

+ The presented work was supported in part by the AACE under contract DTFA0301C00048 sponsored by the FAA.
Findings contained herein are not necessarily those of the FAA.

Evaluation of Software Development Tools for High Assurance Safety Critical Systems

Andrew J. Kornecki, Kimberley Hall, Darryl Hearn, Herman Lau 1), Janusz Zalewski 2)
1) Embry-Riddle Aeronautical University, Daytona Beach, FL 32114-3900, USA

2) Florida Gulf Coast University, Ft. Myers, FL 33965-6565, USA
< kornecka@erau.edu >

Abstract

This interim report describes investigation of
leading software development tools used in development
of aviation systems. It is a part of three-year effort with
the ultimate objective to provide guidelines for a
potential tool qualification. The hypothesis is that the
tool qualification allows the developing organizations
reduce the effort required to verify the artifacts produced
by the tool. The saving on costly verification process is
an incentive for pursuing tool qualification.

1. Introduction

The software development tools are actively
transforming the artifacts of software development
phases. Obviously, tool quality and correctness may
affect directly and indirectly the quality of the target
software and, therefore, the overall system safety. There
is an extensive body of literature related to assessment of
software quality [1,2,3]. However, the assessment of the
tools used for safety-critical software has not received
enough attention in the literature

Since airborne software is the selected application
area, a widely accepted standard for software
considerations in airborne systems, DO-178B is used [4].
The DO-178B certification objectives require developers
to provide assurance that the development artifacts are
verified and validated. While the airborne systems are
certified, the tools used for their development may be
qualified. When a qualified tool is used it may eliminate
and/or reduce the need for verification of a software
artifact it produces.

2. Research Methodology

The research started with collection of literature and
informal data on the use and evaluation of software
development tools, here focusing on the needs of the
software intensive safety critical real-time systems.
Extensive interactions with tool vendors and industry
surveys were conducted. A variety of considerations of
technical and managerial nature were a base to propose
development tool taxonomy with the specific concerns,
factors, and evaluation methods. The analysis of
available tools led to acquisition and installation of the

representative tools in the laboratory. In an initial
experiment, described briefly below, graduate software
engineering students were assigned a specific tool to
develop simple typical avionic application. The data
regarding the tool use, effectiveness in terms of learning
and actual development, and traceability between the
requirements, design, and code were a base for more
extensive follow-up experiments.

3. Industry Feedback

A two-phase industry survey provided initial data on
the development tool qualification. The DO-178B
qualification process was criticized as being not suited to
the industry needs. The rigor of data required for the
development tool qualification, makes it impractical to
qualify a COTS tool.

The functionality, cost, and compatibility with the
development platform are the major factors for the tool
selection. In the framework of DO-178B, the savings
come from elimination/reduction of review activities.
The survey shows that evaluation and potential adoption
of new tools is driven by economic concerns and the
high up-front cost is one of the major barriers of tool
qualification. While the reuse of a qualified tool may
lead to savings, the past practices do not show applicants
focusing mostly on the current project. A company does
not want to spend money to qualify a tool so that another
company could reuse it. Only recently the tool vendors
start showing interest in tool qualification and reuse.

4. Tool Selection

Two approaches are eminent in industrial
applications. In the “software engineering” viewpoint a
high-level structural design tool (e.g. Rose RT) is used to
develop software architecture in a specific graphical
notation (e.g. UML) as a collection of sequence
diagrams, class diagrams, and state diagrams. In a
“control engineering” paradigm, the algorithms are
developed using function or block-oriented tools based
on data flows (e.g. Scade). The tool can simulate the
system behavior and evaluate its performance.
Subsequently, the tool will generate source code to be
compiled and loaded onto specific target machines.

Some tools serve only as code wizards and require
the developer to enter specific code components,
representing the behavioral aspects of the design, in a
dedicated tool window. Other tools provide full
automatic code generation without the developer writing
a single line of source code. Considering the availability
for the experiment the following tools were selected for
evaluation: MatLab with Simulink and Real-Time
Workshop by MathWorks, Scade by Esterel
Technologies, Sildex by TNI-Valiosys, and RT Studio
Professional by Artisan Software.

5. Experiment

To meet the objectives of DO-178B, the developers
of safety-critical software are required to provide
arguments of traceability of the artifacts from
requirements to the design to the code. If one can be
assured that the tool transforms the model to source code
accurately, then verification of traceability can be
reduced. The evaluation experiment was limited to the
tool’s extent in ensuring traceability between artifacts
generated from one development phase to another. In a
three-tier tool evaluation scheme [5] it is only macro-
evaluation focusing on tool use.

The experiment used a simplistic project: embedded
software (implemented on target VxWorks Arcom
board) to capture and process data generated by a flight
simulator (Opal RT). Engineering observations and
effort data were collected. One observation was about
excessive amount of time required to learn the tool, and
the awareness of a large number of features that have not
been mastered.

The tool automatic code generation functionality
allows developers to focus on the higher level of
abstraction rather than engaging in a mundane coding.
The developers, familiar with the Personal Software
Process, underestimated the preparation phase effort by
about 35%. The average planned time was 58 hours
versus the actual of 78 hours. On the other hand, the
developers planned in average about 72 hours to be
dedicated to the design and coding phase. An actual
average for this phase was below 39 hours. Automatic
code generation reduced the development time in the
order of 46%. The average code size was about 1.8
KLOC. The average total time spent of the project was
147 hrs, resulting in efficiency of over 12 LOC/hr. The
learning curve is high and results may be slightly biased
(as part of the modeling time was actually spent on
learning tool). Despite required learning period, the total
project development was also completed in time. Using
automatic code generation reduced the planned total
development time in average over 12%.

Number of features, viewpoints, and the complexity
of a tool may be overwhelming to a novice developer. A
tool may have memory leaks or even bugs that cause it to

malfunction, which would not interfere with creation of
the model and generation of correct code. The
experiment found inadequate coverage of a tool features
and constraints in documentation and tutorials. The
messages produced by tools, are often unclear and
cryptic.

To assess the design-code traceability the basic
components of the created model were compared to the
code sections (objects, function blocks) generated by the
tool. Any component that did not map directly to a
section of code is then checked against the generated
code to identify any code the might cover it. Also the
code was analyzed to identify parts that did not relate to
model components, and their purpose was recorded.
Different tools have varying levels of comments in
source code to assist in traceability effort. The analysis
shows that the traceability between design and the
generated code is very much tool dependent.

6. Summary

Software development tools play an important part
in the development of safety critical software. The
quality of software engineers, the methods and the tools
they use affect the quality of the produced software and,
therefore, the overall system safety. As a consequence,
the process for evaluating development tools is highly
important and needs to be created. The assessment of
these tools must be an essential part of the development
process.

The objective of these investigations is to collect
data on use of development tools in high assurance
aviation systems. The tool classification and tool
evaluation taxonomy shall be a base for creation of
guidelines for the future tool qualification requirements.

7. References

[1] Barbacci M.., Klein M.., Longstaff T., Weinstock C.
(1995), Quality Attributes, Report CMU/SEI-95-TR-021,
Software Engineering Institute, Pittsburgh, PA., USA
[2] Federal Aviation Administration (1991), Software
Quality Metrics, Report DOT/FAA/CT-91/1, FAA
Technical Center, Atlantic City, NJ, USA.
 [3] Abel D., Rout T. (1993), Defining and Specifying
the Quality Attributes of Software Products, The
Australian Computer Journal, Vol. 25, pp. 105-112
 [4] RTCA (1992), Software Considerations in Aiborne
Systems and Equipment Certification, Report DO-178B,
Washington, DC, USA
[5] Kornecki A., Zalewski J., (2003), Assessment of
Software Development Tools for Safety Critical Real
Time Systems, IFAC Workshop on Programmable
Devices and Systems, Ostrava, Czech Republic,
February 2003, pp. 2-7

