
A Process For Performance Evaluation Of Real-Time Systems

Andrew J. Kornecki
Embry Riddle Aeronautical University, Daytona Beach, FL

kornecka@erau.edu

Eric Sorton
Command and Control Technologies Corporation, Titusville, FL

eric@cctcorp.com

ABSTRACT

Real-time developers and engineers must not only meet the
system functional requirements, but also the stringent timing
requirements. One of the critical decisions leading to meeting
these timing requirements is the selection of an operating
system under which the software will be developed and run.
Although there is ample documentation on real-time systems
performance and evaluation, little can be found that combines
such information into an efficient process for use by developers.
As the software industry moves towards clearly defined
processes, creation of appropriate guidelines describing a
process for performance evaluation of real-time system would
greatly benefit real-time developers. This technology transition
research focuses on developing such a process. PROPERT
(PROcess for Performance Evaluation of Real Time systems) -
the process described in this paper - is based upon established
techniques for evaluating real-time systems. It organizes already
existing real-time performance criteria and assessment
techniques in a manner consistent with a well-formed process,
based on the Personal Software Process concepts.

Keywords: Software Performance, Software Process, Software
Evaluation, Real-Time Systems

1. INTRODUCTION

Real-time software must be deterministic when reacting to
external events. Real-time software must not only perform in a
reliable and efficient manner, within specific time constraints. If
a real-time system cannot meet its specific time constraints, the
software is deemed a failure. In extreme cases the failure could
mean catastrophe and even loss of life.

The operating system allows the developer to focus on the
purpose of the application rather than the details of interfacing
with the computer. The current explosion of the Real-Time
Operating Systems (RTOS) market [1] allows the developer to
focus on the functionality of the application. However, the
developers must rely on RTOS to provide the unique timing
constraints needed to satisfy real-time system requirements.
Before a system developer can use RTOS to build real-time
application, an important question must be asked: which real-
time kernel meets the needs of the software requirements?

One of the problems with evaluating real-time systems is that
there is very limited guidance on how to measure the metrics
and/or properties of the selected kernel [2]. The only viable
option is to undertake a rigorous performance evaluation of
selected real-time kernels to determine which best will meet the

needs of the system requirements. A defined process guiding the
developer through the tasks to complete the performance
evaluation study, allows for the planning and tracking of the
study, and provides a means to improve the process. It will
allow the developer to focus more on the technical issues of
performance evaluation and less on how to complete the study.

Three key areas addressed in the paper are: (i) the concept of
process and how to develop a process, (ii) computer system
performance evaluation focused on how to design, implement,
and analyze performance of software systems, and (iii)
identification of key metrics of real-time kernels and techniques
which can be used to measure them. A brief description of these
three topics leads into design of PROPERT (PROcess for
Performance Evaluation of Real-Time operating systems). In
addition, a sample performance evaluation case study is
described to provide an example of how to use the PROPERT.

2. PROCESS ISSUES

A process is a partially ordered set of activities to achieve a goal
[3]. The development of a process can be divided into two steps:
(a) define a goal, and (b) develop a set of activities to achieve
the goal. A process is a dynamic entity that is always
undergoing change. The process development itself is an
iterative activity with user feedback providing direction as to
how the process should be modified, enhanced, and expanded.

Well-defined processes within the software industry have
proven effective in increase quality, decrease cost, and improve
the predictability of the software development. On the
individual level, the Personal Software Process (PSP) developed
by Watts Humphrey [4] guides in performing the software
development tasks. The PSP helps to plan and track work being
completed while helping to evaluate and improve the way the
work is done. It supports repeatability and facilitates exchange
of information between personnel working on the project. By
planning, tracking, and recording how long it takes to complete
a task, the information can be used later to analyze the work
done and thus provide suggestions for ways to improve process.
An extension to the PSP is Team Software Process (TSP),
which is dedicated to small team project. In addition to the
individual process the team roles and responsibilities are
defined and the forms and scripts facilitate orderly conduct of
the project [5].

The key components for a process are: scripts, forms, standards,
checklists, and process improvements. Scripts describe how to
perform the process task (a list of steps). Forms and process
improvements are the products of the process used to record
information on planning the task, the time it has taken to

mailto:kornecka@erau.edu
mailto:eric@cctcorp.com

complete the task. When filed they represent actual deliverables
of the process. Standards and checklists contain the information
related to the process that aids in generating the products and/or
implementing the scripts.

What are basis for performance analysis of real-time systems?
The speed is not the basic feature of real time system. A real-
time system is one in which the success of the system in
meeting its requirements is defined not only by the functional
requirements, but also by the timing constraints [11, 12].
Missing the timing deadline and unpredictability of timing are
typical disqualifying features for real time system.

3. PERFORMANCE EVALUATION ISSUES

A clear, concise statement of the performance requirements is a
pre-requisite of a successful evaluation study. The requirements
must be defined in a SMART way (Specific, Measurable,
Acceptable, Realizable, and Thorough) [6]. The system inputs
and outputs must be described from the perspective of the
services the system shall perform. Typically, one divides the
system into a "system under test" (SUT) and a "component
under study" (CUS). The SUT is the overall system under
which the services are defined. The CUS is the individual
component within the system that is being examined.

Selection of proper performance metrics is critical. Consider a
hard real-time system which requires interrupt dispatch latency
for a task of 10 microseconds. An analysis of the operating
system determines that the average response is 7 microseconds
with a worst case above 10 microseconds about 1% of the time,
and only under heavy loading. For the hard real-time system,
this behavior would be considered unacceptable. For a soft real-
time system, the above behavior would most likely be
acceptable. However, if the system missed the 10 microseconds
deadline 90% of the time under heavy loading, the system
would most likely need reexamined.

Selecting the metrics is the next key step in performance
evaluations. A custom built monitor, or an appropriate COTS
product, are used to measure the performance metrics. The list
of factors, i.e. parameters affecting the metrics of the system
performance, must be compiled including all items having a
negative or positive impact on the system performance. The
workloads, appropriately representing the conditions of the
system operations, must be selected to simulate the environment
under which the system runs. Experiment design techniques
[7,8]. can help alleviate some of the problems of having too
many factors and/or workloads.

The performance evaluation of a real-time system focus on the
assessment of one or more of the services listed above. The type
of metric to be measured, based upon the performance
evaluation requirements, are: throughput, responsiveness, and
determinism [2].

Throughput is the maximum number of operations that the
system can perform in a given time period. Responsiveness
describes how quickly the system will respond to a particular
event. Determinism indicates how predictable the system is
responding to events.

The execution consists of running the designed experiments
changing factors under the specified workloads, while
measuring performance metrics. Experiments that take place in
a controlled environment can be repeated if necessary. Some of
the following activities help control the environment and ensure
a successful test [9]: verification of initial conditions and load
generation, running standard tests to ensure correct operation,
using fresh media, keeping detailed logs with time stamps, etc.
It is recommended to develop a checklist including the
resources needed for the experiment, the steps to be performed
to complete the experiment, and the outcome of the experiment.

The three above metrics can be illustrated by examining a single
characteristic. All multi-tasking, pre-emptible real-time
operating systems must have method by which to synchronize
processes. One such method is to use semaphores. A metric
representing throughput is the number of semaphore operations
system can perform within a one second. Responsiveness is
measured by determining how long it takes for a semaphore
signaled by one task to wake up another task. Determinism is
measured as the variance of the response time, e.g. checking if
the second task is always woken at the same time, or if the time
varies greatly for different semaphore calls.

Execution of the performance experiments can produce large
volumes of raw data. A thorough statistical analysis is required
to present the results in a simple, understandable, and usable
format. Statistical analysis [10] plays an important role in
reducing the data and analyzing the results of the experimental
data.

Which of the three metrics is the most essential to measure? For
a soft real-time system, throughput is probably the most
important followed by responsiveness and then determinism.
Since the timing deadlines for a soft real-time system are not as
stringent, the determinism is not a critical factor. However, for a
hard real-time system, in which timing deadlines are critical,
determinism becomes the most important factor with
responsiveness and throughput taking second place.

4. REAL-TIME SYSTEMS ISSUES

A typical example of real-time software would support an
external device that needs servicing once every 10ms. On each
service request, a thousand bytes of data need to be transferred.
The data are read off of the interface and passed to a second
process, which process the data and writes them to disk for
subsequent processing. The presented example identifies
services that take into account such characteristics as
throughput, responsiveness, determinism, overload, and
memory. Identification of these services is the key to the
performance analysis. The key services, requiring deterministic
performance, are: clocks and timers, scheduling and
task/process management, intertask communication, interrupt
response time, resource locking, signals, input/output
operations, and memory management.

5. PROCESS DESCRIPTION

Based upon process literature [4], the following steps are
followed in developing PROPERT:

• Determine the Priorities
• Determine the Products
• Build the Scripts
• Build the Forms
• Build the Lists/Standards

The PROPERT overall script and detailed scripts for each of the
phases, as well as the forms and checklists can be found on:
http://faculty.erau.edu/korn/eric/project/list-1.html .

http://faculty.erau.edu/korn/eric/project/list-1.html

Priorities
The process priorities describe the objectives of the process and
the deliverables of the process. The following list of items
reflects the performance evaluation objectives [6]. The resulting
process must:

a) Produce Significant and Accurate Performance
Measurements

b) Produce Accurate and Understandable Analysis of
Performance Measurements

c) Minimize the Time to Produce Performance
Measurements

d) Provide for Reusable Performance Techniques and
Measurements

e) Accurately Predict the Time to Complete the
Performance Measurements

f) Provide a Database of Performance Measurements,
Metrics, Designs

The first two items address the functional aspects of completing
the performance evaluation study in a manner so that it
produces the desired results. The presented work focuses on
these first two items.

Products
The process products are items supporting accomplishment of
the priorities. The items can be categorized into three areas:
records, reviews, and improvements:

Records:

1) Performance Measurement Goals/Requirements
2) Time to Complete Performance Design
3) Performance Measurement Attributes (metrics,

workloads, etc ...)
4) Time to Complete Performance Implementation
5) Time to Complete Performance Analysi

Reviews:
1) Performance Measurement Design Using a Common

Mistakes Checklist
2) Performance Measurement Design vs. Requirements
3) Performance Measurement Implementation Using

Common Mistake Checklist
4) Performance Measurement Implementation vs.

Design
5) Performance Measurement Analysis Using a

Common Mistakes Checklist
6) Performance Measurement Analysis vs. Design

Improvements:
1) Methods by Which Process Improvement Can Be

Performed
2) Attempt to Minimize Design/Implementation/Analyze

Time Through Reuse
3) Provide Common Lists of Performance Attributes

(metrics, workloads, etc ...)

Scripts
The performance evaluation study follows phases mimicking
the waterfall development model with design, implementation,
and analysis phases. In addition, the planning and postmortem
phases are added to satisfy some pre- and post- performance
evaluation activities.

The planning script guides the developer through the planning
of the performance evaluation. The time to complete the
evaluation is determined and a basic schedule is developed. The
system requirements and goals are discussed, analyzed, and

recorded. The design script guides the developer through the
design of the performance evaluation. During the design phase,
the system and components are analyzed and a description of
both the System Under Test (SUT) and Component Under
Study (CUS) are developed. In addition, the services provided
by the system are described. Next, in the design phase, the
metrics are selected and the monitors are described. After that,
the significant factors are recorded and the workloads to be
placed on the system are determined. Finally, the individual
experiments are listed and discussed. A majority of the forms
developed for PROPERT aid the developer in design phase.

The implementation script aids the developer in the
implementation of the performance evaluation. This is the phase
were the developer builds the actual experiments and executes
them. The analysis script, presents some basic information on
the analysis of the performance data. The analysis of the
performance data and the creation of the report are the key
deliverables that produced in the analysis phase. The
postmortem script guides the developer through the final stages
of the performance study. It is in this phase that the process
information is completed and examined. In addition, the overall
performance evaluation is examined and determined if it is
acceptable or not. If it is deemed unacceptable, the process
should be repeated.

Forms
The purpose of the forms is to guide the developer through the
performance evaluation while recording the information in a
consistent, convenient format. A total of thirteen forms were
developed for the process. They can be found on line on:
http://faculty.erau.edu/korn/eric/project/list-1.html (along with
the instructions on how to complete them).

• Process Plan Summary (PPS)
• Process Improvement Proposal (PIP)
• Time Recording Log (TRL)
• Defect Recording Log (DRL)
• Task Planning Template (TPT)
• Schedule Planning Template (SPT)
• Statement of Goals/Requirements (SGR)
• SUT/CUS Description (SCD)
• Metric Description Form (MDF)
• Performance Test Design Form (PTD)
• Experiment Implementation Guide (EIG)
• Performance Test Data Collection Forms (PTC)
• Performance Test Data Analysis Forms (PTA)

Each of the forms, explains its purpose, and presents a brief
description of the data contained within. The forms were
designed using information collected and presented during the
research phase of the project.

Lists/Standards
The presented defect standard describes the different possible
defects that can be encountered during the performance
evaluation study. It is used in conjunction with the defect
recording log. By examining the defects that occur most often,
the checklists described next can be customized to aid in
catching and preventing the most common defects before the
become costly. The defect standard was developed based upon
research of real time system performance.

Three checklists were developed: Design, Analysis, and
Implementation Checklists. The checklists are questions to ask

http://faculty.erau.edu/korn/eric/project/list-1.html

after the specific phases to determine if all of the important
criteria have been met. The purpose of the checklist is to help
eliminate defects from the performance evaluation before they
become too costly.

Three areas were identified for further improvement. These
areas include expanding the experiment design, data processing
and presentation, and independent validation. Additional
implementation by other developers is needed to verify the
process usefulness. Independent validation simply consists of
using the process and assessing whether or not it actually
accomplishes the original goals. Such independent test is an
important step in maturing the process. The presented
evaluation process could be further enhanced by process
improvements. After each use of the process, the users can
make additional refinements and enhancements. This is
expected since process improvement is an integral part of the
process. There are other areas of the process that are weak due
to a lack of valid statistics. As the process is used, the most
common defects (as recorded in the defect recording log)
should be identified. The checklists can then be modified to
help catch these defects at their inception and possibly before
they occur.

6. CASE STUDY

Modern POSIX compliant UNIX systems allow the user to
create a file on the disk drive and subsequently memory map
that file so that it can be accessed as if it were a "conventional"
memory [13]. The memory map returns a virtual address to the
file which can be used in C programs for such operations as
assignment, comparison, copy, etc... In addition, most modern
UNIX systems as well as the hard disks themselves have
sophisticated caching systems, which can greatly enhance the
performance of the memory mapped file implementation.

One question is whether or not is there a valid use for this
scheme. Two immediate advantages come to mind. First, hard
disks are rather inexpensive. If an application calls for a large
amount of memory, but does not necessarily need to access that
memory at high speed (e.g. for archiving), memory mapping of
a file might be the acceptable solution. A large file, of the order
of several GBytes, could be memory mapped and treated as
main memory. An additional advantage is that the memory-
mapped file provides for a permanent record of the state of the
system (up to the last cache write) in the event of a crash. A
second question that should be addressed is why not just use
traditional file access methods such as open(), read(), write(),
and close(). If the purpose of an application is to read and write
sequential data to and from the disk, reads/writes are probably
the correct choice. However, for random access or non-
sequential read/write, the traditional model becomes bulky and
difficult. The developer must seek the location on the disk, read
the data, seek a different location, and write the data, etc. This
can quickly become cumbersome. By memory mapping the data
and overlaying the memory area with program data structures,
the compiler will determine the offsets automatically, which
will greatly simplify the programming tasks.

PROPERT shall aid developers who need to analyze a real-time
system to determine whether or not it meets specific
performance goals. It should simplify design of the performance
evaluation study, produce a better product, and reduce the time
necessary to complete the evaluation. With the strong trend
towards process-based development, we believe that PROPERT
artifacts will be found useful in the software engineering
community.

8. ACKNOWLEDGEMENT

The authors would like to acknowledge the contribution of Rick
Bard to the presented memory-mapping case study.

9. REFERENCES

[1] M. Timmerman, The RTOS Buyer’s Guide, Dedicated
Systems Encyclopedia http://www.dedicated-
systems.com/encyc/buyersguide/rtos/Dir228.html
[2] B. Gallmeister "POSIX.4: Programming for the Real World"
O'Reilly & Associates, 1995

To determine performance of mmap()ed files the following
objectives were identified:

[3] P. Garg, M. Jazayeri "Process-Centered Software
Engineering Environments." IEEE Computer Society Press,
1996 • Define the System Under Test (SUT) and Component

Under Study (CUS) - Table 1 [4] W. Humphrey "A Discipline for Software Engineering"
Addison-Wesley, 1995 • Define all relevant inputs, outputs, and factors

affecting the performance of mmap()ed files - Table 2 [5] W. Humphrey “Introduction to Team Software Process”,
Addison-Wesley, 2000 • Determine a set of metrics that can be used to measure

describe the performance of mmap()ed files - Table 3 [6] R. Jain "The Art of Computer Systems Performance
Analysis, Techniques for Experimental Design, Measurement,
Simulation, and Modeling" John Wiley & Sons, 1991

• Identify the monitors to be used to capture the defined
metrics - Table 4

[7] R.L Masone, R.F. Cunst, J.L.Hess "Statistical Design and
Analysis of Experiment" Wiley, 1989

• Identify the workloads - Table 5
• Develop a set of experiments to measure the

determined metrics - Table 6 [8] D.C. Montgomery "Design and Analysis of Experiments"
Wiley, 1984. • Analyze the results of the experiments
[9] B. Beizer "Software System Testing and Quality
Assurance", Van Nostrand Reinhold Company, 1984.

7. CONCLUSIONS [10] G.E. Box, W. Hunter, J.S. Hunter "Statistics for

Experimenters" Wiley, 1978.

The described case study created PROPERT deliverables. The
deliverables proved very useful to organize the development of
performance evaluation study. During the validation tests,
PROPERT helped in the completion of the performance
evaluations by reducing the effort involved in study preparation
and execution. Several key process improvements were a direct
result of this verification and validation test.

[11] A. Burns, A.Wellings "Real-Time Systems and
Programming Languages" 2nd. Ed. Addison-Wesley, 1996
[12] B. Furht, D. Grostick, D. Gluch, G. Rabbat, J. Parker, and
M. McRoberts "Real-Time UNIX Systems: Design and
Application Guide" Kluwer Academic Publishers, 1991.
[13] T. Schieber."Sharing Memory with Memory-Mapped
Files" Unix Review, October 1997, pp 47-53.

http://www.dedicated-systems.com/encyc/buyersguide/rtos/Dir228.html
http://www.dedicated-systems.com/encyc/buyersguide/rtos/Dir228.html

10. SAMPLE FORMS

Table 1: SUT/CUS
System Under Test Description

UNIX OS w/ Memory Map
Capablities

POSIX compliant OS have the ability to map a file into virtual memory and therefore access the
file using standard C memory operations such as assignment, comparison, and memcpy(). Any
operating system with the _POSIX_SHARED_MEMORY_OBJECTS and
_POSIX_MAPPED_FILES defined in the unistd.h supports memory mapped objects. In addition,
to support this testing, the operating system should have _POSIX_PRIORITY_SCHEDULING
and _POSIX_MEMLOCK defined which support the testing by changing the priority of the test
programs and locking the test programs into memory.

For the purpose of these tests, the SUT should be at a minimum a dual processor machine. One
processor is needed to run the test suite and the second processor is needed to load the disk. In
these experiments, a Silicon Graphics Octane with two R10000 processors is used.

Component Under Study Description

Memory Map Facilities

The actual component under test is the specific memory map facilities of the operating system and
the underlying components that allow the memory mapped files to work correctly. The memory
map facilities of the POSIX operating system consists of mmap(), munmap(), ftruncate(), and
msync() function calls. Only the msync() call will be measured directly. The other facilities will be
used to memory map the file and then accesses into the virtual memory will be analyzed.

Table 2: Inputs/Outputs/Factors

Inputs Description
Map Request A request to map a region of memory, the mmap() call, is an input. The will not be measured directly.

Write The primary input into the memory-mapped region is a write. This can take form of an assignment statement (lhv) or a C function
call such as memcpy(), strcpy(), or others.

Sync A request to synchronize the memory-mapped region with the underlying hardware can also be treated as an input to the system. The
msync() call takes several options and informs the OS to perform several different functions.

Un-map Request A request to un-map a region of memory, the munmap() call, is an input. The will not be measured directly.
Outputs Description

Read A read is the output of the memory mapped region. This can take many forms from a assignment statement (rhv), a comparison, or a
C call such as memcmp(), strcmp(), or others.

Factors Description

Disk Activity The current state of the disk activity is an attribute that can affect the timing of reading and writing from and to the memory mapped
region. Theoretically, the busier the disk, the slower the access will be.

Access Size The access size is attribute that can have an affect on the performance of the system. Smaller access sizes forces the overhead and
thus degrades performance. Larger access sizes allow the OS less overheads by grouping operations together.

Access Order The order in which the data is accessed could affect the performance. Sequential access with read-ahead caching could improve
performance. Random access will invalidate the read- ahead cache and could affect performance in a negative way.

Caching The state of the cache could also affect the system. The state of the cache can be changed by the parameters given to the open()
system call and the use of the msync() flag.

Table 3: Metrics

Num Metric Type Description

M1 Latency Time Responsiveness The latency time will be measured to determine how long it takes for the system to propgate a write to
other processes in the system.

M2 Bytes/Sec Throughput The number of bytes per second will be measured to determine the throughput of the system. This metric
will primarily be used to see how quickly reads/writes occur.

M3 Time per Operation Throughput The time to complete an operation or the number of operations per second will be used to determine the
performance of several of the calls used in the experiments.

M4 Disk Activity Throughput The disk activity will be measured since it is an important factor that affects performance.

Table 4: Monitors
Num Monitor Type Monitor Description Metric List Intrusion

O1 Experiments Custom M1, M2, M3 The experimental applications written to
support the testing Low

O2 System Monitor COTS M4 Utilities available to measure disk activity.
This will be used to monitor disk activity. Low

Table 5: Workloads

Num Workload Description Constant Factors/Services Varying Factors/Services
W1 Idle System --- ---
W2 Synchronization All other factors/attributes are constant With/without msync()
W3 Disk Loading All other factors/attributes are constant Disk activity is varied
W4 Cache Status All other factors/attributes are constant open() with/without O_SYNC
W5 Block Size All other factors/attributes are constant Vary the block size

 Table 6: Experiments

Num Experiment Experiment Description Metric List Workload List Num of
Runs Run Description

E1 Time Measure the time it takes to call
the time measurement function. M3 W1 250

Each run is identical. Find Avg, Min, and Max. The
algorithm to collect the clock data is simple loop,
retrieving the clock data each time. By checking the
difference in the time retrieved, the time it takes to
call the clock function can be determined.

E2 Sync Measure the overhead
associated with a msync(). M3 W1 250 Each run is identical. Avg, Min, and Max will be

found.

E3 Latency Measure the round-trip latency
of reading/writing data. M1, M4 W2, W3 250X4

2^k factorial design with four runs of 250 times each
will be performed. Avg, Min, and Max will be
found. Synchronization and disk access will vary.

E4 Throughput Measure the round-trip latency
and rate of large data blocks. M1, M2, M4 W2, W3, W4, W5 250x16

2^k factorial design of sixteen runs of 250 times
each will be performed to find Avg, Min, and Max..
Synchronization, disk access, cache status, and
block size will vary.

Example results for one of the metrics (M1 - responsiveness) are presented in Table 7. Typical graph reflecting the collected data for one of
the experiments is shown in Fig 1.

Table 7: Results-Responsiveness
Responsiveness Results

Examining the results shown in the line chart graphs generated from the raw data, the following information can be extracted:
(1) When using MSYNC, the latency - after removing the obvious outliers - is approximately 15 msec. This is true regardless of the state of the disk loader.
(2) When MSYNC is not active, the latency is approximately .17 msec, regardless of the state of the disk loader.

Using information from the LATENCY 2^2 Sign Table
(1) The mean latency performance of the system is approximately 32 milliseconds.
(2) The effect of the MSYNC is 32 milliseconds, and the effect of the disk loader is 2.9 milliseconds
(3) Using the Sum of Squares Total (SST) information, the disk loader is responsible for over 34% of the variation, while the MSYNC is responsible for
11.7% of the variation.
COMMENTS:
These results appear to be contradictory. Commonly held knowledge indicates that the SST data should be true: I/O is the most expensive activity that can
be performed on a machine. In the line chart graphs, the DISK-LOADER environment should have produced results that were similar to that of MSYNC,
because both DISK-LOADER and MSYNC can be viewed as I/O activities.
The results were obtained on a 2-processor SGI Octane machine with 256 MB memory and R10K processors. These results are different from those
obtained on a PC running LINUX.
In a less time-constrained environment, the next step would be to use performance analysis monitoring tools to verify that the desired behavior is in fact the
behavior that is taking place. It has been validated that the disk loader is indeed producing a file of the anticipated size during these test runs.

Figure 1

	A Process For Performance Evaluation Of Real-Time Systems
	
	
	
	
	
	Command and Control Technologies Corporation, Titusville, FL

	ABSTRACT
	1. INTRODUCTION
	2. PROCESS ISSUES
	3. PERFORMANCE EVALUATION ISSUES
	4. REAL-TIME SYSTEMS ISSUES
	5. PROCESS DESCRIPTION
	Priorities
	Products
	Scripts
	Forms
	Lists/Standards

	6. CASE STUDY
	7. CONCLUSIONS
	8. ACKNOWLEDGEMENT
	9. REFERENCES
	10. SAMPLE FORMS
	
	Description
	Description
	Description

