

ASSESSMENT OF SOFTWARE DEVELOPMENT TOOLS
FOR SAFETY-CRITICAL REAL-TIME SYSTEMS*)

Andrew Kornecki1) and Janusz Zalewski2)

1) Department of Computing, Embry-Riddle Aeronautical University
Daytona Beach, FL 32114-3900, USA

kornecka@erau.edu
2) Computer Science Program, Florida Gulf Coast University

Ft. Myers, FL 33965-6565, USA
zalewski@fgcu.edu

Abstract: The paper presents guidelines on criteria and procedures for evaluating
software development tools used in safety-critical real-time systems. We present, first, a
view of the taxonomy of software development tools from the perspective of the
development process and the development environment. The investigation concentrates
on evaluating the design tools, considering their interfaces with the requirements and
testing phases of the software lifecycle. Furthermore, we discuss the taxonomy of criteria
for tool evaluation. The major observations are related to the differences between
evaluating the tool itself (macro-evaluation), evaluating the process of producing the tool
(meta-evaluation), and evaluating products developed with this tool (micro-evaluation).
Building the criteria for evaluation is based on the triad: choosing an appropriate attribute
(property) of the tool, describing the metric for the evaluation of this property, and
applying some measure (measurement procedure) to use the metric and obtain the results
of evaluation of this property. Copyright © 2003 IFAC

Keywords: real-time systems, software safety, safety related systems, software tools.

As the tools participate in the development of safety-
critical software, the evaluation of the tools should be
made an intrinsic part of the development. Just like
the companies developing safety-critical software
employ the best professionals to participate in the
design process, we need the best tools to be used in
this process as well. It is also generally agreed that
errors introduced to software artifacts in early stages
of development are extremely costly. Thus, a process
for evaluating these tools has to be created.

1. INTRODUCTION

The objective of this paper is to present the
taxonomy of criteria and procedures for evaluating
software development tools used in safety-critical
real-time systems. Automatic development tools are
more and more extensively employed in the design
process. Although some research has been previously
done in this area (Sherry et al. 1998), experts in this
field not necessarily agree on the issue. Some say
that tools do not have a direct impact on the
executing code, so their role is not critical. Others
see the tool at the same standard as the resulting
target system.

The ultimate goal of developing the safety-critical
real-time systems is to provide evidence that the
safety requirements (in addition to other
requirements) have been met. Since the development
tools participate in this process, their quality affects
directly and indirectly the quality of the target
software and, therefore, the overall system safety.

*) This work was sponsored in part by the Federal
Aviation Administration (FAA). Findings contained
herein are not necessarily those of the FAA.

In this paper, we concentrate on avionics, as the
specific application area. For this reason, we start
with a widely accepted standard for software
considerations in airborne systems, DO-178B
(RTCA 1992). Of the four primary processes of
software development, as defined in DO-178B:

- Software Requirements Process
- Software Design Process
- Software Coding Process
- Integration Process

we make the Software Design Process a focal point
of tool evaluation. With this in mind, we need to
choose both the software tools relevant to this
process, as well as the criteria for the evaluation of
these tools. In this view, we concentrate in this paper
on the taxonomy of the tools (Section 2), selection of
tool evaluation criteria (Section 3), and plans for the
experimental work (Section 4).

2. TOOL TAXONOMY

2.1 Process Aspects

The initial assumptions for developing the tool
taxonomy are as follows:

1) Our focus is on Design Process, that is, we do
not deal with tools related to the Requirements
Phase nor do we deal with tools relevant to the
Testing and Verification Phases.

2) The practice of using tools during the Design
Process can be represented as the following
sequence: requirements tool, followed by
design tool, typically with code generation
functionality, an Integrated Development
Environment and the target with real-time
operating system; a significant role is also
played by analysis and testing tools (Fig. 1).

Requirements
Tool

Structural
Design
Tool

Functional
Design
Tool

typically with
code generator

functionality

Integrated
Development
EnvironmentTesting

Tool

Target
(with RTOS)

or/and

Tool Categories

Analysis
Tool

e.g.:
VxWorks

QNX
OSE

Integrity
LynxOS

e.g.:
CodeTest
TestRT

VectorCast
Insure++

e.g.:
Tornado

Multi

e.g.:
Rhapsody
RoseRT
STOOD
Artisan

e.g.:
SCADE
Matlab

BEACON
Sildex

e.g.:
RapidRMA
TimeWiz

e.g.:
Reqtify
DOORS

SpecTRM
DOME

Fig. 1. Model of real-time software development

process and its impact on tool use.

This model covers most, if not all, of the known
development schemes, for example:

1) A high-level structural design tool (e.g. Rose
RT, Rhapsody, Artisan Studio, Esterel Studio,

STOOD) is used to develop software
architecture in a specific graphical notation
(e.g. UML). Also, such high-level design tools
can be used directly to develop real-time
software and generate source code in a high
level programming language (C/C++, Ada,
Java) for specific targets.

2) For smaller and simpler systems the control
algorithms are usually developed using
function-oriented tools (e.g. SCADE,
Matlab/StateFlow, BEACON, MatrixX,
Sildex). These tools also can generate source
code (C/C++, Ada), which can be directly
tested. In either case developers use Integrated
Development Environments (e.g. Tornado for
VxWorks, MULTI for Integrity, etc.) to supply
hand-written or generated source code for
compilation for specific target machines.

3) In all approaches mentioned above there is a
need to maintain consistent requirements;
therefore, a requirements analysis tool (e.g.
DOORS, Reqtify) is typically used.

4) The development requires thorough analysis
and testing, typically supported by appropriate
automatic tools (e.g. PERTS, TimeWiz,
CodeTest, Insure++, TestRT).

Categories of tools based on this model define the
scope of the evaluation. The focus of this research is
on Software Design tools - the center of the diagram
in Fig. 1. Although the tools outside the dashed-line
box are important in software development, their role
in the Design Process is limited and includes only
interfacing to this process, from the point of view of
requirements specification, analysis, and testing.

2.2 Other Aspects

Thus far, we discussed only one specific aspect of the
use of automatic software design tools, that of their
relationships with other phases of the development
process. Therefore, we can call it a process aspect
and, following the idea of a waterfall model of
software development, where it naturally fits, call it a
vertical view of the tool, or tool’s vertical dimension.

There are, however, other aspects related to the way
software development tools are used. One of the
most important ones is the environment aspect. An
IEEE standard on tool interconnections addresses this
issue (IEEE 1992a), and distinguishes among several
contexts, in which the tools are used (interfaces for
the tool use):

- user context, which refers mostly to the
interaction via the human-computer interface

- organization context, related to the processes,
in which the tool is used

- other tools, related to interactions and data
exchange with other software systems

- platform context, describing the infrastructure
on which the tool is hosted.

Based on this general distinction, one can specify
more accurately a variety of roles a software
development tool is playing in the environment. One

3. TAXONOMY OF CRITERIA FOR TOOL
EVALUATION

can thus list corresponding views of the tool, or
tool’s dimensions, which may be helpful in the
evaluation. In this respect, a user context represents
an internal view, or internal dimension of the tool,
since the task of the user is typically to develop the
graphical representation of the design and check it,
for example, using tool’s animation or simulation
capability. These are internal tool functions.

3.1 Basic Model of Tool Evaluation

Once we have agreed upon the categories of tools to
evaluate, and discovered various aspects of tool
interfacing with the process and the environment, we
need to derive a model of the tool evaluation process,
necessary for developing the evaluation criteria. The
framework for this process is shown in Fig. 3.

Two other contexts, organization interface and
interface to other tools refer, respectively, to the
communication the tool has with other processes
(projects) within the organization, as well as to
communication with other software within the same
project. The first type of communication is mostly
static (off-line) and relies on exchanging design
models with other projects. The second type is more
dynamic (on-line) and relies on maintaining direct
connectivity with other tools. Since it normally
involves peer-to-peer interaction, a corresponding
view of the tool related to communication with other
tools is called its horizontal dimension. Similarly,
since the exchange of design models between
projects happens across the organization, it is called
diagonal dimension, symbolizing crossing the project
boundaries (or even organizational boundaries). The
final context, the platform context, although it is an
important factor in the tool environment, can be
considered an external dimension, not critical in the
quality evaluation of the tool.

Tool
Development

Tool
Use

Product
Execution

Meta-evaluation Micro-evaluation

Macro-evaluation

TOOL PRODUCT

RESULTS

Fig. 3. Model of the tool evaluation process.

The central part of this model is the macro-
evaluation based on the use of the tool during the
Design Process. However, this is not and should not
be the only basis for evaluating the tool. A lot of
information on tool quality can be usually derived
from the development of the tool itself. Therefore,
the model includes tool development as a separate
phase. This can be considered a meta-evaluation:
evaluating the method and the process to develop a
tool. The data for evaluation of this phase can be
requested from and provided by the tool vendor.

In addition to the macro-evaluation and the meta-
evaluation, the product developed with a particular
tool should be included in the evaluation. A good
product can provide data on the tool quality, so does
a poor product. Evaluating a product is called micro-
evaluation, since it focuses on the level lower than
the tool itself. Such product evaluation can be based
both on code analysis and on code execution.

Fig. 2. Four aspects (dimensions) of the tool use.

Consequently, four different aspects of the design
tool use can be illustrated (Fig. 2), referring to four
specific dimensions of the tool, with respect to its
role in the process and the environment:

Correspondingly to this three-level evaluation model,
three categories of tool evaluation criteria have to be
defined: those related to the tool development, the
tool itself, and the product developed with this tool.
In other words, to have the entire picture of the tool,
we need to do three types of evaluation, not just one
limited strictly to the tool itself.

- vertical dimension, related to the process
aspects of the tool use, specifically to its
support for the next and previous phases of the
development process (see Sec. 2.1)

- internal dimension, related to user aspects of
the tool (developing the model of the design
and simulating its operation and performance)

3.2 The Criteria Considerations

- horizontal dimension, related to the
environment aspects in a view of on-line
communication with other tools, for instance,
via TCP/IP protocol, and

Evaluating Software Products and Tools. Evaluating
quality of the tool is different from evaluating quality
of the product. Product quality is evaluated for its
compliance with the requirements. For the tool,
requirements are typically unknown. There are
several basic documents, which define criteria for
software evaluation, in general (ISO/IEC 1991). The
ISO/IEC standard is very specific about the software
evaluation criteria. It lists six such characteristics:

- diagonal dimension, referring to the ways of
exchanging design models with other
processes or projects, for example, importing a
non-UML model into a UML-based tool.

- functionality, comprising a set of attributes that
bear on the existence of specific functions

- ease of use, 17%
- power, 10%

- reliability, defined as a set of attributes that
bear on the capability of software to maintain
its level of performance under stated
conditions for a stated period of time

- robustness, 10%
- functionality, 30%
- ease of insertion, 13%
- quality of support, 20%.

- usability, set of attributes that bear on the
effort needed for use of the software

On this basis, the tool is assessed globally as meeting
the set of criteria, according to an additional scale. - efficiency, a set of attributes that bear on the

relationship between the level of performance
of software and the amount of resources used

There is very little done and published work on
evaluating tools specifically for safety-critical real-
time systems. One particular report deserves
attention, since it attempts to attack the problem
directly from the point of view of safety related
software development (Wichmann 1999). The report
suggests focusing on those tools, which involve the
highest risk associated with their use. These are
normally the tools having direct influence on the
safety system, such as compilers, but also design
tools that generate code for safety related target
systems. Respective concerns related to tool use are
grouped into three categories:

- maintainability, related to a set of attributes
that bear on the effort needed to make specific
modifications, and

- portability, understood as a set of attributes
that bear on the ability of software to be
transferred from one environment to another.

Each of the above characteristics is additionally
described in terms of lower level attributes, called
sub-characteristics. The validity of this approach has
been positively tested in (Abel and Rout 1993). It is
not, however, tool specific. One report offers a
particularly good view on the criteria for evaluating
software tools, an ISO/IEC guide for evaluation and
selection of CASE tools (ISE/IEC 1995). The
approach presented there is compatible with the
above mentioned ISO/IEC standard (ISO/IEC 1991),
as well as with an earlier IEEE Std 1209 (IEEE
1992b), addressing the same subject. This guide also
advocates evaluating tools with respect to specific
characteristics understood as evaluation categories.
They can be further divided into attributes that may
be assigned values during the evaluation process,
based on some accepted metrics.

- technical concerns related to commercial tools
- commercially related COTS concerns, and
- difficulties associated with in-house tools

development and support.

After a discussion of potential approaches to the use
of tools in safety related software development,
several recommendations are given in terms of
questions addressing:

- general issues
- those to be posed to tool suppliers
- actions recommended for users selecting tools

 - actions recommended for tool users having
adopted a tool, and An earlier document on defining criteria for software

tool evaluation (Firth et al. 1987) has been used in
(Ihme et al. 1998a, 1998b) to evaluate several tools
applied to the development of mission critical
software. Each criterion includes a set of low-level
criteria, or attributes:

- long-term recommendations for industry and
the profession.

Building the Quality Evaluation Criteria. Based on
discussion in previous sections, the evaluation of
software tools used in designing safety-critical real-
time software should involve:

- ease of use, which involves tailoring,
helpfulness, predictability, error handling,
system interface - a list of important criteria

- power, related to tool understanding, tool
leverage, tool state, performance

- a list of factors (attributes) to evaluate a
specific criterion from the list above, and

- robustness, involving consistency of operation,
evolution, fault tolerance, instrumentedness

- procedures to evaluate (measure) values of the
above mentioned attributes.

- functionality, regarding correctness and
methodological support

In other words the taxonomy has to be developed
that: - ease of insertion pertaining to learnability and

software engineering environment - identifies the criteria, which are representing
quality of the tool in the opinion of its users
and evaluators (one has to remember that the
tool is used for safety related software, not just
general-purpose software)

- quality of support concerning tool history,
maintenance, user’s group and feedback,
installation, training, documentation.

Each attribute, in turn, involves a set of evaluation
questions, 155 total for all attributes. Individual
attributes are then evaluated as a percentage of
positive answers, according to a certain formula.
Finally, each of the six main characteristics is
assessed based on the values of individual attributes,
and the overall quality of the tool is assessed based
on the following weighing factors:

- for each criterion, establish specific attributes
and their levels on a certain scale, which would
best characterize the criterion and allow
assigning a value for each of the attributes

- for each attribute, recommend a procedure,
equivalent to some kind of a measurement
process, which would lead to associating a

numerical value with this attribute, in a
process as objective as possible.

As described above, it is a typical problem of
software quality measurement. Several reports exist,
which propose various, usually consistent with each
other, approaches to this problem (IEEE 1988, FAA
1991, Barbacci et al. 1995, IEEE 1998). In a view of
identifying software quality attributes, assigning
them scale of values, and establishing procedures for
assessing these values, the following definitions from
(IEEE 1998) would apply:

- Attribute - a measurable physical or abstract
property of an entity.

- Metric (Software Quality Metric) - a function
whose inputs are software data and whose
output is a single numerical value that can be
interpreted as the degree to which software
possesses a given attribute that affects its
quality.

- Measure - a way to ascertain or appraise value
by comparing it to a norm (to apply a metric).

To illustrate this discussion by an example,
measuring properties of software can be compared to
measuring physical quantities according to the same
scheme. One example is time:

- attribute (or physical property): time
- metric: second
- measure: any device that incorporates the

procedure to calculate time (e.g. clock,
stopwatch, chronometer).

The key issue in this scheme is a definition of a
metric. In case of time, a second is “the duration of 9
192 631 770 periods of the radiation corresponding
to the transition between the two hyperfine levels of
the ground state of the caesium 133 atom.” Metrics
definition is, however, typically the most difficult
part of any software project.

In terms of the tool properties, one must identify
when evaluating the tool, there are several views to
consider. For example, according to the tool aspects
from Section 2.2, the following sample attributes can
be assessed:

- correctness and performance, in the internal
dimension

- traceability and testability, in the vertical
dimension

- connectivity and interoperability, in the
horizontal dimension

- reusability and portability, in the diagonal
dimension.

On the other hand, following the ISO/IEC standards
(ISO/IEC 1991; ISO/IEC 1995), one can focus on the
model discussed in Section 3.2, involving the
following attributes: functionality, reliability,
usability, efficiency, maintainability, and portability.

4. EXPERIMENTAL WORK

Once we have defined the criteria and procedures to
evaluate the tool, we are essentially facing the

problem how, within the process defined in DO-
178B, to conduct an experiment of software
development applied to a simple airborne
application, so one could evaluate the role of the
design tool and associated processes, to verify the
approach suggested above. For this reason, a testbed
has been defined and implemented, for the
measurements to take place. Two aspects of such
testbed are equally important:

1) A sample model of an avionics application.
2) Equipment and software for host and target

platforms.

We define a standard application that could be used
as a typical benchmark for further studies on tool
evaluation. Specifically, it has to take into account a
number of sensors that gather various kinds of in-
flight data, as well as a typical human interface
including simplified pilot controls and a number of
displays, typically present in a cockpit, to track flight
parameters. At least one such application has been
described, known as the Generic Avionics Software
Specification (Locke et al. 1990), shown in Fig. 4.

Mission
Control
Computer

Inertial
Navigation
System

Targeting
Radar

Radar
Altimeter

Radar
Warning
Receiver

Stores
Mgmnt
System

Air Data
Computer

Display
Processor

Heads Up
Display

Multi-
Purpose
Display

Aircrew
Keyset

Hands On
Throttle
& Stick

Serial
Bus

Fig. 4. Generic avionics architecture block diagram;

adopted from (Locke et al. 1990).

The diagram shows a number of processors
responsible for various types of data gathering from
sensors, such as:

- air data computer, collecting barometric
altimeter plus static and dynamic pressure data

- inertial navigation system, providing aircraft
position and velocity, plus attitude and heading

- radar altimeter, providing measured height
above the ground

- radar warning receiver, that warns the aircrew
of hostile radar energy

- targeting radar, providing range and angle data
of sufficient accuracy to track moving targets.

The generic system presented in Fig. 4 represents
most of the functions of a real avionics application.
For the purpose of this project, it is reduced to
include only the most important aspects of human
interfacing and data collection from sensors. A
reasonable way to proceed is to eliminate parts of the
system not relevant to civil aviation. Thus, only INS
and Air Data Computer with Radar remain as the
primary sensor equipment, with one of the displays
and the simplistic interface for controlling aircraft.

The primary assumption regarding the subsequent
choice of the target platform is to choose standard
hardware and software to make experiments as
repeatable as possible. Regarding the hardware, due
to their widespread use in industry, VME and cPCI
bus architectures with either PowerPC or Pentium
processors are being considered. The ultimate choice
depends on the previous experience with this type of
hardware and compatibility with the supporting real-
time kernel selected for use.

Choosing appropriate equipment to generate sensor
information is another critical part of the project,
since it may obscure the results, if not done properly.
The idea is to avoid developing hardware or
software, and rely on off-the-shelf solutions. Our
choice is to employ a flight simulator, which can
produce signals deliverable to an avionics bus, with a
possibility to receive control signals developed by
the equipment hooked to the bus. All commercial
solutions we considered were more optimal than
developing the system in-house.

5. CONCLUSION

This paper presented guidelines on criteria and
procedures for evaluating software development
tools for use in safety-critical real-time systems. We
proposed, first, the starting point for the research on
tool evaluation and outlined a view of the taxonomy
of software development tools from the perspective
of the development process and the development
environment. The main suggestion is to concentrate
on evaluating the design tools, considering their
interfaces with the requirements, analysis, and testing
phases of the software lifecycle.

Furthermore, we discussed the taxonomy of criteria
for tool evaluation. The major observations are
related to the distinction between evaluating the tool
(evaluation proper), evaluating the tool development
(meta-evaluation), and evaluating product developed
with this tool (micro-evaluation). Building the
criteria for evaluation should be based on the triad:

- choosing an appropriate attribute of the tool
- describing the metric for its evaluation, and
- applying some measure (measurement

procedure) to use this metric and obtain the
result of evaluation of this attribute.

It is essential to verify findings on an experimental
testbed, which employs the following elements:

- a generic avionics application used as a model
for software development

- standard bus-based hardware platform, with a
standard real-time kernel, that will play a role
of a target system for the code generated from
the evaluated design tools, and

- a flight simulator, which has the ability to
deliver signals to the hardware platform and
receive control signals from it, to make the
results of the research verifiable.

ACKNOWLEDGEMENTS

The work on safety critical real-time software
development tool assessment is still in progress and
a close cooperation with the software and aviation
industry is the critical element for success. We are
grateful to our FAA contacts and numerous
companies for their thoughtful discussions. Help of
graduate students in the ERAU Software
Engineering Program is also gratefully
acknowledged.

REFERENCES

Abel D.E., T.P. Rout (1993), Defining and Specifying the

Quality Attributes of Software Products, The
Australian Computer Journal, Vol. 25, pp. 105-112.

Barbacci M.R., M.H. Klein, T.A. Longstaff, C.B.
Weinstock (1995), Quality Attributes, Report
CMU/SEI-95-TR-021, Software Engineering Institute,
Pittsburgh, Penn., USA.

FAA (1991), Software Quality Metrics, Report
DOT/FAA/CT-91/1, FAA Technical Center, Atlantic
City, NJ, USA.

Firth R. et al. (1987), A Guide to the Classification and
Assessment of Software Engineering Tools, Technical
Report CMU/SEI-87-TR-10, Software Engineering
Institute, Pittsburgh, Penn.,USA.

IEEE Std. 982.1 (1988), Standard Dictionary of Measures
to Produce Reliable Software, IEEE, New York, USA.

IEEE Std 1175 (1992a), Trial-use Standard Reference
Model for Computing System Tool Interconnections,
IEEE, New York, USA.

IEEE Std 1209 (1992b), Recommended Practice for the
Evaluation and Selection of CASE Tools, IEEE, New
York, USA.

IEEE Std. 1061 (1998), Software Quality Metrics
Methodology, IEEE, New York, USA.

Ihme T. et al. (1998a), CASE Tool Evaluation, Proc.
DASIA Conf. On Data Systems in Aerospace, Athens,
Greece, pp. 121-126.

Ihme T. et al. (1998b), Developing Application
Frameworks for Mission-Critical Software: Using
Space Application, Research Notes 1933, Technical
Research Centre of Finland, Espoo, Finland.

ISO/IEC 9126 (1991), Information Technology – Software
Product Evaluation – Quality Characteristics and
Guidelines for Their Use, Geneva, Switzerland.

ISO/IEC 14102 (1995), Information Technology –
Guideline for the Evaluation and Selection of CASE
Tools, Geneva, Switzerland.

Locke C.D. at el. (1990), Generic Avionics Software
Specification, Tech. Report CMU/SEI-90-TR-8,
Pittsburgh, Penn., USA.

RTCA (1992), Software Considerations in Aiborne
Systems and Equipment Certification, Report
RTCA/DO-178B, Washington, DC, USA.

Sherry L., A. Suarez, P. Wolfe (1998), Application of
CASE Tools in the Development of Commercial
Avionics Software, Proc. SMC'98 IEEE Int’l Conf. on
Systems, Man, and Cybernetics, Vol. 1, pp. 875-880.

Wichmann B. (1999), Guidance for the Adoption of Tools
for Use in Safety Related Software Development,
Draft Report, British Computer Society, London, UK.

