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Abstract — With the proliferation of complex interconnected 
embedded systems there is a need to ensure a level of security 
for those systems such that end-users will trust them to 
perform their required functions safely and securely.  
Incorporating security into a system invariably decreases the 
performance of the system.  This is an important point to 
consider when designing embedded systems where the timing, 
space and power constraints are generally more stringent than 
in other systems.  The presented case study proposes 
architecture for a secure interconnectivity component and 
evaluates impact of the security on the system performance.  
The paper suggests how informed decisions regarding 
tradeoffs between performance and security may be made.  
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I.  INTRODUCTION 
Industrial control systems were traditionally isolated 

from the outside world which meant that malicious attacks 
could only be attempted at the site.  This security threat was 
easily managed by controlling access to the premises.  The 
ability to connect these control systems via a network cable 
meant that more functionality could be added to these 
systems.  Examples of such functionality include remote 
monitoring, control, and data collection.  Now control 
systems often have wireless transmitters and receivers built 
into them.  This makes the systems vulnerable to remote 
security intrusions.  While making the system more flexible 
and allowing complex applications to be developed, such 
modern control systems tend to increase the software 
assurance and security management efforts.   

There are several levels of security that may be present in 
any given software controlled system.  All applications 
require physical security management at the very least, even 
if such applications are not connected to any network.  
Security management must be intelligently applied to the 
system under development so as unnecessary effort is added.  
The supposed improvement to the system could be a liability 
to the system as a whole [1]. Additionally, the isolation of 
safety, security and system engineering practice may lead to 

a number of problems like inadequate understanding of 
safety and security semantics, incompleteness of 
requirements, and incompleteness of critical characteristics 
like verifiability and ambiguity in requirements [2]. 

Embedded systems have more stringent timing and 
memory usage constraints than conventional desktop 
systems.  Therefore, the impact of adding security features 
and related tradeoff between the level of security and the 
associated performance and memory costs to the system 
must be carefully made. 

All characteristics of a system are inter-related.  
Increasing the security of a system by adding more levels of 
authentication may have a negative impact on the 
performance of the system.  For this reason, [3] suggest that 
the resulting architectural model be verified again using the 
currently available analysis and verification tools. 
Architecture Analysis and Design Language (AADL) 
promoted by the Society of Automotive Engineers since 
2004 [4] is supporting the proposed analyses. AADL, with 
the help of security plug-ins, can validate whether or not a 
given architectural model violates some basic security 
principles [5].  The security policies must be defined at the 
architectural phase and any modifications to the policy at a 
later stage of development would likely require the 
architecture to be revisited. 

Component-based software development has many 
advantages.  After the interfaces have been well defined, 
components are designed, implemented, and verified 
independently which allows components to be easily 
modified without affecting the rest of the system.  
Components can be reused.  However, when system is 
required to meet certain security requirements there is 
mistrust of using components of uncertain pedigree and thus 
reuse is rarely accepted option [6].  

To meet the objectives of reusable components as well as 
increase the overall security of the system, the system is 
decomposed using the communicating processes pattern. As 
guidance, the granularity of the components should be small 
enough to enable each individual component to be formally 
proven correct (according to its specification) and yet large 
enough to enable the system to still meet its performance 



requirements in terms of execution time as determined by 
AADL analyses.  

In such framework the interconnectivity functionality 
may be implemented within a single component solely 
responsible for communicating over the network and with 
other systems.  This component is the only component that 
needs to be designed to avoid, detect and respond to threats 
from the outside.  If this component is secure, then it should 
not propagate intrusions to the other components in the 
system.  So all the remaining components need only ensure 
that contain no software (or hardware) defects which pose a 
security risk to the system. 

The Open Web Application Security Project (OWASP) 
maintains a list of known vulnerabilities specifically for web 
based applications.  Some of these vulnerabilities relevant to 
embedded systems (adapted from [7]) are: injection, broken 
authentication/session management, insecure object 
references or cryptographic storage, miss-configuration, 
insufficient transport layer protection, and other 
vulnerabilities (code, error handling, general logic, and input 
validation).  

Mitigation techniques include authentication, encryption 
and other means designed to avoid and/or detect intrusions.  
There is no method to evaluate the security of a new 
mitigation technique before it is used in a system.  This is 
partly due to the fact that security is relative to the currently 
known possible attacks.  What we can say is that a system is 
secure against currently known attacks. 

The paper is organized as follows. After selection of the 
case study we introduce the architectural model of the 
system including the security component, discuss the 
assumption and then analyze the system using AADL and 
queuing models. The results and conclusions allow us to 
judge the viability of the proposed approach. 

II. SELECTION OF CASE STUDY 
The presented case study proposes architecture for a 

secure interconnectivity component and evaluates impact of 
the security on the system performance.  The example 
selected is known architectural model for a Cooperative 
Adaptive Cruise Control System (CACC) [8,9] - an 
embedded control system for automobiles automatically 
monitoring and adjusting a vehicle’s speed according to the 
traffic conditions in its immediate vicinity to maintain 
constant distance from the lead vehicle.  The CACC receives 
the necessary data from sensors on the vehicle, 
communication with other CACC equipped vehicles 
(specifically the vehicle directly in front), and 
communication with a central Street Monitoring Data Center 
(SMDC).  The system issues commands to the throttle and 
the brakes to effect a change in the vehicle’s speed. 

Changes have been made to the original CACC 
architectural model to enhance the level of security and 
analyses have been performed to assess the effectiveness of 
the changes. The reliability and availability of the enhanced 
model have been analyzed using a Markov model (not 
described in this paper which is focusing primarily on the 
impact of introducing security).  Obviously, adding security 
functionality increases the execution time and the demand on 

the resources which is an important consideration for real 
time embedded systems where typically the resources are 
limited and response time requirements must be met.  One 
needs to quantify the changes affected in the system by the 
addition of the interconnectivity component and other 
security functionality. 

The model before adding the security functionality is 
compared to the security-enhanced model in terms of the 
processor(s) utilization.   

AADL OSATE Tool Environment [10] with plug-ins 
allows the analyst to calculate flow latencies, analyze 
scheduling and security. AADL allows the analyst to model 
both hardware and software execution entities of the system. 
Software execution entities include processes, threads and 
data stores.  Hardware execution entities include processors, 
busses and physical memory.  Each entity has a set of 
properties associated with it: processor (clock frequency), 
process (period, scheduling and dispatch protocols), and 
thread (period, execution time, memory and processor 
connection binding).  It is easy to modify the value of one or 
more properties and repeat the analysis.  This allows 
different system configurations to be easily compared. 

Two types of analysis can be done in AADL: scheduling 
and security analysis. The scheduling analysis attempts to 
determine the percentage utilization for each processor in the 
system based on the given (assumed) property values for 
each run time entity.  The scheduling analysis answers the 
question, ‘Given the processors with their properties and the 
threads with their properties, is there a configuration and 
schedule such that all threads meet their deadlines and 
execute at the required periods?’  If such a configuration 
exists, the analysis calculates how busy the processors are 
likely to be, in the worst case. 

A security level may be assigned to each execution entity 
and each data connection between the entities.  Provided by 
the AADL security analysis checks that an entity and each 
connection has a security level which is greater than or equal 
to the security levels of all entities contained therein.  The 
model proposed in the case study consists of just two 
security levels and thus such trivial analysis would be as 
follows.  The highest security level is assigned to the 
interconnectivity component, and the lowest is assigned to 
the rest of the system entities.  The interconnectivity 
component with high security level protects more vulnerable 
(i.e. less secure) parts of the system from possible threats and 
it is responsible for the defense against the threats. The 
resulting combined system is therefore more secure.  

III. CACC MODEL 

A. CACC Model Assumptions 
In the CACC architectural model used in this case study, 

the distance between leading and following vehicles is a 
function of their speed difference, the condition of the road, 
the amount of traffic present and documented safe following 
distances.  The users set the desired speed when there is no 
vehicle immediately in front of them. The long term trend is 
towards partial or even fully autonomous operation of a 



single vehicle, or even groups of vehicles.  Therefore, safety 
and security are essential attributes of CACC systems.   

The devices interfacing with the CACC may be divided 
into two categories: (a) devices located on the vehicle and 
having a direct connection with the CACC, and (b) devices 
which communicate with the CACC via a wireless network 
connection (CACC systems on other vehicles and the SMDC 
monitoring the traffic in a given area).  

It is assumed that attackers would not physically tamper 
with the vehicle itself in order to cause a breach in security. 
Possible breaches in security may come about through 
software defects in the user interface code which need to be 
discovered and corrected during the implementation phase.  
The case study focuses on the security issues visible at the 
architecture level of the system and so we will not be 
considering the user interface in more detail focusing instead 
attention on the external interface.  

The CACC system communicates via wireless network 
connection to other vehicles in the vicinity and to a 
centralized Street Monitoring Data Center.  These interfaces 
have the highest risk of malicious attack. Four major 
categories of attack are: 
• Message Insertion - an invalid (made-up) SMDC/ CACC 

message is injected. 
• Message Deletion - a valid SMDC/ CACC message is not 

received by the CACC system. 
• Message Corruption - the contents of an SMDC/CACC 

message is altered before it is received.  
• Message Flooding - multiple frequently repeated 

SMDC/CACC messages are received. 

B. CACC Architectural Model 
The execution view of an architectural model shows the 

execution (runtime) entities of the system as a screen shot 
captured from the OSATE tool (Fig. 1).   

 

 
Figure 1.  Security Enhanced CACC System 

The boxes labeled SysDevColl and RemoteDevColl 
represent subsystems for the two types of devices.  The 
remote devices, those that are connected via wireless 
network connection, are placed in a separate system to 
highlight the fact that the devices are not co-located on the 

vehicle. The connections between the devices and the 
CACCProcess are modeled using port groups.   

CACCProcess and MonitorProcess are major functional 
processes of the system. Processes may be allocated to 
different processors provided that they are connected to a 
common bus. In this case study, each process was assigned a 
periodic scheduling algorithm with its own protected 
memory space and a group of threads.  Hardware of the 
system includes two processors: an Intel processor with a 
frequency of 500 Mhz, and an FPGA processor with a 
frequency of 1.2 GHz.  The MonitorProcess is bound to the 
Intel Processor and the CACCProcess is bound to the FPGA 
processor allowing for more effective system monitoring.  

The original CACC model was modified to incorporate 
security.  In the architectural model it is presented by adding 
an additional process dedicated to security aptly called 
SecurityProcess. The addition of the SecurityProcess 
requires minor modification of the CACCProcess interface: 
remoteDataIn and remoteDataOut data ports need to be 
connected to the SecurityProcess instead directly to the 
RemoteDeviceColl as in the case without security.   

C. Security Process Architectural Analysis 
Within the SecurityProcess there are two distinct 

functionalities that deserve their separate components as 
shown in Fig 2 captured from OSATE tool. First, there is a 
need to authenticate the sender of the messages.  We 
introduce thus an Authentication component (thread group).  
The reason for separation is that the authentication 
functionality can be run on separate dedicated hardware or 
on a separate processor which makes the potential 
configurations more flexible.  Secondly, this component can 
be developed, tested and verified in isolation of the rest of 
the system.  If it is developed well it may even be reused for 
subsequent systems. This Authentication component 
interfaces to the rest of the system via event data ports. 

 

 
Figure 2.  SecurityProcess Thread Groups. 

Conceptually, there is a message queue for each possible 
input and output to the rest of the systems.  An event is 
triggered whenever a message appears in the queue.  Having 
messages in a queue structure allows messages to be 
validated before being sent to the intended recipient.  In 



addition, to mitigate the possibility of lost or injected 
messages, the system needs to monitor the time between 
each subsequent message of a particular type. This implies 
that specific inter-message delays should be defined in the 
system specification.  The actual functionality which fulfills 
these requirements is implemented in the authentication 
component. 

The SecureCommunication component looks very similar 
to the Authentication component.  However, their respective 
functionalities differ.  The authentication thread group is 
responsible for verifying the sender and the content of the 
messages while the secure communication thread group is 
responsible for passing the data in a secure way into the rest 
of the system.   

The data is received via an event data port.  This implies 
that the message is placed in a queue and the thread receives 
notification that a message has arrived.  The thread can then 
process the message according to the message type.  If an 
invalid message is encountered, the thread rejects the 
message, ensuring that the rest of the system is protected 
from erroneous messages.  

The more intelligence that is built into this message 
verification the more secure the system will be since it will 
be able to detect more erroneous messages and stop them 
from entering the rest of the system.  However, a trade-off 
needs to be made between the complexity of the thread and 
its worst case scenario execution time.  The system still 
needs to be able to meet its timing requirements. 

 

 
Figure 3.  Authentication Thread Group. 

From the software perspective the components represent 
groups of threads. The thread groups are further broken 
down in the OSATE tool to show more detail. As an 
example, the Authentication component is shown on Fig 3. 
Each data channel that is to be secured is handled by a 
separate threads dedicated to handling OtherCACC and 
SMDC data (OtherCACCauthThread and SMDCauthThread 
respectively). This is to ensure that the system will be more 
easily verified to meet the timing constraints for each 
channel.  It also allows each thread to be scheduled 
according to the period in which we receive the messages. 

Similarly, SecureCommunication component consists also of 
two threads dedicated to OtherCACC and SMDC data. 

IV. DATA ANALYSIS 

A. Data Analysis Assumptions 
To determine numerical values required for further 

analysis several assumptions were made. Timing of two 
authentication algorithms implemented in hardware and 
software was described in literature [11]. For an FPGA 
processor with a frequency of 1 GHz, the average time taken 
to authenticate a packet using hardware was 8µs for the size 
of the packets uniformly distributed between 40 and 1500 
bytes.  Using software, the average time was 27 µs.  The 
example CACC system is using FPGA with a frequency of 
1.2 GHz which implies that the execution time for the 
authentication will be lower than the above results.  We are 
considering the worst case and therefore we can use this 
value as a worst case estimate for our system.  Since this is 
the average estimate, we arbitrary add 50% to obtain an 
estimate for the worst case execution time for the algorithm 
(assuming a normal distribution).   

In the original model, data from the other CACC systems 
and the SMDC were received once every 100 ms each.  The 
security component threads were assigned two times higher 
activation rate deemed sufficient to receive all the messages 
(assuming that there is no flooding of messages). All CACC 
message types incoming from speed and gap sensors, GPS, 
brake, user interface, SMDC and other CACC equipped 
vehicles were analyzed to determine their content, size, 
frequency, and the inter-arrival rate.  Except the user 
interface and the messages incoming from other CACCs, the 
messages are assumed to be periodic.  The messages from 
the other CACCs are transmitted periodically. However, 
since there may be multiple vehicles in the surrounding area 
and the vehicles’ clock times are not synchronized, these 
messages may be received in a random manner.  Each 
vehicle broadcasts a message to other vehicles every 100ms.  
Since CACC is a single lane collision avoidance system, it is 
assumed that there are at most five vehicles in the 
surrounding area from which messages are received.  The 
exponential distribution was used to model this scenario. 

The worst case message processing time is the time 
taken, in the worst case, by the server to receive the message 
bytes, parse the message into an appropriate form and send it 
to another thread.  The processing time is a function of the 
message size as well as the target processor. 

For the purposes of this case study, it is assumed that the 
worst case message processing rate for the target system is 
100 bytes per millisecond on the FPGA processor.  Since we 
analyze the increase in utilization after adding security 
functionality, the actual value is not that critical.  Once the 
worst case processing rate is applied to the estimated 
message sizes the worst case message processing times for 
each message type was determined. 

Based on the above analyses, the frequency of each 
message type was defined and used to specify the period for 
each thread responsible for processing that message.  In 
order to authenticate, verify and validate the messages from 



the remotely connected devices, additional effort is required 
when these messages are received by the CACC System.  To 
estimate the impact that this additional effort would have on 
the message processing functionality of the CACC System, 
we model this message processing using queuing theory. 

The threads in the SecureCommunication thread group 
were assigned a period of 50 ms in keeping with the 
Authentication threads.  The frequencies of the message 
arrivals were set to match the periods of the threads needed 
to process them, with the exception of the user interface and 
the other CACC.  The period used for the user interface 
thread would depend on the responsiveness required.  For the 
purpose of this case study, it is left at 200ms.  It is more 
difficult to determine the period required for the other CACC 
thread.  To make the scheduling of tasks more flexible, the 
frequency of the CACC thread is set to 100ms with the 
assumption that the thread is able to process up to five 
messages in one execution.  In practice, it might be infeasible 
to process up to five messages within a single cycle and this 
period would then need to be reduced. 

Each thread within each thread group was assigned both 
an execution time and a period.  To obtain the execution 
times for the SecurityProcess threads the cycle times of the 
two processors were used. For example, the SMDC secure 
communication thread has an execution time of 0.4 ms 
taking 571,428 cycles on the FPGA processor with a cycle 
time of 700ps. The same thread on the Intel processor with a 
cycle time of 2µs, it would take 2* 571,428 µs = 1.143 ms.  

TABLE I.  ASSIGNED EXECUTION TIMES AND PERIODS FOR THE SECURITY 
ENHANCEMENT SYSTEM THREADS 

Component Thread Execution Time 
FPGA 

Execution Time 
Intel 

Authentication SMDC 0.041ms 0.117ms 

Authentication OtherCACC 0.041ms 0.117ms 

SecureComm SMDC 0.4ms 1.143ms 

SecureComm OtherCACC 0.4-2.0ms 1.143-5.71ms 

B. AADL Scheduling Analysis 
The above assumptions resulted in calculation of the 

approximate execution times for the Authentication and 
SecureCommunication thread group as assigned to individual 
threads (handling the SMDC and the OtherCACC data). The 
resulting numerical values, as shown in Table I, were used in 
subsequent analyses.  All security related threads were 
assumed to run with period of 50 ms.  

OSATE Scheduling analysis was used to determine the 
estimated percentage utilization of each processor in the 
system.  This analysis uses information about scheduling 
algorithms assigned to each processor, the frequency of each 
processor, the period and the execution time of each thread.  

The system has five modes of operation, namely, 
Initialization, Disengaged, Engaged, Error, and Off.  The 
analysis was done using only the Engaged mode since the 
utilization of the processors will be highest in this mode.  It 
is possible to perform this analysis for each mode of the 
system. For the original model the processor utilizations 

were 67% for Intel and 51% for the FPGA. With the 
SecurityProcess bounded to FPGA, the FPGA utilization 
grew to 55% (a 7.8% increase). The Intel processor 
utilization grew to 76% when SecurityProcess was bound to 
the Intel processor (a 13.4% increase). 

Since the Intel processor is slower, the percentage 
increase is higher when binding the SecurityProcess to the 
Intel rather than to the FPGA processor. The security 
functionality would impact the performance of the system 
more if it is assigned to the Intel processor.  However, there 
are advantages to be gained by having separate security 
functionality.  It is easier to modify the security component, 
including the hardware.  Perhaps more important is a 
separation of concerns within the system.   

The component responsible for monitoring the safety of 
the system is bound to the Intel processor.  If the security 
component is also bound to Intel processor, it means that all 
interfaces between the outside world and the main 
functionality of the system on the FPGA processor need to 
pass through the Intel processor.  Thus, more effort may need 
to be expended in making the monitoring processor (in this 
case the Intel processor) more secure and safe without the 
need for changing the rest of the system. 

C. Queueing Analysis 
The data used in OSATE analysis were subsequently 

used to construct a queuing model in a simplistic discrete 
queuing simulator [12].  The exponential distribution was 
used for the process distribution of the server.  The 
maximum wait time was set to the same value as the average 
time between arrivals. 

TABLE II.  SIMULATION RESULTS 

 
Original Model Security FPGA Security Intel 

Mean Std 
dev Mean Std 

dev Mean Std 
dev 

% 
utilization 

31.86% 0.199 33.46% 0.316 38.19% 0.813 

# messages 20191 16.5 19788 375.2 18705 152.7 

% lost 0.54% 0.001 2.49% 0.001 8.56% 0.009 

 
An eight hour simulation was run five times and gave the 

results shown in Table II - comparing the original model 
with no security component against two options of a model 
with security implemented on the FPGA or the Intel 
processor. Adding security component adds processing time 
to both threads. The results imply that the secure system is 
losing more messages unable to cope with the amount of 
traffic.  The simulator predicts that there will be a 5% 
increase in the amount of effort needed to add security 
enhancements to the message processing functionality in the 
CACC system on the FPGA processor.  There will be an 
increase of nearly 20% in the amount of effort when the 
security component is executed on the Intel processor.   

D. Results 
For the security component bound to the FPGA processor 

the increase in processor utilization, as computed by AADL 



and queuing approach, are 7.8% and 5% accordingly.  The 
respective increase of Intel processor utilization, with 
security component assigned to Intel, were 13.4% and 
19.8%.  

The queuing model constructed for the security 
component bound to the Intel processor was a greater 
abstraction since only one processor (server) was modeled.  
We would expect the results to be less accurate than the 
AADL model in this case. The difference in results between 
the queuing simulator and the AADL model is partly due to 
the fact that AADL measures processor utilization in integral 
numbers.  The smallest increment OSATE can measure is 
1%, which in this case equates to a 1.9% increase in effort.  
This may suggest that OSATE is not the best tool to use to 
measure the increase in effort when more accurate results are 
required. 

Computation of statistical significance (95% confidence 
interval) between the original model and the models with 
security enhancements, for both FPGA and Intel processor 
resulted in the interval does not containing zero. We could 
thus conclude that the performance of the security enhanced 
system was statistically different from the original system 
without security functionality. 

V. CONCLUSIONS 
Incorporating security into embedded systems involves 

making trade-offs between the level of security achieved and 
the resulting decrease in performance.  This decision is more 
critical in embedded system with time, space and power 
constraints.   

Two methods were used to estimate the additional effort 
required for adding the security functionality in an embedded 
system.  One used the architectural model of the system, 
while the other obtained results using queuing approach.  
Such methods, if used early on in the development life cycle, 
can provide an additional feedback for the system design.  
Since the results obtained from each method are comparable, 
our confidence in the obtained results has increased. 
However, it should be noted that the numerical results have 
been based on several assumptions due to an exploratory 
nature of the case study.  

A queuing simulator has the added advantage in that it 
can model stochastic message arrivals, which AADL cannot 
do.  AADL models the functions of the internal system 
architecture with limited consideration for the interface 
between the system and external devices.  Queuing theory 
models the system in terms of the external interfaces in terms 
of the response times and maximum workload.  It is 
interesting to note that the queuing simulator showed that the 
system as modeled cannot adequately handle the messages in 
the periods that were assigned.  Some, albeit minor, message 
loss was reported for the speed sensor, brake and gap sensor 
interfaces.  These are the interfaces with the highest periods.  
This would suggest that the periods specified are too high or 
that the message processing functionality should be assigned 
to more than one processor.  This is useful information to 
obtain at the architecture stage of the development process. 

The entire CACC system could in theory be modeled as a 
network of queues since all processing is confined to two 
components.  This would allow more formal analysis to be 
done in designing the system to handle the estimated amount 
of message arrivals. 

The ability to model the system and analyze it before it is 
implemented aids in making more intelligent solutions at an 
early stage of the system development.   The validity of the 
results obtained depends on the accuracy and depth of the 
information provided to the analysis.  If a sufficient level of 
information is not available at the architectural stage, it is 
possible to develop a simplistic simulation model in order to 
obtain estimates of the required data.  Message arrivals and 
servicing could be modeled using queuing theory.  
Simulators exist which help determine values such as the 
server utilization and the percentage of requests not serviced.  
Such approach will also assist to estimate the maximum 
security that may need to be added to the system to meet the 
desired performance requirements. 
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