

In essence, the tool quality assessment experiments, as
simple as they might look, provided a significant
amount of data for prospective use in defining and
conducting future tool qualification processes.

7. CONCLUSION

Problems of hardware and software certification in
safety critical systems, especially in avionics and
aerospace, are extremely complex and difficult. The
number of publications addressing respective issues,
both from the academic, government and industry
perspective, is growing significantly every year. Over
the last 5-6 years, the authors conducted a thorough
study of one specific aspect of certification: the
qualification of automatic programming tools for the

development of software and hardware in avionics. The
results of the studies [7-8] collectively indicate that to
minimize risks involved with the use of the tools in
safety critical applications, the tools need to be qualified
by respective independent organizations. However,
methods and techniques for tool qualification have still
to be developed.

8. ACKNOWLEDGEMENTS

This work was supported in part by the Aviation
Airworthiness Center of Excellence under contracts
DTFA0301-C-00048 and DTFACT-07-C-00010
sponsored by the Federal Aviation Administration
(FAA). It was also supported in part by the National
Aeronautics and Space Administration (NASA) through
the University of Central Florida’s Florida Space Grant
Consortium. Findings contained herein are not
necessarily those endorsed by the FAA or NASA.

9. REFERENCES

1. DO-178B and EUROCAE ED-12B (2001). Software
Considerations in Airborne Systems and
Equipment Certification, RTCA Inc.,
Washington, DC, 2001.

2. DO-254 (2000). Design Assurance Guidance for
Airborne Electronic Hardware, RTCA Inc.,
Washington, DC, April 2000.

3. AC 20-152 (2005). Advisory Circular on Document
RTCA/DO-254 - Design Assurance Guidance for
Airborne Electronic Hardware. FAA, July 2005.

4. Kornecki A., & Zalewski J. (2005). Experimental
Evaluation of Software Development Tools for
Safety-Critical Real-Time Systems, Innovations
in Systems and Software Engineering – A NASA
Journal, Vol. 1, No. 2, pp. 176-188, Sept. 2005.

5. Butka, B., Zalewski, J., & Kornecki, A. (2009). Issues
in Toool Qualification for Safety-Critical
Hardware: What Formal Approaches Can and
Cannot Do?, Proc. SAFECOMP2009, 28th
International Conference on Computer Safety,
Reliability, and Security, Hamburg, Germany,
September 14-18, 2009, Springer-Verlag,
Heidelberg, 2009, pp. 201-214.

6. Butka B., A. Kornecki, J. Zalewski (2010).
Qualification of Tools for Airborne Electronic
Hardware, Report DOT/FAA/AR-10/xx, FAA,
Washington, DC, 2010 (in preparation).

7. Kornecki, A. & Zalewski, J. (2009). Certification of
Software for Real-Time Safety-Critical Systems:
State of the Art, Innovations in Systems and
Software Engineering – A NASA Journal, Vol. 5,
No. 2, pp. 149-161, June 2009.

8. Kornecki, A. & Zalewski, J. (2010). Hardware
Certification for Real-Time Safety-Critical
Systems: State of the Art, Annual Reviews in
Control, Vol. 34, No. 1, pp. 163-174, 2010.

	Proceedings of the Fourth IAASS Conference 'Making Safety Matter'
	colophon
	Plenary Session: Part I
	Plenary Session: Part II
	Session 1: Space Debris - Part I
	Session 2: Regulations and Standards for Safety - Part I
	Session 3: Safety Critical Software Design and IVV
	Session 4: Space Materials Safety - Part I
	Session 5: Designing Safety into Space Vehicles - Part I
	Session 6: Safety of Extravehicular Activities
	Session 7: Organisational Culture and Safety - Part I
	Session 8: Launch Range Safety (Current and Future) - Part I
	Session 9: Space Operations Safety - Part I
	Session 10: Probabilistic Risk Assessment
	Session 11: Safety Risk Assessment and Management - Part I
	Session 12: Lessons Learned from Accidents
	Session 13: Payload Safety
	Session 14: Private Spaceflight Safety
	Session 15: Spacecraft Re-entry Safety - Part I
	Session 16: Space Debris - Part II
	Session 17: Nuclear Safety for Space System
	Session 18: Battery and Power System Safety
	Session 19: Space Based Safety Critical Systems
	Session 20: Regulations and Standards for Safety - Part II
	Session 21: Near Earth Object (NEO) Safety Risk
	Session 22: Launch Range Safety (Current and Future) - Part II
	Session 23: Space Traffic Management and Control - Part I
	Session 24: Designing Safety into Space Vehicles - Part II
	Session 25: Space Materials Safety - Part II
	Session 26: Spacecraft Re-entry Safety - Part II
	Session 27: Safety Risk Management - Part II
	Session 29: Designing Safety into Space Vehicles - Part III
	Session 30: Organisational Culture and Safety - Part II
	Session 31: Space Materials Safety - Part III
	Session 32: Spacecraft Re-entry Safety - Part III
	Session 34: Space Operations Safety - Part II
	Session 35: Human Factors and Performance for Safety
	Session 36: Regulations and Standards for Safety - Part III
	Session 37: Space Traffic Management and Control - Part II
	Session 38: Launch Range Safety (Current and Future) - Part III
	Session 39: Space Operations Safety - Part III
	Posters
	List of Participants
	Additional Material / Photo Album
	KorneckiVoelmleZalewski.pdf
	1. INTRODUCTION
	2. TOOLS BACKGROUND
	3. QUALIFICATION VS. CERTIFICATION
	4. INDUSTRY VIEWS - SOFTWARE
	5. INDUSTRY VIEWS - HARDWARE
	6. TOOL EXPERIMENTS
	7. CONCLUSION
	8. ACKNOWLEDGEMENTS
	9. REFERENCES

