

+Support for this work is provided by the Cardiac Rhythm Management Division of the Guidant Corporation and the
Guidant Foundation.

A Study of Automatic Code Generation for Safety-Critical Software: Preliminary Report

Lazar Crawford, Jared Erwin, Stefano Grimaldi, Soma Mitra, Andrew J. Kornecki, David P. Gluch
Embry Riddle Aeronautical University+

Daytona Beach, FL
<gluchd@erau.edu>

Introduction

Modern safety-critical systems (e.g., combined
pacemaker/deliberator devices, distributed patient
therapy delivery systems) incorporate more
functionality than similar devices of the past. The
development of these complex systems challenges
existing quality assurance techniques; results in
significantly longer development times; and
demands greater staffing resources to ensure quality
and timely product completion.

This is an interim report on a case study of the
efficacy and viability of Automatic Code
Generation (ACG) techniques applied in the
development of real-time, safety-critical software-
dependent systems [1]. The research uses Model-
Based Software Engineering (MBSE) practices that
incorporate integrated analysis and des ign iterations
throughout the development process. The focus of
these investigations is the application of automated
code generation tools that embody various
methodologies, in the development of safety critical
systems. There was no attempt to embark on
explicit tool comparisons or evaluations.

Automatic Code Generation

Automatic Code Generation, simply described, is a
set of well-formed input representations (models)
transformed into “source text.” An ACG tool
facilitates the transformation. A well-formed
representation may be a set of UML class diagrams,
model-based statecharts, an architecture description
language model, or a variety of other modeling
artifacts. Target languages also come in a variety of
forms, including high-level computer languages
(e.g. Ada, C++, Java) [2].

Tool Selection

Tool selection criteria were established and used to
identify appropriate tools for the study. The
selection criteria address general development
capabilities, specific real-time, safety-critical

problem domain considerations, and the
methodology underlying the tool. Some of the
criteria used to evaluate the tools considered issues
such as: languages supported, design methodology,
capability for complete or partial code generation,
real time design capability, and analysis (i.e.
simulation, static checking, etc.) and testing
capabilities. In this context, several tools were
reviewed using a tool-criteria matrix including
Scade, Statemate, Tau 2.2, Rhapsody, Stood,
MatLab/Simulink, and Rational Rose RT.

The tools for this initial “review” were chosen
based on availability, widespread use on industrial
project, and evidence of real-time development
capabilities. The matrix was examined and, through
team consensus, three tools were chosen from the
initial set. The tools selected were Statemate,
Rhapsody, and Tau 2.2.

Research Methodology

The project is divided into two phases. Each phase
involves instrumented (measured) investigations of
the application of the selected techniques and tools.
Phase 1 focused on learning. Throughout phase 1,
timing data, similar to Personal Software Process
(PSP) information, was recorded and engineering
observations were made regarding tool use,
modeling capabilities, and safety characteristics [3].
These data form the basis for analyses of the
effectiveness and viability of the various tools and
provide a foundation for defining phase 2 efforts.

As a technique to reduce the impact of the learning
time, the initial phase involved (1) the completion
of basic tutorials associated with each tool and (2)
the development of a simple problem—a car alarm
system. The tutorials provided a basic knowledge of
the tools and the car alarm system enabled
investigators to become more proficient in their use.

The car alarm problem was chosen because it is a
reactive system with timing considerations. It is

complex enough to learn the tool, yet simple
enough to complete relatively quickly. Starting
from a common set of requirements, architecture,
and context diagram for the system, the car alarm
was implemented. Researchers could, therefore,
evaluate needed steps from “Concept to Code” and
achieve a better understanding of some of the
idiosyncrasies of automatic code generation.

Phase I Preliminary Tool Observations

Several preliminary observations highlight how an
ACG tool can expedite the development process.

The tools impose consistency and help to avoid
basic syntax and referential errors. For example,
Rhapsody, which uses UML 1.4, automatically
checks all added methods, calls and references. It
adds accessor methods for attributes added to a
class. It also dynamically creates the code as the
developer creates diagrams. This allows the
developer to switch back and forth, constantly
maintaining consistency between models and code;
changes in one automatically reflected in the other.

Analysis capabilities of the tools can detect errors in
design and implementation early. For example,
Statemate uses statecharts to define system
behavior. The statecharts can be easily created and
simulated without any knowledge of code. These
statecharts can then be visually simulated. In
addition to the graphical representation, a history of
all system behavior is recorded for further analysis.
A model checker available with Statemate includes
the ability to check the statecharts for deadlock,
non-determinism, and more. Data management is
also easily examined and controlled via the Data
dictionary in Statemate, providing insight into the
systems data and a means for handling scope.

Differing, yet connected, models allow developers
to examine the same system from varying points of
view. In the case of Tau 2.2, it supports all the
models specified by UML 2.0. This allows the
creation of class diagrams to examine system
structure, sequence diagrams for runtime analysis,
architecture diagrams to view the system
communication, and deployment diagrams to
analysis runtime entities. All of these diagrams
work together, and any change in one is reflected in
the others. A simple syntax checker is always
running, checking the models as they are being

created, so any inconsistencies introduced are
immediately flagged.

Summary

The observations taken from phase 1 have been
used to formulate the plans for and guide phase 2
efforts. The data from phase 2 will progress beyond
a tool focus and provide additional details on the
utility of ACG techniques, particularly in a safety-
critical environment. To support phase 2
investigations, a set of issues to consider is being
developed. These identify specific capabilities and
features of the tools, underlying methodology, and
associated practices that are important for safety-
critical development. Examples include: any
support the tool has for creating fault tolerant
constructs (watchdogs or n-versioning), facilitating
analyses of models for deadlock, or interfacing with
hazard/safety analysis tools.

The objective of these investigations is to compile
data that will highlight important characteristics of
ACG methodologies and tools and to identify the
skills, time, and challenges associated with their
use. Through these efforts, insight can be gained as
to whether ACG is a viable resource with respect to
real time and safety critical environments. It is
expected that the results will help organizations in
their assessment of ACG technology and, as
appropriate, help facilitate the transition of these
techniques into safety-critical software development
practices.

References

 [1] M.W. Whalen. “Provably Correct Code
Generation for Safety-Critical Systems”
Proceedings of the IEEE International Symposium
on Requirements Engineering, Annapolis
Maryland, January, 1997.

[2] M. W. Whalen, Mats P.E. Heimdahl. “An
Approach to Automatic Code Generation for
Safety-Critical Systems” Proceedings of the 14th
IEEE International Conference on Automated
Software Engineering, Orlando, October, 1999.

[3] W. Humphrey. “Introduction to the Personal
Software Process.” Addison Wesley 1997

