
Innovations Syst Softw Eng (2005)
DOI 10.1007/s11334-005-0013-1

ORIGINAL PAPER

Andrew J. Kornecki · Janusz Zalewski

Experimental evaluation of software development tools
for safety-critical real-time systems

Received: 16 April 2005 / Accepted: 1 June 2005 / Published online: 29 July 2005
© Springer-Verlag 2005

Abstract Since the early years of computing, programmers,
systems analysts, and software engineers have sought ways
to improve development process efficiency. Software devel-
opment tools are programs that help developers create other
programs and automate mundane operations while bringing
the level of abstraction closer to the application engineer.
In practice, software development tools have been in wide
use among safety-critical system developers. Typical appli-
cation areas include space, aviation, automotive, nuclear, rail-
road, medical, and military. While their use is widespread in
safety-critical systems, the tools do not always assure the safe
behavior of their respective products. This study examines
the assumptions, practices, and criteria for assessing soft-
ware development tools for building safety-critical real-time
systems. Experiments were designed for an avionics test-
bed and conducted on six industry-strength tools to assess
their functionality, usability, efficiency, and traceability. The
results shed some light on possible improvements in the tool
evaluation process that can lead to potential tool qualification
for safety-critical real-time systems.

Keywords Safety-critical systems · Software safety · CASE
tools · Tool qualification

A.J. Kornecki
Dept. of Computer and Software Engineering
Embry Riddle Aeronautical University
600 Clyde Morris Blvd.
Daytona Beach, FL 32114, USA
Tel.: +1-368-2266678
Fax: +1-368-2266678
E-mail: kornecka@erau.edu
http://faculty.erau.edu/korn

J. Zalewski (B)
Dept. of Computer Science
Florida Gulf Coast University
10501 FGCU Blvd.
Fort Myers, FL 33965, USA
Tel.: +1-239-5907317
Fax: +1-239-5907330
E-mail: zalewski@fgcu.edu
http://www.fgcu.edu/zalewski

1 Introduction

The objective of this paper is to study the need, state of
practice, and issues in the assessment of software tools used
in the development of safety-critical real-time systems, in
view of recommendations for the potential tool qualification
process. Although development tools are used in a variety of
application domains, we concentrate on aviation systems as a
representative application area. Construction of airborne and
ground-based systems in the U.S. is subject to procedures
outlined in various guidelines issued by the Federal Aviation
Administration (FAA).

FAA document DO-178B [1] is a primary guideline for
software development in certified airborne systems, but it is
often referred to in other contexts related to software pro-
cesses, especially for safety-critical systems [2]. Tool quali-
fication is a supplementary process that applicants may elect
to follow in the course of airborne system certification. The
purpose and need for qualification is described in Sect. 12.2
of DO-178B:

“The objective of the tool qualification process is to
ensure that the tool provides confidence at least equiv-
alent to that of the process(es) eliminated, reduced, or
automated. A tool may be qualified only for use on
a specific system. Use of the tool for other systems
may need further qualification. Only those functions
that are used to eliminate, reduce, or automate soft-
ware life cycle process activities, and whose outputs
are not verified, need be qualified.”

Tool qualifications are part of a type certificate, supple-
mental type certificate, or technical standard order approval.
In the case of projects using qualified tools, two required doc-
uments—“Plan for Software Aspects of Certification
(PSAC)” and “Software Accomplishment Summary (SAS)”
—of the original certification project must include clear and
specific references to the documents “Tool Qualification Plan”
and “ToolAccomplishment Summary.”The documents “Sep-
arate Tool Operational Requirements,” “Tool Verification
Records,” and “Tool Qualification Development Data” need

Used Distiller 5.0.x Job Options
This report was created automatically with help of the Adobe Acrobat Distiller addition "Distiller Secrets v1.0.5" from IMPRESSED GmbH.You can download this startup file for Distiller versions 4.0.5 and 5.0.x for free from http://www.impressed.de.GENERAL --File Options: Compatibility: PDF 1.2 Optimize For Fast Web View: Yes Embed Thumbnails: Yes Auto-Rotate Pages: No Distill From Page: 1 Distill To Page: All Pages Binding: Left Resolution: [600 600] dpi Paper Size: [595 842] PointCOMPRESSION --Color Images: Downsampling: Yes Downsample Type: Bicubic Downsampling Downsample Resolution: 150 dpi Downsampling For Images Above: 225 dpi Compression: Yes Automatic Selection of Compression Type: Yes JPEG Quality: Medium Bits Per Pixel: As Original BitGrayscale Images: Downsampling: Yes Downsample Type: Bicubic Downsampling Downsample Resolution: 150 dpi Downsampling For Images Above: 225 dpi Compression: Yes Automatic Selection of Compression Type: Yes JPEG Quality: Medium Bits Per Pixel: As Original BitMonochrome Images: Downsampling: Yes Downsample Type: Bicubic Downsampling Downsample Resolution: 600 dpi Downsampling For Images Above: 900 dpi Compression: Yes Compression Type: CCITT CCITT Group: 4 Anti-Alias To Gray: No Compress Text and Line Art: YesFONTS -- Embed All Fonts: Yes Subset Embedded Fonts: No When Embedding Fails: Warn and ContinueEmbedding: Always Embed: [] Never Embed: []COLOR --Color Management Policies: Color Conversion Strategy: Convert All Colors to sRGB Intent: DefaultWorking Spaces: Grayscale ICC Profile: RGB ICC Profile: sRGB IEC61966-2.1 CMYK ICC Profile: U.S. Web Coated (SWOP) v2Device-Dependent Data: Preserve Overprint Settings: Yes Preserve Under Color Removal and Black Generation: Yes Transfer Functions: Apply Preserve Halftone Information: YesADVANCED --Options: Use Prologue.ps and Epilogue.ps: No Allow PostScript File To Override Job Options: Yes Preserve Level 2 copypage Semantics: Yes Save Portable Job Ticket Inside PDF File: No Illustrator Overprint Mode: Yes Convert Gradients To Smooth Shades: No ASCII Format: NoDocument Structuring Conventions (DSC): Process DSC Comments: NoOTHERS -- Distiller Core Version: 5000 Use ZIP Compression: Yes Deactivate Optimization: No Image Memory: 524288 Byte Anti-Alias Color Images: No Anti-Alias Grayscale Images: No Convert Images (< 257 Colors) To Indexed Color Space: Yes sRGB ICC Profile: sRGB IEC61966-2.1END OF REPORT --IMPRESSED GmbHBahrenfelder Chaussee 4922761 Hamburg, GermanyTel. +49 40 897189-0Fax +49 40 897189-71Email: info@impressed.deWeb: www.impressed.de

Adobe Acrobat Distiller 5.0.x Job Option File
<< /ColorSettingsFile () /AntiAliasMonoImages false /CannotEmbedFontPolicy /Warning /ParseDSCComments false /DoThumbnails true /CompressPages true /CalRGBProfile (sRGB IEC61966-2.1) /MaxSubsetPct 100 /EncodeColorImages true /GrayImageFilter /DCTEncode /Optimize true /ParseDSCCommentsForDocInfo false /EmitDSCWarnings false /CalGrayProfile () /NeverEmbed [] /GrayImageDownsampleThreshold 1.5 /UsePrologue false /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /AutoFilterColorImages true /sRGBProfile (sRGB IEC61966-2.1) /ColorImageDepth -1 /PreserveOverprintSettings true /AutoRotatePages /None /UCRandBGInfo /Preserve /EmbedAllFonts true /CompatibilityLevel 1.2 /StartPage 1 /AntiAliasColorImages false /CreateJobTicket false /ConvertImagesToIndexed true /ColorImageDownsampleType /Bicubic /ColorImageDownsampleThreshold 1.5 /MonoImageDownsampleType /Bicubic /DetectBlends false /GrayImageDownsampleType /Bicubic /PreserveEPSInfo false /GrayACSImageDict << /VSamples [2 1 1 2] /QFactor 0.76 /Blend 1 /HSamples [2 1 1 2] /ColorTransform 1 >> /ColorACSImageDict << /VSamples [2 1 1 2] /QFactor 0.76 /Blend 1 /HSamples [2 1 1 2] /ColorTransform 1 >> /PreserveCopyPage true /EncodeMonoImages true /ColorConversionStrategy /sRGB /PreserveOPIComments false /AntiAliasGrayImages false /GrayImageDepth -1 /ColorImageResolution 150 /EndPage -1 /AutoPositionEPSFiles false /MonoImageDepth -1 /TransferFunctionInfo /Apply /EncodeGrayImages true /DownsampleGrayImages true /DownsampleMonoImages true /DownsampleColorImages true /MonoImageDownsampleThreshold 1.5 /MonoImageDict << /K -1 >> /Binding /Left /CalCMYKProfile (U.S. Web Coated (SWOP) v2) /MonoImageResolution 600 /AutoFilterGrayImages true /AlwaysEmbed [] /ImageMemory 524288 /SubsetFonts false /DefaultRenderingIntent /Default /OPM 1 /MonoImageFilter /CCITTFaxEncode /GrayImageResolution 150 /ColorImageFilter /DCTEncode /PreserveHalftoneInfo true /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /ASCII85EncodePages false /LockDistillerParams false>> setdistillerparams<< /PageSize [576.0 792.0] /HWResolution [600 600]>> setpagedevice

A.J. Kornecki, J. Zalewski

to be available for certification authority review.These require-
ments are described in Chap. 9 of FAA Notice N8110.49 [3].

The main concern regarding airborne software that may
impact the development tools qualification is that the selected
tool may not insert errors into the software it produces. Obvi-
ously, the tool must guarantee the chain of correctness defined
by DO-178B. The qualification process must provide a means
to show that the tool is predictable (i.e., deterministic). An
advantage of using qualified tools is the reduction (or even
elimination) of not only a time-consuming translation pro-
cess but also the effort required for verification of the output
product. Another concern is that in most modern applica-
tions, the software development tool must support the imple-
mentation of large projects by supporting multiuser access,
configuration management, etc. This study explores the cur-
rent practice of tool evaluation and development of ways to
improve the evaluation process.

The paper is structured as follows. The main assump-
tions are presented in Sect. 2, followed by a presentation of
industrial practices in Sect. 3 and a discussion of evaluation
criteria in Sect. 4. Experiments and their results are presented
in Sect. 5, followed by a conclusion in Sect. 6.

2 Assumptions

Three basic issues need to be considered initially in a study
of any technical artifact: the subject, the context in which this
subject is used, and the research method. Our subject is a set
of software development tools, the processes in which they
are immersed define the context, and the method describes
the way in which they are evaluated.

The primary question regarding the subject concerns the
identification of specific tools. The document DO-178B de-
fines four primary processes of software development: require-
ments, design, coding, and integration. By adopting this se-
quence, we can represent the practice of using tools during
the development process as follows: a requirements tool, fol-
lowed by a design tool, typically with code generation capa-
bility, an integrated development environment, and the target
with a real-time operating system. Analysis and testing tools
also play a significant role, as illustrated in Fig. 1.

The above model covers most, if not all, of the known
software development schemes, for example:

(1) High-level structural design tools (e.g., Rose RT, Rhap-
sody, RT Professional Studio, STOOD), based on discrete
models, are used to develop software architecture in a
specific graphical notation (e.g., UML). Such tools can
be used directly to generate a source code framework (in
C/C++, Java, Ada) for specific targets.

(2) For smaller and simpler systems the control algorithms are
usually developed with continuous models (differential
equations) using function/block-oriented tools (e.g., Bea-
con, MatrixX, Matlab/Simulink, Scade, Sildex). These
tools also can generate complete source code (in C/C++,
Ada), which can be directly tested.

(3) In all approaches mentioned above there is a need to main-
tain consistent requirements; therefore, a requirements
analysis tool is typically used (e.g., DOORS, Reqtify).

(4) The code development requires thorough analysis and
testing, typically supported by appropriate automatic tools
(e.g., RapidRMA, TimeWiz, CodeTest, Insure++, Test-
RT).

To define clearly the scope of this study, we chose software
design tools, represented in a dashed box in Fig. 1, as the
subject and focal point of the research.

A model of the tool evaluation process is necessary for
developing the evaluation criteria. The framework for this
process, based on the context of tool use, is shown in Fig. 2.
The central part of this model is the macroevaluation based on
the use of the tool during the design phase. However, much
information on tool quality can be derived from the devel-
opment of the tool itself, considered as a metaevaluation:
evaluating the process to develop a tool. The tool vendor can
provide the data for evaluation of this stage. In addition to
the macro- and metaevaluation, the product developed with
a particular tool can be included in the evaluation. This is
called microevaluation, and it focuses on the level lower than
the tool itself. Such a product evaluation can be based both
on static code analysis and code execution. Consequently, to
have the entire picture of the tool’s quality, we need to do the
evaluation at three different levels.

Considering the category of tools we want to evaluate, as
well as the model of the evaluation process, another decision
needs to be made regarding the research method: What gen-
eral view of tool evaluation would one like to pursue? The
four views we have identified are presented in Fig. 3, where
evaluation is a companion process of development:

• Qualification view, which looks at the qualification of a
development tool by applying standards and guidelines
accepted and used by industry.

• Project view, which considers how well a software tool
fits into the developer’s organization and the specific pro-
ject’s cycle.

• Behavioral view, which relies on the observations and
quantitative measurements of the tool’s behavior during
the design process.

• Taxonomy view, which concentrates on three groups of
indicators (functional, related to what the user wants from
the system; quality, related to how well the system fulfills
its function; business, considering the rationale for using
the tool) and respective measurement methods.

Since the project view is extremely broad, the behavioral
view is not well developed yet, and the qualification view is
limited to the very imperfect existing standards, we chose the
taxonomy view as the most promising method of tool evalua-
tion.Adopting this view requires distinguishing the most rep-
resentative metrics for tool evaluation and developing their
respective measures to conduct quantitative assessment [4].
The process of selecting metrics was preceded by an industry
survey, which is described in the next section.

Experimental evaluation of software development tools for safety-critical real-time systems

Requirements
Tool

Structural
Design

Tool

Functional
Design

Tool

typically with
code generator

functionality

Integrated
Development
Environment

Testing
Tool

Target
(with RTOS)

or/and

Tool Categories

Analysis
Tool

e.g.:
VxWorks

QNX
OSE

Integrity
LynxOS

e.g.:
CodeTest
TestRT

VectorCast
Insure++

e.g.:
Tornado

Multi

e.g.:
Rhapsody
RoseRT
STOOD
Artisan

e.g.:
SCADE
Matlab

BEACON
Sildex

e.g.:
RapidRMA
TimeWiz

e.g.:
Reqtify
DOORS

SpecTRM
DOME

Fig. 1 Software tool categorization

Tool
Development

Tool
Use

Product
Execution

M eta-evaluation M icro-eva luation

M acro-eva luation

TO O L PR O D U C T

R ESU LTS

Fig. 2 Model of the tool evaluation process

3 Industry view

The objective of this step was to investigate the current state
of industrial practice in tool evaluation by conducting a sur-
vey of stakeholders and other interested parties using design
tools in the avionics industry. A sample of 28 respondents
representing developers of avionics and engine control soft-
ware (74%) and FAA personnel (14%) had been surveyed
at the FAA National Software Conference, in Dallas, TX, in
May 2002.

A followup via e-mail to the FAA Software Certifica-
tion mailing list resulted in a rather unimpressive outcome of
only 14 responses from over 500 individuals. Such organiza-
tions asAirbus,Astronautics Corporation, Boeing, Goodrich,
Green Hills, Patmos, Honeywell, Raytheon, Sikorski, UTRC,
and Verocel were represented. Despite a rather limited sam-
ple, the survey provided some important feedback on the
evaluation and selection of software development tools, from

various perspectives: applicant/developer, manager, certify-
ing authority, and tool vendor. Figure 4 gives some insight
into the tool selection process as it stands in the industry. It is
interesting to note that a significant fraction of respondents
selects tools based only on limited testing, review of the tool
documentation, or the data as provided by the tool vendor.

Figure 5, in turn, shows the main criteria used in the selec-
tion process. From the industry perspective, the functionality
and cost of a tool are the major factors in making the tool
selection. Almost all of the participants cited functionality as
the primary factor in their evaluation criteria. Product cost
and the benefit to the company resulting from task automa-
tion were also cited by most of the participants. The third
major factor was compatibility with the development plat-
form. There seems to be a consensus that the development
platform is typically selected in advance and thus cannot be
influenced by new tools. It is, rather, tools that have to adapt
to this stable development environment.

A.J. Kornecki, J. Zalewski

Fig. 3 Four views of tool evaluation

0

2

4

6

8

10

12

14

Limited testing Extensive review
and testing

Tool qualification
package provided

by vendor

Tool documentation
review without

testing

Evaluation based on
brochure

Fig. 4 Industry survey on tool selection practices

Such issues as cost, obsolescence, compatibility with
existing development environments, and inadequate docu-
mentation were listed as sources of problems. Tool vendors
typically do not adhere to the level of effort required for
DO-178B compliance and occasionally present ungrounded
claims about tool functionality and performance. Typically,

tools developed in a research environment do not scale up
well. An often-cited problem was inadequate training and
understanding of development tools. There is some discour-
agement about rigor of tool qualification and a justified per-
ception of extensive cost of qualification. Good vendor
support is required to facilitate qualification of COTS

Experimental evaluation of software development tools for safety-critical real-time systems

31

26
24

19
17 16

13

9 9

0

5

10

15

20

25

30

35

Fun
cti

on
ali

ty
Cos

t

Com
pa

tib
ilit

y with
the de

ve
lop

men
t p

lat
form

Com
pa

tib
ilit

y with
the ex

ist
ing

too
ls

Reli
ab

ilit
y/q

ua
lity

of
the

tool

Eas
e of q

ua
lifi

ca
tio

n

Ava
ila

ble
su

pp
or

t an
d ac

ce
ss

to
the

ve
nd

or

Amou
nt

of
tra

ini
ng

nee
de

d to
us

e the
too

l

Amou
nt/

qu
ali

ty
of

do
cu

men
tat

ion
av

ail
ab

le

Fig. 5 Factors considered by industry when selecting development tools

development tools. The use of “alternate means” allowed in
DO-178B was quoted as a potential approach to obtaining
qualification credit.

4 Tool evaluation criteria

The industry survey provided some essential information on
potential criteria used for tool evaluation. However, it did not
give sufficient indication of what criteria would be the most
important or worthwhile to use when considering a subse-
quent tool qualification process. This may be due to the fact
that DO-178B [1] itself is not very specific on this issue. Var-
ious sections of DO-178B, however, provide some insight by
referring to certain aspects of software product evaluation,
for example:

– Traceability and verifiability (5.2.2)
– Consistency (5.2.2)
– Detecting modes of failure (5.2.2)
– Monitoring control flow and data flow (5.2.2)
– Complexity (5.2.2)
– Modifiability (5.2.3)
– Compliance with system requirements (6.3.2)
– Accuracy and consistency (6.3.2)

These criteria focus on the airborne system target software,
and do not apply directly to software tool evaluation. How-
ever, they can be used to evaluate the tools assuming appro-
priate access to the tool source code and tool development
documentation.

There are a few other standards and guidelines, which
define criteria for software evaluation in general. The two

related ISO/IEC standards [5,6] and a compatible IEEE stan-
dard [7] are very specific about software tool and software
product evaluation criteria. They list six such characteristics:

• Functionality, comprising a set of attributes that bears on
the existence of specific functions.

• Reliability, defined as a set of attributes that bears on the
capability of software to maintain its level of performance
under stated conditions for a stated period of time.

• Usability, a set of attributes that bears on the effort needed
for use of the software.

• Efficiency, a set of attributes that bears on the relation-
ship between the level of performance of software and the
amount of resources used.

• Maintainability, related to a set of attributes that bears on
the effort needed to make specific modifications.

• Portability, understood as a set of attributes that bears on
the ability of software to be transferred from one environ-
ment to another.

Each of the above characteristics is additionally described
in terms of lower-level attributes, called subcharacteristics,
which are not specific, however, to safety-critical systems.

The FAA Technical Center defines an extensive set of
quality factors for evaluating avionics application source code
[8], from accuracy to usability, including most of the factors
from the ISO/IEC standards. The report also recommends a
general approach for defining metrics based on these factors,
and for each factor the report points to other factors that can
have an influence. These factors are identified as influencing
the quality of source code and as such are not necessarily
applicable to tool assessment.

A.J. Kornecki, J. Zalewski

Several previous tool evaluation studies give some insight
into tool evaluation criteria. VTT Technical Research Cen-
ter of Finland conducted research [9] to compare software
development tools, evaluate them, and assess their support of
the emerging object-oriented technologies for safety-critical
real-time systems development. The proposed set of crite-
ria includes a set of low-level criteria, called attributes. Each
attribute, in turn, is assessed by a set of evaluation questions,
155 total for all attributes. Individual attributes are then eval-
uated as a percentage of positive answers, according to a cer-
tain formula. Finally, each of the six main characteristics is
assessed based on the values of individual attributes, and the
overall quality of the tool is assessed based on the following
attributes (the weighing factors in parentheses):

• Ease of use, which involves tailoring, helpfulness, predict-
ability, error handling, and system interface (17%).

• Power, related to tool understanding, tool leverage, tool
state, and performance (10%).

• Robustness, involving consistency of operation, evolution,
and fault tolerance (10%).

• Functionality, regarding correctness and methodological
support (30%).

• Ease of insertion, pertaining to the learning curve and soft-
ware engineering environment (13%).

• Quality of support, concerning tool history, maintenance,
user’s group and feedback, installation, training, and doc-
umentation (20%).

A British study [10] discusses the tools used in software
development activities for safety-related systems, from risk
assessment to maintenance. Tools are split into two catego-
ries, those automating a previously manually implemented
technique and those introducing new concepts and techniques.
The document elaborates on several questions and points of
concern. The following criteria are recommended for tool
evaluation:

• Ease of validation of the tool result.
• Software techniques used to develop the tool.
• Software techniques used in the tool.
• Quality system of the tool developers.
• Previous use of the tool in similar safety-related projects.

The role of each criterion is then discussed at some length.
For example, ease of validation of the tool result makes sense
when considered from the point of view of determinism. The
idea is that the output of a tool should not be too complex to
be examined or to have its validity demonstrated. The way
to demonstrate validity is to show a perfect match with the
original requirements. This approach would require limiting
the complexity of tool output and splitting intermediary arti-
facts in the development of the final product, resulting in
more development steps.

Results of the industry survey and review of the litera-
ture are summarized in Table 1, which includes a combined
list of main tool evaluation criteria adopted from the dis-
cussed sources. On this basis, the following rationale has
been developed for selecting specific evaluation criteria for
the experimental study.

First of all, only technical criteria were considered suit-
able, as opposed to business criteria, such as cost, vendor
support, ease of qualification, etc., which were eliminated up
front and not even included in the table. Secondly, only crite-
ria relevant to the design process were included, as opposed
to those spanning the entire development cycle, such as main-
tainability, modifiability, portability, reusability, etc. In this
respect, particularly important are the criteria that capture
tool characteristics during the design process, as a part of the
chain of processes illustrated in Fig. 1. Two specific criteria
from the list are particularly relevant in this regard: efficiency
of the generated code, which allows for conducting forward
evaluation regarding the quality of code, and traceability,
which allows backward evaluation regarding the tool’s ability
to maintain the right requirements. In addition, it is necessary
to evaluate the tool during its operation from the perspective
of the functions it provides and its ease of use. Two criteria
that seem to best capture this operational tool use are func-
tionality and usability.

It is important to note that two essential tool evalua-
tion criteria, reliability and robustness, were not used in the
experimental study for the following reasons. Reviewing the
criteria analysis in Table 1, it is clear that tool reliability is one
of the most widely considered. However, currently accepted
reliability measures are based on statistical data, and col-
lecting them, even for a single tool, would require a lengthy
study, much beyond the time frame of our project. Therefore,
we decided to leave it for future research. Similar reasoning
stands behind eliminating robustness as one of the leading
tool evaluation criteria. To evaluate tool robustness properly,
one needs to apply a wide range of input data to the tool,
which was not possible in this research due to resource lim-
itations. Additionally, it has been noted that some sources,
such as [1] and [8], are highly correlated, which weakens
the significance of a specific criterion, if we base the selec-
tion on its frequency of use. Therefore, consistency was not
considered in the experiments either.

This leaves us with four essential criteria marked in the
table by asterisks. Assuming these criteria are direct metrics
[11], the following specific measures to evaluate them were
defined and used in the experiments:

– Usability measured as development effort (in hours).
– Functionality measured via the questionnaire (on a 0–5

point scale).
– Efficiency measured as code size (in LOC).
– Traceability measured by manual tracking (in number of

defects).

5 Experiments

5.1 Experimental testbed and preliminary experiment

To take measurements on tools for the criteria defined in the
previous section, an experimental testbed was built including
the following components (Fig. 6):

Experimental evaluation of software development tools for safety-critical real-time systems

Table 1 Selection of criteria for software development tool evaluation

Sample criteria Industry survey DO-178B Std ISO/IEC Std FAA guide VTT study BCS study

Consistencya Yes Yes
Efficiency* Yes Power
Functionality* Yes Yes Yes
Maintainabilitya Yes Yes
Modifiabilitya Yes Yes
Portabilitya Yes Yes
Reliabilitya Yes Yes Yes Yes
Robustnessa Yes Yes
Traceability* Yes Ease of validation
Usability* Yes Yes Ease of use
Other Compatibility Accuracy complexity – Many more – –
∗Criteria selected
aCriteria eliminated

Fig. 6 Experimental testbed.

• A generic avionics application used as a model for software
development (with user interface, data collection, process-
ing, and display), for which specific design tools were used,
running on a workstation;

• Hardware platform, with a standard real-time kernel, that
serves as a target system for the code generated from the
evaluated design tools; and

• A flight simulator, with the ability to deliver signals to the
hardware platform and receive control signals from it, to
make results of the research verifiable.

The evaluation experiments were conducted in two steps.
First, a preliminary experiment was designed with a focus
on learning and exploring capabilities of software tools used
in the process of developing and implementing a safety-crit-
ical real-time project. The objective was to keep the sys-
tem at the minimal complexity while concentrating on the
collection of data and engineering observations that might
indicate the software tool’s quality. The developers collected
the design artifacts from the tools’ outputs (such as graphical
model, automatically generated source code, and documen-
tation) and focused on observations about the tool use. Data
related to the traceability from requirements to design to code
were also collected. These observations constituted the basis
for conducting controlled experiments in the next step.

For the preliminary experiment, selected tool samples in-
cluded four tools from both structural (object-oriented) and
functional (block-oriented) categories. The project was de-
fined as one of flight data collection from flight simulator
with simple processing (averaging, timestamping) and dis-
playing results on a terminal. Four developers were assigned
an identical problem statement to use the tool for develop-
ing a program to be implemented on a real-time target in the
experimental testbed.

The software was supposed to capture data packets of
parameter values transmitted from the flight simulator and
subsequently compute and display a moving average of
selected parameters. The user interface would consist of a
predefined menu of options to select 3 of over 20 parameters
to be captured and the frequency of the moving average com-
putation. The parameter values and averages would be dis-
played with a timestamp. Using a different tool (A, B, C, or
D), each developer implemented three types of requirements:
(1) timing requirement, (2) system requirements, and (3)
external interface requirements.

The evaluation criterion measured in this experiment
was tool usability. The data collected involved the develop-
ment effort (in hours) divided into four categories: prepa-
ration, modeling and code generation, measurements, and
postmortem (including report writing). A summary of results
is presented in Fig. 7. Details of the software requirements
and actual experimental results are discussed in [12]. The
preparation phase included familiarization with the tool and
the design methodology, which justified the high numbers in
this category. Modeling and code generation accounted for
lower values, but these varied greatly among the four selected
tools.

The developers used to apply the Personal Software Pro-
cess (PSP) [13] underestimated the preparation phase effort.
The average planned time was 58 h vs. the actual time of 84 h.
On the other hand, the developers planned for, on average,
over 71 h to be dedicated to the design and coding phase. The
actual average for this phase was 39 h. Automatic code gen-
eration reduced the development time on the order of 40%.
The average code size was about 1.8 KLOC. The average total
time spent on the project was 153 h, resulting in an efficiency
of nearly 12 LOC/h. The learning curve is high, and results

A.J. Kornecki, J. Zalewski

0

10

20

30

40

50

60

70

80

90

100

Tool A Tool B Tool C Tool D

Postmortem
Measurement

Model/Code
Preparation

Fig. 7 Preliminary experiment: usability measured as effort assessment (in hours)

may be biased since part of the modeling time was actually
spent on learning.

5.2 Controlled experiment results

The objective of the controlled experiment was a more
detailed evaluation of real-time software design tools with
automatic code generation capability, using the four criteria
described in Sect. 4. The selected tools included three from
the structural (object-oriented) category (labeled here L, M,
and N) and three from the functional (block-oriented) cate-
gory (labeled O, P, and Q, where tool O actually crosses the
boundary of two categories).

Fourteen developers assigned to the project were grad-
uate software engineering students familiar with software
development methodologies, software processes, and real-
time design concepts. Each of the six tools was assigned to a
team of two or three developers who shared the initial train-
ing and the final reporting. However, each team developed the
model and implemented code as an individual assignment.

To reduce the bias identified in the preliminary experi-
ment, the second experiment was designed in two phases,
each consisting of developing a separate model of embed-
ded software. The first model, a simple hair dryer simulator,
was used during the first phase of this experiment to facili-
tate the learning and constituted a capstone for familiariza-
tion with the methodology, tool, and operating environment.
The activities included reading documentation and materi-
als about modeling methodology, experimenting with tool
demos, running tutorials, etc. The second system, a simple
microwave oven controller software simulator, was used in
the actual design and data collection phase.

Requirements for the first model, hair dryer simulator, are
presented in Table 2, and requirements specifications for the
second model, simple microwave oven simulator, are shown
in Table 3.

As in the preliminary experiments, the following four top-
level tasks were elaborated in terms of entry and exit condi-
tions and the activities to be performed:

1) Project preparation and tool familiarization.
2) Model development and code generation.
3) Measurements and data collection (effort, code size, trace-

ability, questionnaire).
4) Postmortem.

Each developer was given a process script with specific tasks
to perform, the summary of which is presented below.

(1) Preparation
(a) Creation of PSP estimates of time and code size for

project.
(b) Selection of tool and familiarization with project

requirements.
(c) Learning to use the tool and identifying available

resources that can be used during development.
(d) Development of demonstration hair dryer model as

a learning aid.
(2) Model creation and code generation

(a) Microwave oven model creation according to speci-
fied requirements.

(b) Manual verification that all requirements were cov-
ered in the model; if the tool provided verification
capabilities, they were to be used.

(c) The code generation capabilities of the tool were then
to be used to generate C code for the model.

(3) Measurement (e.g., for traceability)

Experimental evaluation of software development tools for safety-critical real-time systems

Table 2 Requirements for hair dryer simulator

1. The system shall allow user to select motor speed (off, low, or high).
2. The system shall apply power to motor depending on selected speed setting.
3. The system shall cycle the heater (30 s on and 30 s off) when in low- and high-speed modes.
4. The system display shall show the selected speed, heater status, and countdown time when the heater is on.

Table 3 Requirements for microwave oven simulator

1. The oven shall allow user to set the cooking time in minutes and seconds (from default 00:00 to 59:59).
2. The oven shall allow user to set the power level (in the range of default 1 to 5).
3. The start of cooking shall initiate on an explicit user request.
4. When the cooking starts, the oven shall turn on the light and the rotisserie motor for the specified time period.
5. When the cooking starts, the oven shall cycle the microwave emitter on and off: a power level of 5 means that the emitter is on all the time,

a power level of 1 means that the emitter is on only one fifth of the time.
6. The oven shall display the remaining time of the cooking and the power level.
7. When the time period expires, the audible sound shall be generated and the light, motor, and emitter shall be turned off.
8. The oven shall turn on the emitter and the motor only when the door is closed.
9. The oven shall turn on the light always when the door is open.
10. The oven shall allow the user to reset at any time (to the default values).

(a) Decomposition of design model, which was then ana-
lyzed for traceability.

(b) Decomposition and traceability to model.
(c) Decomposition and traceability to requirements.
(d) Identification of code that did not have a representa-

tion in the model.
(4) Postmortem

(a) Completion and analysis of PSP data.
(b) Assessment of tool’s conformance to traceability.
(c) Compilation of each developer’s individual data into

a joint report summarizing their findings.

Quantitative data were collected for each of the four selected
criteria (metrics), with the following corresponding measures:

1. Efficiency was measured as code size (number of lines
of code, or LOC, generated by the tool from the user-
designed software model).

2. Usability was measured as effort (time spent in the exper-
iment for each process phase and the overall time spent
by each developer).

3. Functionality was measured as a given developer’s sub-
jective assessment (on a scale of 0 to 5) via a questionnaire
with questions grouped in the following four categories:
tutorial, user manuals, readability, and flexibility.

4. Traceability was given a qualitative assessment via man-
ual tracking of code to the model and requirements, as
explained in tasks (3a)–(3d) above.

5.2.1 Efficiency

Results of efficiency measurements via the size of generated
code for all six tools are presented in Fig. 8. The measured
code size varies greatly among the tools. Four of the tools
generated the code of reasonable size on the order of less
than one KLOC. The two others generated a significantly
larger source code for the same problem.

5.2.2 Usability

The other major criterion used for evaluation, tool usability,
was measured as effort (in hours) spent on each of the four
tasks listed above. Results collected for six selected tools
are shown in Fig. 9. Using a two-phase approach reduced
the preparation phase and ultimately reduced the modeling
phase as well. Different tools clearly require varying levels
of effort reaching nearly a three-to-one ratio.

5.2.3 Functionality

Figure 10 presents results of a functionality evaluation for all
six tools based on a questionnaire with scores from 0 to 5. The
components of functionality were extracted from the surveys
soliciting developers’ feedback on tool flexibility (i.e., ease
of model modification, manipulations with menus, choice of
various notations, and constructs to represent the design),
readability (clear understanding of a design model and the
process of code creation), tutorial, and user and reference
manuals. Across the evaluated tools, the overall ratings were
rather low. This indicates that despite the advertised capabil-
ities of these tools, the available resources for developers to
make effective use of the tools are insufficient or of marginal
quality. All the developers confirmed this in their feedback.
It happened to be a particular problem during the prepara-
tion phase, where the need for supporting materials was the
greatest. It should be noted, however, that the experiment was
carried out in an academic environment and the developers
were not exposed to extensive vendor-supported training.

5.2.4 Traceability

Another indicator used, traceability, was assessed only qual-
itatively. The developers’ activities focused on the funda-
mental characteristics of a tool to accurately translate the
requirements into design models and then into the target code
and back to the requirements. Due to the relative simplicity of

A.J. Kornecki, J. Zalewski

0

2000

4000

6000

8000

10000

12000

Tool L Tool M Tool N Tool O Tool P Tool Q

Fig. 8 Efficiency measured as the size of code generated (in LOC)

0.0

10.0

20.0

30.0

40.0

50.0

60.0

Too
l L

Too
l M

Too
l N

Too
l O

Too
l P

Too
l Q

Postmortem

Measurement

Model/Code

Preparation

Fig. 9 Usability measured as effort assessment (in hours)

the project, all software requirements were traced to specific
model components. The created model components were in
turn mapped to the appropriate code segments generated by
the tool (objects, methods, or function blocks) that repre-
sented them. Any component that did not map directly to a
section of code was then checked against the generated code
to identify any code that might cover it. The code was ana-
lyzed to identify any part that did not relate to a specific model
component, and if possible its purpose was recorded to iden-
tify the reason for any nontraceable function/code. With this
approach the relationship between the requirements, design,
and code was established. Several tools generated sections of
code with the framework run-time control that could not be
directly traced to the model component. The analysis showed

that traceability in the requirements–design–code chain is
very much tool dependent. An example of traceability anal-
ysis for one of the tools is shown in the appendix.

One of the challenges faced in this experiment was the
use of tools based on object-oriented notations and methods
for development of a simple reactive system. The transla-
tion of object-oriented methods and techniques to generate C
code proved to be a challenge for most developers. Most of
them felt that important aspects of the system being devel-
oped, such as timing constraints, were not properly captured
or were simply “lost in the translation.” This also proved to be
a hindrance in the learning process, as the focus was already
on the problem at hand and the task then became fitting the
tool into the problem solution.

Experimental evaluation of software development tools for safety-critical real-time systems

0.0
0.5
1.0
1.5
2.0
2.5
3.0
3.5
4.0

Too
l L

Too
l M

Too
l N

Too
l O

Too
l P

Too
l Q

Tutorial

User Manuals

Readability

Flexibility

AVERAGE

Fig. 10 Functionality measured on tool and auto code generation questionnaire score

6 Conclusion

The objective of this study was to address some of the prob-
lems in evaluating software development tools used in safety-
critical real-time systems and potential application of the
findings to the tool qualification process. Such tools, sup-
porting model-driven development, are the fastest growing
category of development tools. They are extremely popular
across the wide range of application areas, including the avi-
ation industry. Our work focused on evaluating design tools
with code generation capability.

Applying the taxonomy view for evaluation purposes,
based on the analysis of industrial practice and earlier research
studies, four criteria and their respective measures were estab-
lished: functionality, usability, efficiency, and traceability.
Experiments conducted for a wide array of industry-strength
tools on a specially designed testbed proved that, for this or
other sets of criteria, a well-designed assessment process can
provide significant insight into a tool’s quality and help make
decisions on how well the tool meets qualification criteria. In
particular, the process of tool assessment can be characterized
by the following four activities:
• Application of a domain-specific benchmark problem and

platform on which the tool will be evaluated;
• Identification of specific criteria (metrics such as usabil-

ity, traceability, etc.) against which the tool will be eval-
uated;

• Development of a measurement method to evaluate each
criterion;

• Collection and analysis of results.
In general, the assessment process poses several challenges.
In this study, the tool evaluation experiments used rather sim-
ple projects of embedded software development. Therefore,
the approach may not scale up very well because of the
necessity to spend significantly more resources on actual
experiment preparation and data collection. In particular,
traceability assessment in both experiments relied on man-
ually tracing the sections of code that fulfill a particular

requirement and evaluating the expressiveness and clarity
in the structure and logic of the code. It was possible to do
so in the experimental project because of the relatively few
software requirements. In commercial product development,
such activity may be too time consuming for practical pur-
poses. The same observation is valid for other important cri-
teria, which were not used in this study, such as reliability
or robustness. They may contribute to a significantly more
insightful evaluation of a given tool; however, the collection
of respective experimental data may not be practical.

The need for conducting more detailed evaluation exper-
iments and collection of data on the indicators defined in the
taxonomy will be more pressing with the increasing number
of newly emerging safety-critical real-time applications. As
confirmed in a recently held tools forum [14], further research
is needed on:

• Integrating the current tool evaluation criteria into a coher-
ent set of metrics.

• Developing measurement methods (evaluation techniques)
to apply these metrics to tool evaluation.

• Conducting further experiments with practical tool eval-
uation according to these methods.

• Proposing a tool qualification methodology considering
both the process of using a tool in software development
to collect observations on its use and procedures for cre-
ating the process required to qualify tools.

Appendix: Sample traceability checks for tool A

Model item Code
check

Module: I/O unit
√

Attributes
int numParam

√
typedef double valArray [maxParam]

√

A.J. Kornecki, J. Zalewski

Model item Code
check

typedef int array [maxParam]
√

array parameterArray
√

array frequencyArray
√

valArray valuesArray
√

int counter [3]
√

double total [3]
√

string names [45]
√

string unit [45]
√

Functions
void input()

√
void display (in char**str)

√
void request paramID

√
(in array parameter Array)

unsigned short request num()
√

void request avgFreq (in array
frequencyArray, in array parameterArray)

√
void getPackects (in array

paramArray, in array freqArray)
in string names[], in int numParam,

√
in string units[])

void getPackects (in array
paramArray, in array freqArray,

in string names[], in int
√

numParam, in string units[])
Module: Control unit

√
Attributes

array parameters
√

array frequencies
√

int numberOfParameters
√

Functions
char* timestamp()

√
void set paramID (in array parameterArray)

√
void set num (in unsigned short param)

√
void set avgFreq (in array frequencyArray)

√
double get avgdata (in array paramArray,

in int tempParamFreq, in
int*counter, in double*total,
in int I, in string names[],

√
in string units[], in int index)

Module: Average calculator
√

Functions
double calc avg (in double *dTotal,

√
in int*iCounter)

Acknowledgements The presented work was supported in part by the
Aviation Airworthiness Center of Excellence (AACE) under contract
DTFA0301C00048 sponsored by the Federal Aviation Administration
(FAA). Findings contained herein are not necessarily those of the FAA.
Acknowledgement is due to students from the Embry Riddle Master
of Software Engineering program who contributed to experiments and
data collection. Additional support was provided by the Florida Space
Grant Consortium under Grant No. UCF01-E000029751.

References

1. RTCA (1992) Software considerations in aiborne systems and
equipment certification. Report RTCA/DO-178B, Washington, DC

2. Zalewski J, EhrenbergerW, Saglietti F, Gorski J, KorneckiA (2003)
Safety of computer control systems: challenges and results in soft-
ware development. Annu Rev Control 27(1):23–37

3. U.S. Department of Transportation (2003) Qualification of soft-
ware tools using RTCA/DO178-B. Federal Aviation Administra-
tion, Software approval guidelines, Chap 9, Notice N8110.91,
March 2003

4. Kornecki A, Zalewski J (2004) Criteria for software tools evalu-
ation in the development of safety-critical real-time systems. In:
Proceedings of the PSAM-7/ESREL’04 European conference on
safety and reliability, Berlin, Germany, 14–18 June 2004

5. International Standards Organization (1991) ISO/IEC 9126–1991:
Information technology – software product evaluation – qual-
ity characteristics and guidelines for their use. ISO, Geneva, 15
December 1991

6. International Standards Organization (1995) ISO/IEC 14102–
1995:Information technology – guideline for the evaluation and
selection of case tools. ISO, Geneva, 15 November 1995

7. IEEE (1993) Standard 1209–1992: Recommended practice for the
evaluation and selection of case tools. IEEE, New York, February
1993

8. US Department of Transportation (1991) Federal Aviation Admin-
istration, Software quality metrics, Report DOT/FAA CT-91/1

9. Ihme T, Kumara P, Suihkonen K, Holsti N, Paakko M (1998) Devel-
oping application frameworks for mission-critical software: using
space applications as an example. Research Notes 1933, Technical
Research Centre of Finland, Espoo

10. Wichmann B (1999) Guidance for the adoption of tools for use
in safety related software development. Report, British Computer
Society, March 1999

11. IEEE (1998) Standard 1061–1998: Software quality metrics meth-
odology. IEEE, New York, December 1998

12. Kornecki A, Zalewski J (2005) Process-based experiment for de-
sign tool assessment in real-time safety-critical software develop-
ment. In: Proceedings of the SEW-29 NASA/IEEE 29th workshop
on software engineering, Greenbelt, MD, 6–7 April 2005. IEEE
Computer Society Press, Los Alamitos, CA

13. Humphrey W (1997) Introduction to the personal software process.
Addison-Wesley, Reading, MA

14. Federal Aviation Administration (2004) Software
tools forum, Daytona Beach, Fl, 18–19 May 2004.
http://www.erau.edu/db/campus/software-
toolsforum.html

About the Authors

Dr. Andrew J. Kornecki is a professor in the Department of
Computer and Software Engineering at Embry Riddle Aero-
nautical University, Daytona Beach, FL. He has over 20 years
of research and teaching experience in areas of real-time com-
puter systems. He has contributed to research on intelligent
simulation training systems, safety-critical software systems
and served as a visiting researcher with the FAA. He has
been conducting industrial training on real-time safety-crit-
ical software in medical and aviation industries and for the
FAA Certification Services. Recently he has been engaged in
work on certification issues and assessment of development
tools for real-time safety-critical systems.

Dr. Janusz Zalewski is a professor of computer science
at Florida Gulf Coast University in Fort Myers, FL. Before
taking a university position, he worked for various nuclear

Experimental evaluation of software development tools for safety-critical real-time systems

research institutions, including the Data Acquisition Group
of Superconducting Super Collider and Computer Safety and
Reliability Center of Lawrence Livermore National Labora-
tory. He also worked on projects and consulted for a number
of private companies, including Lockheed Martin, Harris,

and Boeing. He served as chairman of IFIP Working Group
5.4 on Industrial Software Quality and of an IFAC TC on
the safety of computer control systems. His major research
interests include safety-related real-time computer systems.

