
Teaching Device Drivers Technology

in a Real-Time Systems Curriculum

Andrew Kornecki, Hank Wojcicki�

Dept. of Computing & Mathematics

Embry-Riddle Aeronautical University

Daytona Beach, FL 32114, USA

korn@db.erau.edu

Lo��c Peltiery, Janusz Zalewski

Dept. ECE

University of Central Florida

Orlando, FL 32816, USA

jza@ece.engr.ucf.edu

Natalia Kruszynska

NIKHEF, POB 41882

1009 DB Amsterdam, The Netherlands

natalia@nikhef.nl

Abstract

The paper describes activities related to development of de-

vice driver software - a topic very often left aside in most of

the academic programs. With an individualized instruction,

access to a well equipped laboratory, and self-motivated stu-

dents we proved that the device drivers development can be

successfully taught. The artifacts of the research and devel-

opment are posted on the web and thus can serve as easily

accessible teaching material for system developers. In the

development, we used real-time operating system platforms,

LynxOS and VxWorks, and explored Linux.

1. Introduction

One of the critical elements of modern computer tech-
nologies is software/hardware interface. The operating
system is designed to simplify, for application develop-
ers, the access to various external devices. The parts of
system software responsible for this are device drivers.
For each new device a new driver must be developed
and installed. In classic computer science and engineer-
ing education, overloaded with conventional material,
there is no room for instruction on driver development.

The device drivers are written by developers inti-
mately familiar with hardware operations. Historically,
all drivers were written in assembly code being entirely
platform speci�c. Currently, most of the development
is done in a high-level language, where C is leading by
a high margin. Since the development of hardware in-
terfaces requires a detailed knowledge of the controller

�Currently at Honeywell Space Systems, Clearwater, FL
32624, USA

yVisiting graduate student from IRESTE, Nantes, France

architecture, modes of operations, and control/status
register contents, the hardware engineers were primar-
ily involved in device driver development. The resulting
code was often criptic and poorly documented, with-
out appropriate requirements description, design specs,
and adequate testing. The maintenance and modi�ca-
tion of any drivers was extremely di�cult.

Nowadays, when embedded systems developers are
moving towards real-time kernels, there is a greater de-
mand for software engineers that know both how hard-
ware and the data structures of an operating system
work. All of the skills a device driver developer needs
to master are taught separately. The ability to program
at the register level, the basics of processor operation,
and operating systems concepts form this set. A course
such as device driver development would be focused on
the integration of these skills. The professional engi-
neer's college education should include this aspect.

2. Device Driver Instruction

The authors feel that the art of driver development
should �nd its way to university computing programs.
However, it requires a signi�cant hands-on experimen-
tation, direct access to the equipment, detailed docu-
mentation, and support. For the last two years, both
universities the authors are a�liated with o�ered spe-
cial topics classes to teach this important element of
software development.

2.1 Course Based on LynxOS and PC

This special topics class was designed around the soft-
ware development cycle for device drivers in general, for



LynxOS [1] using a data acquisition board PC-LPM-
16 from National Instruments [2] (12-bit 16-channel
analog-to-digital converter and 8-bit digital I/O ISA
module). In the course of one semester, the following
tasks got accomplished:

� driver literature review and familiarization with
driver structure, functionality and the develop-
ment concepts

� experiments and in-depth familiarization with the
real-time operating system (LynxOS)

� development of a simple test data character driver
and simple A/D converter driver (read single chan-
nel conversion)

� development of a fully functional driver (multiple
channel conversions, interrupts)

� compilation of the lessons learned in the form of
handouts posted at ERAU Real-Time Web Server
(http://www.rt.db.erau.edu).

The work was organized as a self-paced individual
study with weekly consultations, progress reports, and
frequent interactions in the lab and via email.

2.2 Course Based on VxWorks/VME

The major objective of this course was to write a de-
vice driver under VxWorks [3], for a data acquisition
card on VMEbus. The VMEbus equipment used was
Motorola MVME167 processor board [4] and two data
acquisition boards from VMI Corp., VMIVME-2532A
digital I/O board and VMEVME-4514A analog/digital
I/O board [5]. The particular goals were as follows:

� experience cross development by using develop-
ment tools on the host SparcStation and down-
loading executables to the target VME

� get familiarity with and con�gure the hardware
for VMEbus equipment, the most frequently used
hardware architecture in real-time applications

� get familiarity with the real-time kernel's I/O sys-
tem and its data structures

� develop a functioning driver for the above men-
tioned boards, following an incremental approach

� understand procedures of adding a user-written
driver to the kernel

� compare functionality of the driver with bypassing
the driver functions to access an I/O device

� develop procedures for testing the driver using
module functions

� study issues related to accessing a multifunction
data acquisition card.

2.3 Driver Design Project

The experiences with the concepts led to a full project
centered around device driver development. This
project focused on the development of an ARINC-429
VME interface card [5] device driver for the VxWorks
operating system [3] running on a 68040-based proces-
sor board MVME162 [4]. The ARINC-429 is a serial
data bus used for point to point communication, that
provides the data word format for transmitting navi-
gational information. The VxWorks real-time kernel
allows one to construct a device independent interface
with the ARINC-429 VME interface card that con-
forms to the standard system call syntax.

The tasks accomplished in the graduate project re-
sulting in delivery of fully functional driver for ARINC-
429 intelligent communications controller were:

� hands-on experiments and familiarization with
VxWorks environment and tools

� development of the driver installationmodule with
sca�olding code (Build 0)

� adding transmit/receive functionality in a polled
protocol (Buid 1)

� adding mode changes and bu�er manipulation
(Build 2)

� adding an interrupt-driven protocol (Build 3)

� compilation of lessons learned into the web hand-
outs posted via ERAU Real-Time Web Server

� writing and editing the report and driver docu-
mentation.

3. Teaching Materials

When dealing with materials for this type of course,
several issues need to be addressed beforehand to avoid
unnecessary delays and setbacks. Below, we mention
only necessary fundamentals, device driver structure,
relationship of a driver to real-time requirements, and
the design procedure. Equally important is the pre-
requisite knowledge or other type of good preparation
related to hardware, particularly bus architectures, but
this is out of scope of this article.

3.1 Device Drivers Fundamentals

There is an ample literature on developing device
drivers, which we quote for convenience (books only)
[13]. Depending on the operating system, one can �nd
several kinds of device drivers. In principle, there are
four types of device drivers: character drivers, termi-
nal drivers, block drivers, and network drivers. Usually,



those di�erent types of drivers are categorized depend-
ing on the way the device driver handles the communi-
cation between the device itself and the I/O system of
the kernel.

Character drivers can handle I/O requests of arbi-
trary size and can be used to support almost any type
of device. Character drivers are mostly used for de-
vices that must transfer data a byte at a time or for
devices that work best with blocks of data that are not
equal to the standard �xed-size bu�ers. Character de-
vices deliver or accept a stream of characters (bytes).
A subroutine puts a character on the list, or queue,
and another subroutine retrieves the character from
the list. The I/O procedure is synchronized through
hardware completion interrupts: at each interrupt the
device driver gets the next character from the queue
and sends it to the hardware.

Terminal drivers are simply character drivers spe-
cialized to deal with communication terminals. They
are responsible not only for sending to and from the
user terminals, but also for handling line editing, tab
expansion, and many others terminals functions. Be-
cause of the additional processing that terminal drivers
must perform (and the additional kernel routines and
data structures to handle this), it is useful to consider
terminal drivers as a separate category.

Block drivers communicate with the operating sys-
tem through multiple �xed-size bu�ers, which are usu-
ally 512 bytes. The operating system manages a cache
of these bu�ers and attempts to satisfy user requests
for data by accessing them. The driver is invoked only
when the requested data is not in the cache, or when
the bu�ers in the cache have been changed and must
be updated on the device. Because of this, the driver is
insulated frommany of the details of the users' requests
and needs only handle requests from the operating sys-
tem to �ll or empty �xed size bu�ers. One of the major
di�erences between block and character drivers is that
while user processes interact with block drivers only
indirectly through the bu�er cache, their relationship
with character drivers is very direct. Unlike character
drivers, data given to block drivers is position address-
able. This position is usually established by the appli-
cation program. Examples of using positional informa-
tion generally involve seeking to a particular physical
location on the device.

Network device drivers manage network intercon-
nections and have a di�erent processing model. While
some of their functions are invoked by the kernel, as
with others types of devices drivers, their primary in-
terfaces connect to a protocol manager - a part of the
network management code. Network device drivers
must also be able to process unsolicited requests from

the network. In this environment, the device driver
may be the target as well as the initiator of I/O oper-
ations.

Applications access drivers via special device �les
that usually reside in /dev directory under Unix. These
�les are named the same way as regular �les and are
identi�ed by the device type. Also, the major and mi-
nor device numbers associated with the special �les can
be viewed by listing the /dev directory.

LynxOS, for example, identi�es devices using ma-
jor and minor device numbers. A major device number
corresponds to a separate functional unit that often has
its own set of control registers, I/O address, and inter-
rupt vector. A oppy disk drive, Ethernet card, or A/D
converter card are all physical devices and each has a
major device number associated with it. The major
number is assigned to the device automatically during
installation. A list of the installed major devices can
be retrieved using the device utility program.

A minor device number identi�es subunits or sub-
functions of a major device. Minor devices of the same
major device may share some resource(s), such as de-
vice registers or the interrupt vector. For example,
a 16-channel A/D converter card will have one major
number and 16 minor numbers, one for each channel.
Minor devices are only necessary if there are multiple
minor devices for a major device. For example, if the
ADC only had one channel, we would not be concerned
with assigning minor numbers. The kernel does not at-
tach any special meaning to the minor number. The
meaning is interpreted only by the device driver.

3.2 Device Driver Structure

A device driver code consists of a number of entry point
routines and data structures. Every driver has two im-
portant data structures, the device information struc-
ture and the statics structure. These are used to in-
stall the driver and to share information among the
entry point routines. The device information structure
is a static �le which is passed to the install entry point.
The purpose of this structure is to pass the information
required to install a major device into the install entry
point where it is used to initialize the statics structure.
The statics structure is used to pass information be-
tween the di�erent entry points and is initialized with
the information stored in the info structure. The ker-
nel communicates with the driver via its entry point
routines. The driver entry point routines, structures,
and �les related to the driver are named by placing an
alphanumeric pre�x in front of the routine or �le name.

In addition to the routines that implement the ba-
sic I/O functions, driver's code also includes an init,



device creation, and interrupt handling routines.
When the user calls one of the basic I/O functions,

the I/O system responds by routing the call directly
to the appropriate routine of the appropriate driver.
The I/O system does this by maintaining a table that
contains the address of each routine for each driver.
Drivers are installed dynamically by calling the I/O
system internal function, with arguments being the ad-
dresses of the I/O functions for the new driver. The in-
stallation routine enters the addresses of the I/O func-
tions into a free slot in the driver table and returns the
index of the slot. The index is known as the driver
number and is used subsequently to associate particu-
lar devices with the driver.

A driver may be capable of servicing many in-
stances of a particular kind of device (e.g. device with
many separate channels that di�er only in a few pa-
rameters). In the VxWorks I/O system, devices are
de�ned by a data structure called a device header. This
data structure contains the device name string and the
driver number for the driver that services this device.
The device headers for all the devices in the system are
kept in a memory-resident linked list called the device
list. The device header is the initial part of a larger
structure determined by the individual drivers. This
larger structure, called the device descriptor, contains
additional device-speci�c data such as device addresses,
bu�ers, and semaphores.

Character devices are added to the I/O system dy-
namically by calling the internal I/O function, iosDe-
vAdd. The arguments to this function are the address
of the device descriptor for the new device, the device
name, and the driver number of the driver for this de-
vice. The device descriptor speci�ed by the driver can
contain any device-dependent information, as long as
the structure begins with the device header. The driver
does not need to �ll in the header, only the device de-
pendent information. The iosDevAdd routine enters
the speci�ed device name and driver number in the de-
vice header and adds it to the I/O system device list.

3.3 Device Drivers and Real Time

In many systems, the device driver supplies a few func-
tions to perform low-level I/O operations such as input
or output a sequence of bytes to a character-oriented
device. The higher level protocols, such as commu-
nications protocols on character-oriented devices, are
implemented in the device-independent part of the I/O
system. The user requests are heavily processed by the
I/O system before the driver functions get control.

While this approach is designed to make it easy to
implement drivers and to ensure that devices behave as

much alike as possible, it has several drawbacks. The
driver writer is often seriously hampered in implement-
ing alternative protocols that are not provided by the
existing I/O system. In a real-time system, it may be
desirable to bypass the standard protocols altogether
for certain devices where the throughput is critical, or
where the device does not �t the standard model.

In a VxWorks I/O system, user I/O requests are
apportioned between the device-independent I/O sys-
tem and the device driver itself. Since VxWorks is an
operating system designed for real-time applications,
minimal processing is done on user I/O requests before
control is given to the device driver. The VxWorks I/O
system acts as a switch to route user requests to the ap-
propriate driver-supplied routine. Each driver can then
process the raw user request as appropriate to its de-
vice. In addition, however, several high-level libraries
are available. Thus the VxWorks I/O system makes it
easy to write a standard driver for most devices and
driver developers are free to execute user requests in
nonstandard ways where appropriate.

3.4 Device Driver Design Procedure

While developing all drivers mentioned in Section 2,
an iterative development process was followed. Such a
process breaks the development cycle into more man-
ageable phases (or builds), building a complete func-
tional driver of increasing functionality at each build.

Building a hardware device driver and successfully
integrating it into a system requires the following steps:

1. Learn and understand the hardware
- capabilities of the peripheral and its register map
- con�guring modes of operation
- sequence of events and timing relationships

2. Design the driver
- use incremental development
- add functionality one at a time (testing each step)
- for each step perform rigorous requirements anal-
ysis, design, implementation, and testing

3. Code the driver
- know well the implementation language and bit
manipulations
- document the calling sequence for the application
- document carefully the entire code
- document the process of creating executable and
installation

4. Debug
- the driver and the OS kernel are closely tied, so
single stepping or breakpoint set-up is not feasible
- simple mistake can corrupt the entire system
- watch for intermittent and time-dependent bugs



- schedule extra time for contingencies

5. Integrate
- install and test the driver during regular system
operation
- test the application-driven sequence of driver
calls

6. Document the following
- functional description and interface description
- restrictions and examples of use
- source code, compilation, linking, and installa-
tion process.

4. Comparison with Industrial Setting

All the above mentioned e�orts, course structure and
materials may still be not enough for a professional to
begin device driver development in a production ori-
ented industrial environment. In such an environment,
what counts �rst of all is engineer's familiarity with
a variety of bus structures, including not only VME-
bus but also SBus, PCI, SCSI, etc. All those have to
be taught separately and included in the developer's
background [10].

Below, we overview major characteristics of a pro-
fessional driver for PCI/VMEbus adaptor [6] running
under Linux [7], vmehb (VMEbus Host Bridge). The
vmehb driver is a loadable device driver that gives ac-
cess to the VMEbus address spaces in a general way.
It is suitable for data triggering, slow control and a va-
riety of other data acquisition functions in any experi-
ment equipped with VME hardware. The distribution
[8] contains all necessary information, readme and user
manual to install and use the driver on PCI architec-
tures with Linux.

4.1 PCI/VMEbus Adaptor Driver for
Linux/Unix

Several issues have to be resolved up-front in the spec-
i�cation to assure optimal design.
Assumption. VME address spaces should each have
its own node (minor device number) assigned and its
parameters should be constant during the use of the
driver. The parameters are, at least, as follows:
� node name

� VME addressing mode (16, 24, 32)

� VME data mode (8, 16, 32)

� VME data swap style

� VME address modi�er (�xed to the �rst two pa-
rameters)

� one of the parameters should include the minimal
length allowed in DMA, if DMA feature exists.

Proposed implementation. In general, one should
always try to implement six base VME address spaces:
vme16d16 (compatible with Sun & NIKHEF VME ac-
cess), vme16d32, vme24d16, vme24d32, vme32d16, and
vme32d32. These address spaces should have the most
popular VME address modi�ers �xing the addressing
mode (the �rst number) and the data access mode (the
last number).

The standard structure should be easilly extend-
able. For devices using block VME access there
should be separate nodes named: vmf24d16, vmf24d32,
vmf32d16, vmf32d32. We can also extend the node
repertoire adding more nodes whenever necessary. For
example, if there is a need to make vmexd8 space, or
when one device has atypical swap, keep the names fa-
miliar and in the style demonstrated above. Adhering
to the standard will allow to use applications and li-
braries previously developed.

4.2 General Features of the Driver

The following are the basic requirements:

� The driver shall be loadable on all not VME based
systems allowing dynamic loading.

� The driver shall cover to its best the possibilities of
the hardware. If, e.g., the device has DMA feature,
i.e., a possibility of releasing CPU from mastering
the transfer, it shall be used.

� The transfers shall treat the VME part of the
adaptor as a slave only. Let the VME proces-
sor driver developer worry about the mastering on
VME and accessing Linux/Unix side as its mas-
ter (many adaptors can serve both sides, but the
driver shall serve only one side).

� The driver shall receive VME interrupt, whenever
hardware allows and handle it correctly.

� Upon user request, the VME interrupt request
shall be implemented, if allowed by the device.

� The driver shall implement the check-vme mode,
using memory mapped access and putting extra
check delay between the accesses, so the superuser
can set it and check the whole con�guration in the
VME crate for the accessibility of all requested
addresses.

� The driver shall be easilly switchable to normal
mode by superuser.

� The hardware con�lict between DMA and
mmapp'ed access shall be avoided. If this is not
possible, the two modes, run-time switchable by
the superuser, shall be added.



� The driver is totally responsible for proper syn-
chronization of multiuser accesses throughout all
its nodes. The way of synchronization depends on
the system used, needs of the device and style of
the developer.

� The driver shall supply the facilities to allow de-
velopment of drivers for particular VME devices.

4.3 Driver System Calls

The driver shall have the following functions:
� open() shall supply the user with the access to
read()/write() and lseek()

� lseek() shall supply the start VME address of a
given VME space; all the following read()/write()
will start there till the next lseek() (on systems
with 32-bit �le count the standard system lseek()
is enough)

� read()/write(), depending on the presence of
DMA, shall have quick DACQ access (data acqui-
sition mostly with the DMA access) and the last
resource virutal sharing (when no DMA - seldom
used) and mapping shared between the users

� mmap() shall give the user the access

� ioctl() shall serve all the rest, mostly for use by
the superuser, including the following features:
- stop VME crate allowing exchange of modules
- start VME crate
- choose the delay on check mode user gets if the
crate is really started/stopped
- get the node parameters (everybody and every-
thing)
- set the node parameters (superuser only, the user
can get them as well)
- interrupt request to VME (optional).

In addition, the diagnostic options shall include:

� the driver shall be able to clean its debugging mes-
sages by estabilishing proper compile time ag; the
driver, when ready shall be mum, except in the
case of trouble

� there shall be an option to make internal systrace.

4.4 Programming Practices

Developing bus bridge drivers needs an extra care in de-
sign, so does writing other bus adaptor drivers. These
devices, in the same hardware set, usually cover the
needs of two drivers, each on the other side of the con-
nection. It is critically important to split the function-
ality and to decide which driver do we need. For VME

driver, the PC side should use the PCI mastered access
only, leaving the rest of hardware functionality to the
drivers of embedded VME processors. It is important
to make this clear, to avoid "driver" giving access to
multiple registers on both sides, say, PCI regular and
DMA as well as VME regular and DMA registers.

Other general practices should be observed as well:

� architecture dependence and the general con�gu-
ration data should be all kept in one �le, avoiding
use of #ifdef in the code

� make one structure of the driver data and �nd a
uniform way to access it so your code is readable;
avoid separate global variables

� avoid leading underscores and other special char-
acters, as they could be used by an operating sys-
tem

� a good driver is the one that extends neatly; if you
have to use complicated debugging tools it mostly
means thast your programming or design is sloppy.

For the implementation, it is strongly recom-
mended to �x and keep the general names of IOCTL
ags. Example of a vme dev structure containing the
parameters described in the section on VME address
spaces is attached in Appendix 1.

5. Conclusions

The art of device driver development is a time con-
suming but very rewarding and practical activity. It
is in most cases an individual e�ort and therefore too
often the developers are used to "hack the code". It
appears that the critical factor to produce high quality
device drivers is, in addition to technical competence
in a form of knowledge of hardware and programming,
an orderly development process. The spiral develop-
ment with mutliple builds of increasing functionality is
the recommended approach [9]. It is imperative to use,
in each build, all four basic phases of software devel-
opment (requirements, design, implementation, test).
It is also advised to have a test plan prepared while
developing the requirements. The proper documen-
tation of the code, identi�cation of all programming
modules and the detailed instructions on compilation,
linking, and installation is also critical. The documen-
tation should also include detailed information about
the hardware registers, binary codes, modes of oper-
ation, timing characteristics, etc. In the development,
particular care must be taken to provide proper atomic-
ity of code elements, mutual exclusion, and reentrancy.

As a direct result of the device driver training,
students involved have been working on their job as-
signments in future product development in R&D. As-



sembly level tests on the bare machine, ROM moni-
tor ports, and VxWorks BSP and device driver port-
ing/writing are just a few of the tasks they have been
doing almost immediately after graduation. Practical
knowledge of system architectures, such as VME, al-
lowed them to get involved in similar boards from dif-
ferent manufacturers and facilitated transition to other
bus architectures, such as PCI, or even di�erent pro-
cessor architectures. In addition to all that, knowledge
of new directions and technologies, to which industry is
or will be soon moving, such as I2O [11] and Windows
CE [12] was highly desirable. So is familiarity with the
use of make and driver utilities, plus deep insight into
driver performance is indispensible.

One comment which one of the authors heard a lot
when he �rst started working at the industry was: "It's
easier to teach a EE grad to program data structures
in C than to teach a CS grad how hardware works."
We strongly disagree with this comment: if one has
the proper education, there should be no di�erence.

References

[1] Lynx Real-Time Systems, LynxOS Real-Time Kernel Doc-
umentation, San Jose, Calif., 1997

[2] National Instruments,PC-LPM-16 Laboratory Data Acqui-
sition Board Users Manual, Austin, Texas, 1996

[3] Wind River Systems, VxWorks Programmer's Guide,
Alameda, Calif., 1995

[4] Motorola Computer Group, MVME 162 and MVME 167
Single Board Computer User Manuals, Tempe, Ariz., 1994

[5] VME Microsystems International Corporation, VMIVME-
2532A Instruction Manual, VMIVME-4514A Product
Manual, and VMIC-6005 ARINC-429 Intelligent Commu-
nications Controller Instruction Manual, Huntsville, Ala.,
1994-96

[6] Bit3 Computer Corporation, Model 617 PCI to A32/D32
VMEbus Adaptor Instruction Manual, St. Paul, Minnesota,
1996

[7] Linux Operating System Documentation, http://www.

sunsite.unc.edu/pub/Linux

[8] N. Kruszynska, VMEbus Host Bridge Driver,
http://sunsite.unc.edu/pub/Linux/drivers/char and
http://nikhef.nl/pub/projects/vmehb

[9] A. Kornecki, Spiral Software Development as a Methodol-
ogy for Teaching Object-Oriented Simulation, Proceedings
of Object-Oriented Simulation Conference, pp. 151-156,
The Society for Computer Simulation, San Diego, Calif.,
1996

[10] J. Zalewski (Ed.), Advanced Multimicroprocessor Bus Ar-
chitectures, IEEE Computer Society Press, Los Alamitos,
Calif., 1995

[11] L. Mittag, An Introduction to I2O, Embedded Systems
Programming, Vol.10 , No. 10, pp. 44-50, October 1997

[12] S. Liming, S. Quintanilla, Device Driver Development for
Windows CE, Windows CE Tech Journal, Vol. 1, No. 1,
pp. 18-25, 1998

[13] P.M. Adams, C.L. Tondo, Writing DOS Device Drivers in
C, Prentice Hall, Englewood Cli�s, NJ, 1990

A. Baker, The Windows NT Device Driver Book, Prentice
Hall, Upper Saddle River, 1997

T. Burke, M.A. Parenti, A. Wojtas. Writing Device
Drivers: Tutorial and Reference, Digital Press, Boston,
1995

E.N. Dekker, J.M. Newcomer, Developing Windows NT
Device Drivers: A Programmer's Handbook, Addison-
Wesley, Reading, Mass., 1999

J.I. Egan, T.J. Teixeira, Writing a Unix Device Driver.
Second Edition, John Wiley and SOns, New York, 1992

J.E. Hanrahan, L. Leahy, VMS Advanced Device Driver
Techniques, Digital Press, Bedford, Mass., 1988

K. Hazzah, Writing Windows VxDs and Device Drivers.
Second Edition, R&D Books, Lawrence, Kansas, 1997

R.M. Hines, S. Wilcox (Eds.),Device Driver Programming:
Unix SVR4.2, Unix Press, Englewood Cli�s, NJ, 1992

R.M. Hines, S. Wilcox (Eds.), Device Driver Reference:
Unix SVR4.2, Unix Press, Englewood Cli�s, NJ, 1992

P. Kettle, S. Statler,Writing Device Drivers for SCO Unix:
A Practical Approach, Addison-Wesley, Wokingham, Eng-
land, 1993

R.S. Lai, Writing DOS Device Drivers. Second Edition,
Addison-Wesley, Reading, Mass., 1992

S.J. Mastriani,Writing OS/2 2.1 Device Drivers in C. Sec-
ond Edition, Van Nostrand Reinhold, New York, 1993

D.A. Norton, Writing Windows Device Drivers, Addison-
Wesley, Reading, Mass., 1992

G. Pajari, Writing Unix Device Drivers, Addison-Wesley,
Reading, Mass., 1992

A. Rubini, Linux Device Drivers, O'Reilly & Associates,
Sebastopol, Calif., 1998

Appendix 1

/* get/set parameters of a minor */

#define VME_GET_SPACE _IOR(VMEIOC,0,struct vme_dev)

#define VME_SET_SPACE _IOW(VMEIOC,1,struct vme_dev)

/* driver modes of work */

#define VME_CHECK_ACCESS _IOW(VMEIOC,2,int)

#define VME_SLOW_CONTROL _IOW(VMEIOC,3,int)

#define VME_DMA_CONTROL _IOW(VMEIOC,4,int)

/* VME AM set/get */

#define VME_SET_AM _IOW(VMEIOC,5,int)

/* crate on/off */

#define VME_CRATE_OFF _IO(VMEIOC,10)

#define VME_CRATE_ON _IO(VMEIOC,11)

/* superuser clear all maps */

#define VME_CLEAR_MAPS _IO(VMEIOC,61)

/* trigger the trace info */

#define VME_TRACE_INFO _IO(VMEIOC,63)


