
©2000

SM2SMV - A Tool for Facilitating Dependable Software Requirements Analysis
Using Model Checking

Huigang Li Andrew J. Kornecki David P. Gluch
Embry Riddle Aero. Univ. Embry Riddle Aero. Univ. Software Engineering Institute
 lih@db.erau.edu korn@db.erau.edu dpg@sei.cmu.edu

1. Introduction

The complexity of dependable software and electronic
systems is growing at a rapid pace. As systems become
more and more complex, defect detection becomes a
difficult problem. One of the available techniques to
facilitate early defect detection within requirements
specifications is model checking. The technique is based
on building a finite model of a system and checking if the
model possesses the desired/required properties [1].

One of the tools used in model checking is the
Symbolic Model Verifier (SMV), developed by K. L.
McMillan at Carnegie Mellon University [2]. Using the
SMV tool consists of four major phases:
(1) creating a finite state machine model for the system;
(2) translating the state machine model into SMV input

program;
(3) creating the expected properties and translating them

into SMV program;
(4) running the SMV program and interpreting the

results.
Currently, the phase (4) can be completed automatically

by the available SMV tool. Phase (1) to phase (3) still need
manual work.

In the past year, we carried out several experiments
applying SMV to verify system requirements for a variety
of dependable systems (e.g. a heart pacemaker, military
avionics, etc). The experience shows that most of the work
in phase (2) involves mechanical translation from the state
machine graphical representation to SMV input program
written in SMV language. The detailed syntax and
grammar for SMV input language can be found in the SMV
user manual [2][4].

Since phase (2) is a translation from a state machine
diagram to SMV input code, it may be possible to do this
with a software tool. The potential advantages of a
graphically based automated code generator would be the
time saved by an engineer and improved correctness of
the SMV input program. The work described here is the
first step in exploring these issues.

 Recently, a research group in Germany did similar
research on translating STATEMATE designs into SMI
code. The model checker used in their research is a tool
developed by SIEMENS [3].

2. Symbolic Model Verifier

The Symbolic Model Verifier (SMV) provides a mean of
representing the system as a set of states and transitions.
It allows for the specification of the required system
properties in Computational Tree Logic (CTL) notation
and automatically checks these properties against the
state machine representation. Thus, SMV is a tool to
check finite state systems against their specifications.
SMV uses an Ordered Binary Decision Diagram (OBDD)
based symbolic model checking algorithm. In SMV models
are checked against the specified property for a
confirmation or a non-confirmation with counter example
information [1].

A SMV program consists of a set of modules, including
a main module. The relationship among these modules can
be hierarchical or parallel. The common structure for a
simple one-level module has four parts: module header,
variable declaration, assignments, and specification. The
module name is given in the module header section, the
first part of the code. The second part of the SMV code
includes variable declarations, i.e. the states and events.
In the third part, the transitions of the state machine are
presented in SMV language. The user claims, representing
the required properties of the system, are included in the
fourth part. For more information on SMV input language,
please refer to SMV user manual [2][4].

3. Graphical SM2SMV Prototype

 A prototype graphical SMV code generating tool
SM2SMV (State Machine To Symbolic Model Verifier)
was developed to demonstrate the feasibility of automatic
conversion of a state machine diagrams into SMV input
code. The tool was implemented in Java using a rapid-
prototype software development method.

©2000

 The tool contains the following two major functions: (1)
State Machine Drawing and Editing: the user is able to
use a mouse to click and draw a state machine, with a set
of states and transitions representing the software
requirements, in a panel. The user can modify and update
this diagram using a mouse.
(2) Code Generating: The system creates SMV code
representing the state machine. Once the state machine
model is changed, the system allows the user to update
the SMV code to reflect the changes.

 The tool has a simple graphical user interface. Figure 1
presents a sample interface of this tool.

Figure 1: SM2SMV Graphical User Interface

 For simplicity of design and implementation the current
version of the prototype only allows a limited number of
states and events. States are represented as numbers (0-9)
and transitions are represented by English alphabetic
characters (a-z). SMV input code is shown in a pop up
window (see Figure 1). If the state machine diagram is
changed, an equivalent SMV representation is
automatically updated by clicking the SMVcode button.

4. Conclusions

A prototype tool for facilitating model based
verification of software requirements for dependable
systems, using the Symbolic Model Verifier technique,
was developed to demonstrate the concept of bringing
together a graphical state machine and a formal SMV code
representation.

The testing and experimentation with the current
version of this protocol tool has shown that it met the
initial requirements. The user can create and modify a
single one-level state machine model using the graphical
user interface. The tool enables the user to create a

syntactically correct SMV input program based upon the
state machine model.

A rapid development prototype method was used to
implement this tool. In order to reduce the coding time,
some Java code from outside sources was used. The code
needs to be optimized to improve display speed and
memory usage. For example, the response for refreshing a
screen is relatively slow. It usually takes 2 to 5 seconds to
update a picture on the screen. The actual results varied
according to the size of available memory and the CPU
speed.

Although the current tool has met initial goals, there is
additional work required to establish feasibility and to
improve the prototype. These include:
(a) Supporting state charts: The tool supports a one level

state machine instead of a hierarchical state chart;
(b) Increasing the number of states and events:

Enhancements include lifting the limitation on the
number of states and events, and modifying the
transition to enable Boolean functions of events;

(c) Adding CTL claims: The CTL claims (desired /
required properties) are not generated;

(d) Improving performance: The response time of
updating a display screen is relatively slow (2 to 5
seconds) and the memory usage is not optimized.

This prototype tool has shown that it is possible to
generate a SMV representation from a simple state
machine diagram. Additional work will be needed to
demonstrate that the approach can scale to more complex
systems while providing acceptable system response
times, time savings, and improved correctness of the SMV
code.

5. References

[1] Gluch, D., Brockway, J. “An Introduction to Software
Engineering Practices Using Model-Based Verification” Software
Engineering Institute, CMU, Pittsburgh, Pa. April 1999.

[2] McMillan K. L. “Symbolic Model Checking” Kluwer
Academic Publishers, Massachusetts, 1993

[3] Brockmeyer U., Wittich G. “Real-Time Verification of
STATEMATE Designs”, Proceedings of Computer Aided
Verification, CAV’ 98, Lecture Notes in Computer Science 1427,
Springer-Verlag, 1998, pp. 537-541

[4] CMU and University of Milano, NUSMV Manual,
http://afrodite.itc.it:1024/~nusmv, 1999

