

Criteria for Software Tools Evaluation
in the Development of Safety-Critical

Real-Time Systems
1

Andrew J. Kornecki

Embry-Riddle Aeronautical University
Daytona Beach, FL 32114-3900, USA

Janusz Zalewski

Florida Gulf Coast University
Ft. Myers, FL 33965-6565, USA

Abstract

 The paper presents various views of the criteria to be
selected for evaluation of software tools used in the
development of safety-critical real-time systems. It
focuses on the avionics application area and derives a
model for tool evaluation based on the process described
in RTCA/DO-178B guidelines. The taxonomy of the
tools is presented and four views of the criteria are
applied to it, with an ultimate purpose to provide
guidelines for the tool certification process. Data are
presented from an initial experiment serving as a test-bed
supporting the tool assessment methodology.

1 Introduction

This work is a part of a larger project whose purpose is to develop the criteria and
procedures for evaluating software development tools used in safety-critical real-
time systems, with an ultimate goal to provide guidelines for the tool certification
process. Software development tools with automatic code generation features are
more and more extensively employed in the real-time software design process with
safety implications. Since the development tools participate in this process, their

1 Work done in part for the Aviation Airworthiness Center of Excellence under contract
DTFA0301C00048, sponsored by the Federal Aviation Administration (FAA). Findings
contained herein are not necessarily those of the FAA. Part of this work has been supported
by Florida Space Grant Consortium.

quality affects directly and indirectly the quality of the target software and,
therefore, the overall system safety, so there is a compelling need to evaluate them
with respect to safety.

We concentrate on avionics as the specific application area and place the
software development process in the context of a widely accepted standard for
airborne software, DO-178B [1]. Thus far, little work has been done on software
tool evaluation for safety critical systems [2,3]. Our previous research included
building tool taxonomy and a model of the process for tool evaluation [4], and
surveying the industry and constructing an experiment for an avionics case study
[5]. In this paper, we are discussing the extensive set of criteria for tool evaluation
and present an initial experiment for tool evaluation using one of the criteria.

2 Tool Taxonomy

Developing the tool taxonomy, that is, categorizing the tools to define the scope of
the project, we focused only on the Design Process. We left out tools related to the
Requirements Phase and relevant to the Testing and Verification. In this respect, the
Design Process can be represented as the following sequence: requirements tool,
followed by design tool, typically with code generation functionality, an Integrated
Development Environment and the target with real-time operating system; a
significant role is also played by analysis and testing tools (Fig. 1).

Requirements
Tool

Structural
Design
Tool

Functional
Design
Tool

typically with
code generator

functionality

Integrated
Development
EnvironmentTesting

Tool

Target
(with RTOS)

or/and

Tool Categories

Analysis
Tool

e.g.:
VxWorks

QNX
OSE

Integrity
LynxOS

e.g.:
CodeTest
TestRT

VectorCast
Insure++

e.g.:
Tornado

Multi

e.g.:
Rhapsody
RoseRT
STOOD
Artisan

e.g.:
SCADE
Matlab

BEACON
Sildex

e.g.:
RapidRMA
TimeWiz

e.g.:
Reqtify
DOORS

SpecTRM
DOME

Fig. 1. Model of real-time software development process and its impact on tool use.

Categories of tools based on this model define the scope of the evaluation.

The focus is on Software Design tools - the center of the diagram in Fig. 1. Although
the tools outside the dashed-line box are important in software development, their

role in the Design Process is limited and includes only interfacing to this process,
from the point of view of requirements specification, analysis, and testing.

3 Criteria for Tool Evaluation

Four groups of criteria have been distinguished, based on four different views of the
evaluation process: taxonomy view, project view, qualification view, and behavioral
view. In this short paper we are only able to describe each view very briefly.

3.1 Taxonomy View

Three groups of tool evaluation criteria, called attributes, can be derived:
• The Functional Attributes related to “what” the user wants from the system.
• The Quality Attributes related to “how” the system fulfils the function

regarding such criteria like dependability, performance, security, etc.
• The Business Attributes describe the quality aspects of the software without

considering the functionalities.
The analysis of these attributes is based on defining for each attribute:

• Concerns, that are properties that cannot be measured directly, but they do
affect the functionality, quality, or business aspects.

• Factors, that are the software-oriented characteristics of a concern. Usually
several factors characterize a concern.

• Methods, concerned with metric evaluation and associated measurements. This
is how to address the concerns and factors in the above definition.

The taxonomy table, which is created for a design tool under investigation
identifies two areas of tool functionality: transformation of tool external graphic
representation into internal format, and code generation. The identified concerns to
be evaluated include, among others: determinism, robustness, and traceability.

3.2 Project View

Due to the potentially large number of software tools one can choose from, a
simplified screening process is first described to eliminate those tool candidates that
are ill-fitting for the project at hand. This view focuses on the aspect of software
design tools that provide means to express the software component in a form of
design artifacts and their subsequent translation into the source code. For the tools of
such functionality the following characteristics need to be identified: programming
language, complete vs. partial code generation, real-time features, safety (ability of
tool to include safety-specific elements like watchdogs, redundant paths,
retransmission, value checking, etc.), others, such as self documentation, learning
focus, communication methods, platform, analysis capabilities, lifecycle integration,
vendor support, longevity.

Each of the above characteristics can be assessed and assigned a value on a
pre-defined scale. Additionally, as a separate activity, each of the characteristics
must be assigned a weight. The weight depends on the specifics of the application

project for which the tool is used. The total of weighted values is a measure of the
tool applicability to the specific project.

3.3 Qualification View

The tool evaluation table is constructed in the format of a Quality Function
Deployment (QFD) matrix. Its purpose is to help those stakeholders who are
involved in the selection, development, or certification of development tool(s), in
identifying the capability of the tool(s) to fulfil the objectives in eliminating,
reducing, and automating some aspect of the DO-178B process. The stakeholders
can be categorized as users, vendors, and regulatory agencies.

The proposed tool evaluation table is divided into concerns and the
objectives related to specific concern in the matrix rows (as documented in DO-
178B). Data from this table can then be applied judiciously to the measurement
information model along with other external quantitative measures (LOC,
efficiency, etc.) to come up with more quantitative assessment about the tool.
Concerns covered in the tool evaluation matrix include: traceability, determinism,
robustness, correctness, and conformance to standards.

3.4 Behavioral View

To evaluate the tool in the operational use, we need to perform several steps: adopt a
model of a typical application, develop a model of taking measurements, collect and
analyze results of development. The first two steps are crucial for building the
theoretical models of the measurements process for tool evaluation. They are based
on the representation of the software architecture as presented in the ARINC 653
[6]. In this layered model of handling events by a real-time computer, the
architecture is composed of application tasks residing at the highest level and
interacting only between each other and with an operating system.

One needs to establish the parameters of this architecture, which would be
strictly related to the capabilities of the tool in the process of developing the
architecture. Two views of such parameters are possible, static and dynamic:
addressing not only issues during building the model but also those which arise
when model is run within a tool (on the host). Consequently, in two kinds of criteria
are included:
• Endogenous criteria – those for which data can be collected on the tool itself in

development of the architectural model, but independent of the model, and
• Exogenous criteria – such for which data can be collected on the behavior of

the architectural model itself, to shed light on the dynamic properties of the
model (as opposed to the software product running on a target).

A recent draft IEEE standard on “CASE Tool Interconnections – Reference
Model for Specifying Software Behavior” provides an array of endogenous criteria
to describe various aspects of software behavior [7]. Exogenous criteria are
discussed in [8].

4 Experiments

The experiment objective was an initial evaluation of the selected software
design tools with automatic code generation capability. The selected sample
included four tools from both: structural (object-oriented) and functional (block-
oriented) categories. Tool A was object-oriented and tools B, C and D were block-
oriented. Four developers were assigned an identical problem statement to develop a
real-time program to be implemented on VxWorks target. The project has been
defined as a flight data collection from Opal-RT TestFlight simulator with a
simplistic processing (averaging, time-stamping) and displaying results on the
terminal (Fig. 2).

Fig. 2. The test-bed for the case study implementation

The software would capture data packets of parameter values transmitted
from a flight simulator subsequently computing and displaying a moving average of
the selected parameters with appropriate timestamp. A process script to follow was
created to assist the developers. The following four top-level tasks were elaborated
in terms of entry and exit conditions and the activities to be performed: (1) Project
Preparation/Tool Familiarization, (2) Model Creation and Code Generation, (3)
Measurement, (4) Postmortem.

The aggregate results are shown in Tables 1 and 2. The developers used to
apply the Personal Software Process (PSP) underestimated the preparation phase
effort by about 35%. The average planned time was 58 hours versus the actual of 78
hours. On the other hand, the developers planned in average about 72 hours to be
dedicated to the design and coding phase. An actual average for this phase was
below 39 hours. Automatic code generation reduced the development time in the
order of 46%. The average code size was about 1.8 KLOC. The average total time
spent of the project was 147 hrs, resulting in efficiency of over 12 LOC/hr. The
learning curve is high and results may be slightly biased (as part of the modeling
time was actually spent on learning tool). It is interesting to note that despite long
learning curve the total project development was also completed in time. Automatic
code generation reduced the planned total development time in average over 12%.

target board

HMI

Table 1: Tool Preliminary Experiment – Effort Analysis (in hours)

Tool

A ~590
Tool

B ~4,450
Tool

C ~500
Tool

D ~1,820

 plan actual plan actual plan actual plan actual

Preparation 61.0 69.5 54.0 86.2 72.0 60.0 45.0 98.0

Model/Code 75.0 57.5 90.0 43.5 42.0 32.5 80.0 21.0

Measurement 24.0 5.5 24.0 4.0 16.0 18.5 41.0 2.0

Postmortem 20.0 41.0 12.0 37.0 8.0 10.0 12.0 3.0

TOTAL 180.0 173.5 180.0 170.7 138.0 121.0 178.0 124.0

Table 2. Tool Preliminary Experiment – Average Results (in hours)

 Aver 1,840

 plan actual % change

Preparation 58.00 78.43 35.22

Model/Code 71.75 38.63 -46.17

Measurement 26.25 7.50 -71.43

Postmortem 13.00 22.75 75.00

TOTAL 169.00 147.30 -12.84

LOC/hr 12.492

To assess the requirements-design-code traceability the software

requirements were matched against the design model components. Subsequently, the
basic components of the created model were compared to the code sections (objects,
function blocks) generated by the tool. Any component that did not map directly to a
section of code is then checked against the generated code to identify any code the
might cover it. Also the code is analyzed to identify any parts that did not relate to
any model component, and their purpose is recorded. The analysis shows that the
traceability between design and the generated code is very much tool dependent.

5 Conclusion

This initial experiment was an excellent experience for learning about software
development tools, the infrastructure, and prepare base for a more advanced
controlled experiment. Among the lessons learned it was established that the process
scripts are a crucial element of the process and need to be carefully maintained.
There will be more uniform data logs to allow for easier analysis of results. There
will also be more quantified data for more tool-to-tool comparison. A qualitative
(questionnaire) as well as quantitative (time and code) data will be collected. With
this new knowledge, more and better-organized data can be compiled from the
controlled experiment.

Acknowledgements

Graduate students of Master of Software Engineering program at the Embry-Riddle
Aeronautical University: Kimberley Hall, Darryl Hearn, Herman Lau, Takashi
Osako, Sameer Lakha, and Aber AbuRahma are gratefully acknowledged for
contributing to this research.

References

1. RTCA, Software Considerations in Airborne Systems and Equipment Certification,

Report RTCA/DO-178B, Washington, DC, 1992
2. Ihme T. et al., Developing Application Frameworks for Mission-Crit ical Software: Using

Space Application, Research Notes 1933, Technical Research Centre of Finland, Espoo,
Finland, 1998

3. Wichmann B., Guidance for the Adoption of Tools for Use in Safety Related Software
Development, Draft Report, British Computer Society, London, 1999

4. Kornecki A., J. Zalewski, Design Tool Assessment for Safety-Critical Software
Development, Proc. SEW'04 28th NASA/IEEE Software Engineering Workshop,
Greenbelt, MD, December 2-4, 2003

5. Kornecki A., J. Zalewski, Assessment of Software Development Tools for Safety-Critical
Real-Time Systems, Proc. PDS2003 IFAC Workshop on Programmable Devices and
Systems, Ostrava, Czech Republic, February 11-13, 2003, pp. 2-7

6. ARINC Inc., Avionics Application Software Standard Interface, ARINC Specific ation
653, Baltimore, MD, 1997

7. IEEE Draft Std. P1175.3/D4.3 CASE Tool Interconnections – Reference Model for
Specifying Software Behavior, IEEE, New York, 2003

8. Zalewski J., Software Dynamics – A New Measure of performance for Real-Time
Software, Proc. SEW'04 28th NASA/IEEE Software Engineering Workshop, Greenbelt,
MD, December 2-4, 2003

