

Process-Based Experiment for Design Tool Assessment
in Real-Time Safety-Critical Software Development*)

Andrew J. Kornecki
Dept. of Computer & Software Engineering

Embry-Riddle Aeronautical University
Daytona Beach, FL 32114-3900, USA

kornecka@erau.edu

Janusz Zalewski
 Computer Science Department
Florida Gulf Coast University

Fort Myers, FL 33965-6565, USA
zalewski@fgcu.edu

Abstract

The paper presents selected experimental
results of evaluating six real-time software
development tools for use in safety-critical systems.
The experiments were designed to collect data,
such as project effort, code size, functionality,
documentation, traceability, etc., in four stages:
preparation, model and code development,
measurements, and post-mortem. Preliminary
experiments were conducted to enable fully
controlled experiments for the development of well
defined but simple real-time systems. The results
give the base for successful determination of tool
quality and making preliminary conclusions on
potential tool qualification.

1. Introduction

Development tools play vital role in the
construction of software-intensive airborne and
land-based systems. Developers use these tools to
improve productivity and accelerate production and
certification processes. Tool performance and
quality may directly and indirectly affect the
quality of the resulting target software, with
significant impact on the overall system safety. The
number and type of software development tools
available in the commercial market is very dynamic
with an array of tool vendors offering complex
tools of an apparently similar functionality, but
with often diverse characteristics and based on
different design philosophy. Additionally, many
companies developing avionics software have been
using in-house created tools.

The general purpose of this research in the long
term is to identify the assessment criteria and
methods that would allow both developers and
certifying authorities to evaluate specific safety-
critical real-time software development tools from
the system and software safety perspective.

*) Supported in part by the Aviation Airworthiness Center
of Excellence (AACE) under contract DTFA-
0301C00048 sponsored by the Federal Aviation
Administration (FAA). Findings contained herein are not
necessarily those of the FAA.

The research focus is on the assessment of the
development tools supporting the design and
implementation phase of the software lifecycle,
which starts with creation of the design model and
ends with generating the source code. The specific
objective of this study was to conduct an
experiment to shed some light on the usefulness of
assessing the tool with one particular criterion in a
process-based model. The airborne software
intensive systems are going through scrutiny of
certification guided by the RTCA DO-178B
standard [1]. The issue of tools supporting software
development is addressed in these guidelines.
However, the interpretation is still wide open since
the guidelines were conceived well before
explosion of the new software development
methodologies and the introduction of most
popular Model-Based Development paradigm.
Model-Based Software Development

The paper is structured as follows. First, we
concentrate on outlining the basic assumptions for
conducting the experiments (Section 2). Next we
discuss the preliminary experiment (Section 3),
which is followed by a discussion of the controlled
experiment (Section 4), and discussion of the
results in conclusion (Section 5).

2. Basic Assumptions

Several assumptions have to be made initially to
conduct a full-scale experiment. They are
concerning primarily: the subject of experiments
(software tool), the parameter(s) to be evaluated,
and the methodology to conduct evaluations.

First of all, tools from a specific category have
to be selected, possibly homogeneous, that is, with
identical or very similar functionality. In this
regard, the previous studies [2,3] provided enough
material for selection of software design tools with
code generation capability. In software
development for avionics systems, two categories
of tools have been used, those based on software
engineering paradigm and those based on control
engineering paradigm of software development.
Examples of both categories include:

 1

• In the Software Engineering paradigm
(structural, object-oriented):
o Real-Time Studio from Artisan
o Rhapsody from iLogix
o Rose RT from Rational/IBM
o Stood from TNI-Valiosys
o Tau from Telelogic

• In the Control Engineering paradigm
(functional, block-oriented):
o MatLab (Simulink, Stateflow, Real Time

Workshop) from MathWorks
o Scade from Esterel Technologies
o Sildex from TNI-Valiosys
o Beacon from Applied Dynamics.

Due to confidentially and legal concerns, details
and names of tools used in experiments are not
identified. The purpose of this research is to
develop general evaluation criteria – not to promote
or criticize any specific tool. Also, as a result of
volatility of the tool market some of the tools may
not be available at the time of this writing.

The second assumption was the selection of
specific characteristics of the tool, based on the use
of an appropriate evaluation view for tool
assessment. Some of the views we considered are
presented in Figure 1. The taxonomy view
concentrated on three groups of attributes for tool
evaluation:
o functional attributes related to “what?” the user

wants from the system;
o quality attributes related to “how?” the system

fulfils the function regarding such criteria as
dependability, performance, security, etc.

o business attributes related to “if?” there is a
rationale of using the tool, describing the
quality aspects of the software without
considering its functionalities.

For assessment of these attributes, a typical
procedure can be aplied that involves using metrics
(measurements units) and measures (evaluation
procedures) [4].

The project view considers how well a software
tool fits into the specific project. Several
characteristics of the tool are normally considered
in the evaluation process, including: language,
completeness of code generation, self-
documentation, learning curve, communication
methods, lifecycle integration, vendor support, etc.

Indicators
(attributes, factors,
criteria, metrics)

Measurement Methods
(evaluation techniques)

Evaluation
results

Software Design
Description (model)

Design Standards
(s/w architecture,
meeting DO-178B
objectives)

Software
Requirements
Specification

Tool
Data

Model
Data

Development
Process

Tool Evaluation

Taxonomy View

Behavioral View

Project View

Qualification View

Code
Data

Generated Code

Fig. 1: Tool Evaluation Using Four Different Views.

The qualification view considers qualification
of a development tool using RTCA DO-178B
guidance criteria [1]. Accordingly, the specific
concerns (criteria) included in the evaluation
process are: traceability, determinism, robustness,
correctness, and conformance to standards.

Finally, the behavioural view represents the
observation that the extent to which the tool is
capable of representing the requirements faithfully
in the design (not introducing faults into it) is best
viewed by observing the tool’s behavior in use
during the design process. To evaluate the tool in
use (i.e., during its operation) several steps should
be performed:

(1) adopt a model of a typical application being
developed by the tool

(2) develop a model of taking measurements
(3) collect results of developing this

application, and
(4) analyze these results.

Our model of the application is based on the
Integrated Modular Avionics ARINC Specification
653 [5], and the model of measurements relies on
metrics based on rough sets theory, both being
currently developed.

Since most of the views include assessing the
traceability property, this attribute was selected as a
criterion for evaluation experiments.

The third assumption, vital for conducting the
experiments, is the adoption of an appropriate
evaluation methodology. In this project, we
conducted the experiments in the following seven
steps:
o Tools and Platform Preparation: acquisition of

sample software development tools from the
selected category, installation of the tools, and
preparation of the experimental platform.

o Experiment Preparation: development of the
process and scripts for the subsequent
experiments.

o Initial Experiment: conducting the initial
experimentation.

o Experiment Improvement: identification of he
tool assessment methodology and related
assessment mechanisms.

o Controlled Experiment: conducting the
controlled experiment and collecting data.

o Data Integration and Data Analysis: analysis of
the data and documenting the experimental
process and results in a report

In the following sections, we present both the

preliminary experiment and the controlled
experiment, and discuss the results.

3. Preliminary Experiment

The experiment’s objective was an initial
evaluation of the selected tools representing real-
time software design tools with automatic code
generation capability. The selected sample included
four tools from both structural (object-oriented)
and functional (block-oriented) categories. Tool A
was object-oriented and tools B, C and D were
block-oriented. Four developers were assigned an

 2

identical problem to develop a real-time program to
be implemented in a VxWorks target environment.
VxWorks provides a runtime environment for
embedded application development, which
comprises the core capabilities supporting a full
range of real-time features including multitasking
and interrupt handling, along with pre-emptive and
round-robin scheduling.

The focus of the experiment was on learning
and exploring capabilities of software tools used in
the process of developing and implementing a real-
time project. The objective was to keep the system
at the minimal complexity, while concentrating on
the collection of data and engineering observations
that may indicate the software tool’s quality.
Through the development of the sample system, the
developers collected the design artefacts from the
tools’ outputs (such as graphical model,
automatically generated source code, and
documentation) and focused on observations about
the tool use. Data related to the traceability from
requirements to design to code were also collected.
These observations were used to infer on the tool’s
quality and constituted the base for future
controlled experiments.

3.1 Project Description

The software would capture data packets of
parameter values transmitted from a flight
simulator subsequently computing and displaying a
moving average of the selected parameters. The
user from pre-defined menu of options selects the
frequency of the moving average computation and
which three of over twenty parameters are to be
captured. The parameter values and averages
would be displayed with a timestamp. Each
developer implemented the following
requirements: (1) timing requirement; (2) system
requirements, and (3) external interface
requirements, using a different tool (A, B, C, D):

1) The system shall collect two data packets from
the serial port every second (2 Hz), at the same
frequency in which the TestFlight simulator sends
the data; when appropriate, the system shall
prioritize this activity in order to fulfil this
requirement.
2.1) (a) Upon receiving each data packet, the
system shall record the current timestamp. (b) The
timestamp shall be presented in the format HH:
MM: SS. Note. The timestamp should reflect the
time at which the data is received.
2.2) (a) The system shall present to the user a menu
option to select the parameter(s) for moving
average calculation. (b) The system shall allow the
user to pick up to three parameters once during the
initialization.
2.3) (a) The system shall also present a menu
option for the user to select the frequency of the
calculation in x data packets/calculation. (b) Each
parameter shall be specified with its own
calculation frequency. (c) This option shall be
given only once during system initialization.

2.4) (a) A timestamp shall be recorded with the
moving average results upon the completion of the
calculation. (b) The timestamp shall be presented
in the format HH:MM:SS.
2.5) (a) The system shall output the selected
parameters with their names and timestamps, as
well as the moving averages with timestamp to the
terminal output, as in Figure 2. (b) The result shall
be displayed as a floating-point value with 3
significant digits precision, with each set of data
per timestamp on one line, and a set of moving
averages on another line of the display.

Airspeed: 300 knots; Altitude: 10,000 ft
Timestamp: 13:12:43

Airspeed: 300 knots; Altitude: 10,004 ft
Timestamp: 13:12:43

Airspeed: 299 knots; Altitude: 10,009 ft
Timestamp: 13:12:44

Airspeed: 300 knots; Altitude: 10,014 ft
Timestamp: 13:12:44

Airspeed: 300 knots; Altitude: 10,018 ft
Timestamp: 13:12:45

Moving Average of Airspeed: 299.800 knots
Timestamp: 13:12:45

Fig. 2. Sample Output of the System.

3.1) (a) The system shall communicate with
TestFlight through the RS-232 port. (b) The
configuration of the serial port shall be set to 9600
baud rate, 8 data bits, no parity, and 1 stop bit, and
no flow control. (c) A data stream shall consist of
the following:
o value 0x55, an unsigned char value of 1 byte
o the number of parameters (N) sent, an

unsigned char value of 1 byte
o 1st parameter values in 8 bytes double type
o 2nd parameter values in 8 bytes double type
o …
o Nth parameter values in 8 bytes double type

3.2) Since the starting and stopping of the data
stream is controlled within the TestFlight system’s
GUI, the data collection system has to have no
on/off control of the data flow.

A process script was created to assist the
developers. The following four top-level tasks were
elaborated in terms of entry and exit conditions and
the activities to be performed: (1) Project
Preparation and Tool Familiarization, (2) Model
Creation and Code Generation, (3) Measurement,
(4) Postmortem.

3.2 Preliminary Experiment Results

The experiment used two basic methods of
evaluation. First, engineering observations were
made throughout the development to identify any
perceived strengths and weaknesses of the tool,
processes used, and any other related concerns.
These observations mainly relate to the developer’s
acceptance of the tool operation, ease of
understanding, support of the development
methodology, help in development, availability of
notations to represent the system, etc.

 3

The second method focused on the quality of
tool to properly translate the requirements into
design models and subsequently into the target
code. All software requirements were traced to
specific model components. The created model
components were compared and mapped to the
code segments generated by the tool (objects
methods or function blocks) that represent them.
Any component that did not map directly to a
section of code was then checked against the
generated code to identify any code the might
cover it. The code was analyzed to identify any part
that did not relate to a specific model component,
and if possible its purpose was recorded, to identify
the purpose of any non-traceable function/code.
With this approach, the relationship between the
requirements, design, and code was established.

The aggregate results are shown in Table 1. The
developers, using well known to them Personal
Software Process (PSP) [6], underestimated the
preparation phase effort by about 35%. The
average planned time was 58 hours versus the
actual of 78 hours. On the other hand, the
developers planned on average about 72 hours to
be dedicated to the design and coding phase. An
actual average for this phase was less than 39
hours. Automatic code generation reduced the
development time at the order of 46%. The average
code size was about 1.8 KLOC. The average total
time spent on the project was 147 hrs, resulting in
efficiency of over 12 LOC/hr. The learning curve is
high and results may be slightly biased (as part of
the modeling time was actually spent on learning
the tool). It is interesting that despite the steep
learning curve the total project development was
also completed on time. Use of automatic code
generation reduced the planned total development
time on average by 12%.

Table 1. Preliminary Experiment Results (in hours).
 Aver 1,840
 plan actual % change

Preparation 58.00 78.43 35.22
Model/Code 71.75 38.63 -46.17

Measurement 26.25 7.50 -71.43
Postmortem 13.00 22.75 75.00

TOTAL 169.00 147.30 -12.84

Development effort

LOC/hr 12.492

4. Controlled Experiment

The experiment objective was a more detailed
evaluation of real-time software design tools with
automatic code generation capability. The selected
sample included six tools from both structural
(object-oriented) and functional (block-oriented)
categories. Tools L, M and N are object-oriented,
tools P and Q are block-oriented, and tool O
crosses the boundary of two categories. Four of the

tools used in the Preliminary Experiment (listed
there as tools A, B, C, D) were used again for this
Controlled Experiment. The following is the tool
equivalency: A = L, C = Q, D = P, and D = M. One
tool was used only in Preliminary Experiment (B),
and two tools were used only in the Controlled
Experiment (N and O).

Fourteen developers assigned to the project
were graduate software engineering students
familiar with software development methodologies,
software processes, and real-time design concepts.
Each of the six tools was assigned to a team of
two/three developers who shared the initial training
and the final reporting. However, each of them
developed the model and implemented code as an
individual assignment.

4.1 Project Description

The experiment consisted of developing two
models. The first model, a simple hair dryer
simulator, was used during the learning phase of
the experiment, to facilitate the learning and
constituted a capstone for familiarization with the
methodology, tool, and the operating environment.
The activities included reading documentation and
materials about modeling methodology,
experimenting with tool demos, running tutorials,
etc. The second system, a simple microwave oven
software simulator, was used for the actual design
and data collection.

Specification of the first model, hair dryer
simulator, consisted of the following requirements:
1. The system shall allow user to select motor

speed (off, low, or high).
2. The system shall apply power to motor

depending on the selected speed setting.
3. The system shall cycle the heater (30 seconds

on and 30 seconds off) when in low and high
speed modes.

4. The system display shall show the selected
speed, heater status and the count down time
when the heater is on.
Specification of the second model, simple

microwave oven simulator, included the following:
1. The oven shall allow user to set the cooking

time in minutes and seconds (from default
00:00 to 59:59).

2. The oven shall allow user to set the power
level (in the range from default 1 to 5).

3. The start of cooking shall initiate on explicit
user request.

4. When the cooking starts, the oven shall turn
on the light and the rotisserie motor for the
specified time period.

5. When the cooking starts the oven shall cycle
the microwave emitter on and off: the power
level of 5 means that the emitter is on all the
time, the power level of 1 means that the
emitter is on only 1/5th of the time.

6. The oven shall display the remaining time of
the cooking and the power level.

7. When the time period expires, the audible
sound shall be generated and the light,
motor, and emitter shall be turned off.

 4

8. The oven shall turn on the emitter and the
motor only when the door is closed.

9. The oven shall turn on the light always when
the door is open.

10. The oven shall allow the user to reset at any
time (to the default values)

Suggested interface included:
o Inputs: TIME, POWER, START, RESET,

0-9, DOOR
o Outputs: TIME, POWER, SOUND, LIGHT,

MOTOR, EMITTER

As in the preliminary experiment, a process

script was given to each developer, which had the
four following top-level tasks: (1) Preparation, (2)
Model Creation and Code Generation, (3)
Measurement, (4) Postmortem. This script is a
refinement of the one used in the preliminary
experiment, based on feedback from the
participants. An overview of the script tasks is
presented below.

 (1) Preparation.

(1a) Creation of PSP estimates of time and code
size for the project.
(1b) Tool selection and becoming familiar with
the project requirements.
(1c) Learning to use the tool and identifying
available resources that can be used during
development.
(1d) The development of the demonstration hair
dryer model as a learning aid.

(2) Model Creation and Code Generation.
(2a) The microwave oven model was created
according to the specified requirements.
(2b) Each developer was to manually verify that
all requirements were covered in the model. If
the tool provided verification capabilities, they
were to be used if possible.
(2c) The code-generation capabilities of the tool
were then to be used to generate C code for the
model.

(3) Measurement:
(3a) Decomposition of the design model, which
was then analyzed for traceability.
(3b) Decomposition and traceability to the
model.
(3c) Decomposition and traceability to the
requirements.
(3d) Identification of code that did not have a
representation in the model.

(4) Postmortem:
(4a) Completion and analysis of PSP data.
(4b) Assessment of the tool’s conformance to
traceability.
(4c) Compilation of each developer’s individual
data into a joint report summarizing their
findings.
In addition to completing the process task, the

participants were required to complete two
questionnaires. The first questionnaire addressed
the documentation, manuals, and support of the
tool under evaluation. The second questionnaire
addressed the code generation capabilities of the
tool. The application of each of these methods was

described in the process script used for the
experiment.

4.2 Controlled Experiment Results

The results of the controlled experiment were
collected for the six tools as follows:

a) Size and Effort: The number of lines of code
generated by the tool from the user-designed
experiment model (microwave oven model
only), the time spent in the experiment for
each process phase, the overall time spent by
each developer, and an average of each
measure.

b) Developer Subjective Assessment (on scale 1-
5) extracted from questionnaires with the
results grouped into the following four
categories:
o tutorial (Tool Questionnaire: Q2 – Q4)
o user manuals and reference (Tool

Questionnaire: Q5 – Q7)
o readability (Automatic Code Generation

Questionnaire: Q1 – Q3)
o functionality (Automatic Code Generation

Questionnaire: Q4 – Q6).
c) Engineering Observations
d) Traceability
e) Questionnaire Comments

It needs to be noted that the presented results

are based on a rather small observation sample. As
such, the results give only an approximate
assessment of the tool and do not have any
statistical significance.

From the perspective of the development
paradigms used for these tools, i.e. object-oriented
or block-oriented, the developers’ effort seems to
be related to the paradigm itself. Tools L, M and N
are all based on object-oriented approaches and,
with the exception of tool M, the time spent on
development is very similar. The difference in the
effort while using tool M was attributed to the
learning curve associated with the particular object-
oriented methodology used by the tool, slightly
different than the more familiar UML. For the
functional, block-oriented tools, O, P, and Q, the
effort is also similar across the phases, and on
average is less than the effort for the object-
oriented tools. Tables 2(a) and 2(b) show the
productivity resulting from the developers effort
and the size of code generated by the tool. It is
important to remember that the tools automatically
generated the code, with little or no manual coding
by the developers.

Across the evaluated tools, the overall ratings
were all on the low side (Tables 3 and 4). This
indicates that despite the advertised capabilities of
these tools, the available resources for developers
to make effective use of the tools are not sufficient
or are of poor quality. All the developers also
mentioned this in their feedback – this happened to
be a particular problem during the preparation
phase where the need for these materials was the
greatest.

 5

Table 2(a): Tool Controlled Experiment – Effort Analysis, Tools L – N (in hours)

LOC
Tool

L 339
Tool

M 159
Tool

N 3007

 plan actual
%

change plan actual
%

change plan actual
%

change

Preparation 17.5 14.3 -18.40 32.3 50.1 55.44 16.8 17.3 2.99
Model/Code 9.3 17.8 91.89 19.5 25.5 30.77 15.5 14.5 -6.71
Measurement 7.0 4.0 -42.86 8.0 8.3 3.13 9.0 5.7 -37.00
Postmortem 8.0 10.3 28.13 13.5 14.2 4.96 7.5 6.5 -13.33

TOTAL 41.8 46.3 10.85 73.3 98.1 33.86 48.8 43.9 -9.99

Dev Effort
 LOC/hr 7.325 1.622 68.528

Table 2(b): Tool Controlled Experiment – Effort Analysis, Tools O – Q (in hours)

LOC Tool O 11,227 Tool P 482
Tool

Q 1,293

 plan actual
%

change plan actual
%

change plan actual
%

change

Preparation 4.0 9.0 125.00 12.3 12.7 3.09 8.4 8.8 4.87
Model/Code 11.0 16.5 50.27 6.3 7.6 20.16 2.8 6.0 113.26
Measurement 4.0 3.0 -25.00 4.3 3.3 -22.79 4.7 4.2 -10.71
Postmortem 5.0 7.0 40.00 4.7 5.0 6.42 2.7 3.3 24.72

TOTAL 24.0 35.5 48.04 27.6 28.5 3.52 18.6 22.3 20.11

Dev Effort
 LOC/hr 315.986 16.889 58.034

Table 3. Tool Controlled Experiment – Tool and Auto
Code Generation Questionnaire Results

 L M N O P Q

Tutorial

3.2 0.3 3.3 2.3 1.7 2.1
User Manuals
& Reference

2.8 2.7 1.7 2.7 3.0 3.0

Readability

3.2 2.7 4.0 2.0 3.4 1.3

Functionality

3.5 3.0 3.3 1.7 2.2 1.8

AVERAGE 3.2 2.2 3.1 2.2 2.6 2.1

4.3 Some Lessons Learned

One of the challenges faced in this experiment
was the use of tools based on object-oriented
notations and methods for development of a simple
reactive system. The translation of object-oriented

methods and techniques to generate C code proved
to be a challenge for most developers. Most of
them felt that important aspects of the system being
developed, such as timing constraints, were not
properly captured or were simply “lost in the
translation”. This also proved to be a hindrance in
the learning process, as the mindset was already
focused on the problem at hand and the task then
became fitting the tool into the problem solution.

Table 4. Tool Controlled Experiment – Average
Questionnaire Results

 Average
Tutorial 2.16
User Manuals &
Reference 2.64
Readability 2.77
Functionality 2.59

AVERAGE 2.54

 6

Learning was also an issue due to the lack of
sufficient reference materials from tool vendors.
This reflects poorly on the state of the tool industry,
as this was a problem for all the developers
regardless of the tool being used. In engineering
observations and questionnaire responses,
developers noted that insufficient materials and
support might prevent them from using the tool
again. Almost all developers recommended that
improvements in this area were necessary for future
releases and that verification of documentation
accuracy should become a priority for tool vendors.
It needs to be noted that the tool vendors typically
support the tool by offering the purchasing
organization, as a part of the package, a hands-on
3-7 days intensive training for the developers. Such
approach may alleviate some of the above-
mentioned problems and is perhaps the reason why
the quality of documentation is of lower priority for
the tool vendor.

The process used for the controlled experiment
was a refinement of that used in the preliminary
experiment. As before, areas of the process that are
still difficult to implement will be subject to
process improvement in the future experiments.
This effort ensures that future revisions will enable
developers to perform more objective evaluations
and yield more useful results. This statement also
applies to the questionnaires used in the evaluation
process. Improvement of these questionnaires is
vital if they are to be useful in making
determinations about the development tools under
assessment.

5. Conclusions

Software development tools play an important
part in the development of safety-critical software
artefacts leading, ultimately, to executable code. A
significant issue is to provide assurance that the
translation of designs to code, typically achieved
with assistance of software development tools, does
not introduce faults and accurately creates the
executable software according to specifications.

The purpose of the present study has been to
address some of the problems and opportunities in
evaluation of a certain category of software
development tools, that is, real-time design tools
with code generation capability. Software design
tools supporting model-based development with an
automatic code generation capability are the fastest
growing category of development tools and are
extremely popular in the software development
community. This study focused specifically on this
category of tools because of the growing interest
and use of these tools in the aviation industry. The
research work made it possible to gain valuable
experience in the application of selected
development tools and led to observations about
software development practices.

The objective of evaluating the software design
tool with respect to safety is to check how precisely
the design developed with a tool can represent the
requirements and assist with creating the correct
software product, without introducing faults on its

own. Since the design process and its tools cannot
necessarily detect or resolve incorrect
requirements, validation of the requirements is
typically covered by another set of tools and was,
therefore, outside the scope of this project.

The first practical step in the tool evaluation
was composed of the following five activities:
o identification of sample criteria to be evaluated

(e.g. traceability),
o development of a method to evaluate each

criterion,
o selection and acquisition of real-time design

tools suitable for evaluation,
o application of each tool to the development of

a small project, and
o collection of results.

The tool evaluation experiments used rather
simplistic projects of developing embedded
software. The traceability assessment included in
the preliminary experiment was an activity to
manually trace the line(s) or section(s) of the code
that fulfil a particular requirement, and to evaluate
the expressiveness and clarity in the structure and
logic of the code. It was possible to do so in the
experimental project because of the relatively few
software requirements. In commercial product
development, such activity will be too time-
consuming for practical purposes.

The developers were also collecting engineering
observations and data on effort and product size. A
common observation was about an excessive
amount of time required to learn how to use the
tool, and the awareness that there are still a large
number of features that have not been learned or
mastered. Although some of the developers had to
deal with the tool software abruptly crashing or
with degradation in performance as a result of
memory leaks, they were satisfied, in general, with
the capability of the selected tools in helping them
in developing the target software and
accomplishing the process of traceability.

The data collected from both the preliminary
and the controlled experiments show that the
selected software design tools with code generation
capability can significantly assist developers in
their work. The data collected by the group of
researchers familiar with metrics of the Personal
Software Process (PSP) show that tool use reduces
the development effort. At the same time, the
property of traceability can be shown to support
claims about the tool validity.

Further research work will focus on:
o integrating the currently developed tool

evaluation criteria into a coherent set of
metrics (in sense of IEEE definitions [4]),

o developing measurement methods (evaluation
techniques) to apply these metrics to tool
evaluation,

o conducting further experiments with practical
tool evaluation according to these methods,

o proposing a tool qualification methodology
considering both the process of using a tool in
software development to collect observations
on its use and procedures for creating the
process required to qualify tools.

 7

 8

There is an evident risk in the proposed
approach due to the fact that such an evaluation
methodology is currently non-existent. Moreover,
there are no well-defined criteria for evaluating
software tools (or any software, for that matter)
with respect to safety. On the other hand, the need
for procedures for tool evaluation is such that
developing a practical handbook for use by
industry and certification authorities on actual tool
projects, with focus on code generation tools, may
offset these risks. The need for more detailed
evaluation experiments and collection of data on
the concerns and characteristics defined in the
taxonomy research has been addressed in a recent
Tool Forum [7].

Acknowledgement

The authors would like to acknowledge the
support of the Aviation Airworthiness Center of
Excellence program and the FAA personnel:
Leanna Rierson, Barbara Lindberg, and Charles
Kilgore. The paper resulted from a team effort of
faculty and graduate students of ERAU Software
Engineering program: N. Brixius, J.P. Linardon, J.
Labbe, L. Crawford, K. Hall, H. Lau, D. Hearn, C.
Sanouillet, S. Lakha, J. Poole, T. Osako, A. Abou-
Rahma, K. Madler, B. Kim, O. Rettig, J. Erwing,
R. Atwood, A. Moore, P. Hoden, and T. Islam.

References

[1] RTCA, Software Considerations in Airborne

Systems and Equipment Certification, Report
RTCA/DO-178B, Washington, DC, 1992

[2] Kornecki A., J. Zalewski, “Assessment of
Software Development Tools for Safety
Critical Real Time Systems”, Proc. PDS2003
IFAC Workshop on Programmable Devices
and Systems, Ostrava, Czech Republic,
February 2003, pp. 2-7.

[3] Kornecki A., J. Zalewski, “Design Tool
Assessment for Safety-Critical Software
Development”, Proc. SEW-28 2003 Annual
NASA Software Engineering Workshop,
Greenbelt, MB, December 3-4, 2003, pp. 105-
113.

[4] IEEE Std. 1061, Software Quality Metrics
Methodology, IEEE, New York, 1998

[5] ARINC Specification 653 - Avionics
Application Software Standard Interface,
ARINC Inc., Baltimore, MD, 1997

[6] Humphrey W. Introduction to the Personal
Software Process. Addison-Wesley, 1997

[7] Software Tools Forum, Embry-Riddle
Aeronautical University, Daytona Beach, FL,
May 18-19, 2004, http://www.erau.edu/db/ca
mpus/softwaretoolsforum.html

