

Impact of Adding Security to Safety-Critical Real-Time Systems
A Case Study

Andrew J. Kornecki
College of Engineering

Embry Riddle Aeronautical University
Daytona Beach, Florida, USA
Andrew.Kornecki@erau.edu

Wendy F. Stevenson
College of Engineering

Embry Riddle Aeronautical University
Daytona Beach, Florida, USA

Wendy.Stevenson@garmin.com

Abstract — With the proliferation of complex interconnected
embedded systems there is a need to ensure a level of security
for those systems such that end-users will trust them to
perform their required functions safely and securely.
Incorporating security into a system invariably decreases the
performance of the system. This is an important point to
consider when designing embedded systems where the timing,
space and power constraints are generally more stringent than
in other systems. The presented case study proposes
architecture for a secure interconnectivity component and
evaluates impact of the security on the system performance.
The paper suggests how informed decisions regarding
tradeoffs between performance and security may be made.

Keywords: Embedded Systems; Security; Safety; Modelling;
Software Components; Performance; AADL

I. INTRODUCTION
Industrial control systems were traditionally isolated

from the outside world which meant that malicious attacks
could only be attempted at the site. This security threat was
easily managed by controlling access to the premises. The
ability to connect these control systems via a network cable
meant that more functionality could be added to these
systems. Examples of such functionality include remote
monitoring, control, and data collection. Now control
systems often have wireless transmitters and receivers built
into them. This makes the systems vulnerable to remote
security intrusions. While making the system more flexible
and allowing complex applications to be developed, such
modern control systems tend to increase the software
assurance and security management efforts.

There are several levels of security that may be present in
any given software controlled system. All applications
require physical security management at the very least, even
if such applications are not connected to any network.
Security management must be intelligently applied to the
system under development so as unnecessary effort is added.
The supposed improvement to the system could be a liability
to the system as a whole [1]. Additionally, the isolation of
safety, security and system engineering practice may lead to

a number of problems like inadequate understanding of
safety and security semantics, incompleteness of
requirements, and incompleteness of critical characteristics
like verifiability and ambiguity in requirements [2].

Embedded systems have more stringent timing and
memory usage constraints than conventional desktop
systems. Therefore, the impact of adding security features
and related tradeoff between the level of security and the
associated performance and memory costs to the system
must be carefully made.

All characteristics of a system are inter-related.
Increasing the security of a system by adding more levels of
authentication may have a negative impact on the
performance of the system. For this reason, [3] suggest that
the resulting architectural model be verified again using the
currently available analysis and verification tools.
Architecture Analysis and Design Language (AADL)
promoted by the Society of Automotive Engineers since
2004 [4] is supporting the proposed analyses. AADL, with
the help of security plug-ins, can validate whether or not a
given architectural model violates some basic security
principles [5]. The security policies must be defined at the
architectural phase and any modifications to the policy at a
later stage of development would likely require the
architecture to be revisited.

Component-based software development has many
advantages. After the interfaces have been well defined,
components are designed, implemented, and verified
independently which allows components to be easily
modified without affecting the rest of the system.
Components can be reused. However, when system is
required to meet certain security requirements there is
mistrust of using components of uncertain pedigree and thus
reuse is rarely accepted option [6].

To meet the objectives of reusable components as well as
increase the overall security of the system, the system is
decomposed using the communicating processes pattern. As
guidance, the granularity of the components should be small
enough to enable each individual component to be formally
proven correct (according to its specification) and yet large
enough to enable the system to still meet its performance

requirements in terms of execution time as determined by
AADL analyses.

In such framework the interconnectivity functionality
may be implemented within a single component solely
responsible for communicating over the network and with
other systems. This component is the only component that
needs to be designed to avoid, detect and respond to threats
from the outside. If this component is secure, then it should
not propagate intrusions to the other components in the
system. So all the remaining components need only ensure
that contain no software (or hardware) defects which pose a
security risk to the system.

The Open Web Application Security Project (OWASP)
maintains a list of known vulnerabilities specifically for web
based applications. Some of these vulnerabilities relevant to
embedded systems (adapted from [7]) are: injection, broken
authentication/session management, insecure object
references or cryptographic storage, miss-configuration,
insufficient transport layer protection, and other
vulnerabilities (code, error handling, general logic, and input
validation).

Mitigation techniques include authentication, encryption
and other means designed to avoid and/or detect intrusions.
There is no method to evaluate the security of a new
mitigation technique before it is used in a system. This is
partly due to the fact that security is relative to the currently
known possible attacks. What we can say is that a system is
secure against currently known attacks.

The paper is organized as follows. After selection of the
case study we introduce the architectural model of the
system including the security component, discuss the
assumption and then analyze the system using AADL and
queuing models. The results and conclusions allow us to
judge the viability of the proposed approach.

II. SELECTION OF CASE STUDY
The presented case study proposes architecture for a

secure interconnectivity component and evaluates impact of
the security on the system performance. The example
selected is known architectural model for a Cooperative
Adaptive Cruise Control System (CACC) [8,9] - an
embedded control system for automobiles automatically
monitoring and adjusting a vehicle’s speed according to the
traffic conditions in its immediate vicinity to maintain
constant distance from the lead vehicle. The CACC receives
the necessary data from sensors on the vehicle,
communication with other CACC equipped vehicles
(specifically the vehicle directly in front), and
communication with a central Street Monitoring Data Center
(SMDC). The system issues commands to the throttle and
the brakes to effect a change in the vehicle’s speed.

Changes have been made to the original CACC
architectural model to enhance the level of security and
analyses have been performed to assess the effectiveness of
the changes. The reliability and availability of the enhanced
model have been analyzed using a Markov model (not
described in this paper which is focusing primarily on the
impact of introducing security). Obviously, adding security
functionality increases the execution time and the demand on

the resources which is an important consideration for real
time embedded systems where typically the resources are
limited and response time requirements must be met. One
needs to quantify the changes affected in the system by the
addition of the interconnectivity component and other
security functionality.

The model before adding the security functionality is
compared to the security-enhanced model in terms of the
processor(s) utilization.

AADL OSATE Tool Environment [10] with plug-ins
allows the analyst to calculate flow latencies, analyze
scheduling and security. AADL allows the analyst to model
both hardware and software execution entities of the system.
Software execution entities include processes, threads and
data stores. Hardware execution entities include processors,
busses and physical memory. Each entity has a set of
properties associated with it: processor (clock frequency),
process (period, scheduling and dispatch protocols), and
thread (period, execution time, memory and processor
connection binding). It is easy to modify the value of one or
more properties and repeat the analysis. This allows
different system configurations to be easily compared.

Two types of analysis can be done in AADL: scheduling
and security analysis. The scheduling analysis attempts to
determine the percentage utilization for each processor in the
system based on the given (assumed) property values for
each run time entity. The scheduling analysis answers the
question, ‘Given the processors with their properties and the
threads with their properties, is there a configuration and
schedule such that all threads meet their deadlines and
execute at the required periods?’ If such a configuration
exists, the analysis calculates how busy the processors are
likely to be, in the worst case.

A security level may be assigned to each execution entity
and each data connection between the entities. Provided by
the AADL security analysis checks that an entity and each
connection has a security level which is greater than or equal
to the security levels of all entities contained therein. The
model proposed in the case study consists of just two
security levels and thus such trivial analysis would be as
follows. The highest security level is assigned to the
interconnectivity component, and the lowest is assigned to
the rest of the system entities. The interconnectivity
component with high security level protects more vulnerable
(i.e. less secure) parts of the system from possible threats and
it is responsible for the defense against the threats. The
resulting combined system is therefore more secure.

III. CACC MODEL

A. CACC Model Assumptions
In the CACC architectural model used in this case study,

the distance between leading and following vehicles is a
function of their speed difference, the condition of the road,
the amount of traffic present and documented safe following
distances. The users set the desired speed when there is no
vehicle immediately in front of them. The long term trend is
towards partial or even fully autonomous operation of a

single vehicle, or even groups of vehicles. Therefore, safety
and security are essential attributes of CACC systems.

The devices interfacing with the CACC may be divided
into two categories: (a) devices located on the vehicle and
having a direct connection with the CACC, and (b) devices
which communicate with the CACC via a wireless network
connection (CACC systems on other vehicles and the SMDC
monitoring the traffic in a given area).

It is assumed that attackers would not physically tamper
with the vehicle itself in order to cause a breach in security.
Possible breaches in security may come about through
software defects in the user interface code which need to be
discovered and corrected during the implementation phase.
The case study focuses on the security issues visible at the
architecture level of the system and so we will not be
considering the user interface in more detail focusing instead
attention on the external interface.

The CACC system communicates via wireless network
connection to other vehicles in the vicinity and to a
centralized Street Monitoring Data Center. These interfaces
have the highest risk of malicious attack. Four major
categories of attack are:
• Message Insertion - an invalid (made-up) SMDC/ CACC

message is injected.
• Message Deletion - a valid SMDC/ CACC message is not

received by the CACC system.
• Message Corruption - the contents of an SMDC/CACC

message is altered before it is received.
• Message Flooding - multiple frequently repeated

SMDC/CACC messages are received.

B. CACC Architectural Model
The execution view of an architectural model shows the

execution (runtime) entities of the system as a screen shot
captured from the OSATE tool (Fig. 1).

Figure 1. Security Enhanced CACC System

The boxes labeled SysDevColl and RemoteDevColl
represent subsystems for the two types of devices. The
remote devices, those that are connected via wireless
network connection, are placed in a separate system to
highlight the fact that the devices are not co-located on the

vehicle. The connections between the devices and the
CACCProcess are modeled using port groups.

CACCProcess and MonitorProcess are major functional
processes of the system. Processes may be allocated to
different processors provided that they are connected to a
common bus. In this case study, each process was assigned a
periodic scheduling algorithm with its own protected
memory space and a group of threads. Hardware of the
system includes two processors: an Intel processor with a
frequency of 500 Mhz, and an FPGA processor with a
frequency of 1.2 GHz. The MonitorProcess is bound to the
Intel Processor and the CACCProcess is bound to the FPGA
processor allowing for more effective system monitoring.

The original CACC model was modified to incorporate
security. In the architectural model it is presented by adding
an additional process dedicated to security aptly called
SecurityProcess. The addition of the SecurityProcess
requires minor modification of the CACCProcess interface:
remoteDataIn and remoteDataOut data ports need to be
connected to the SecurityProcess instead directly to the
RemoteDeviceColl as in the case without security.

C. Security Process Architectural Analysis
Within the SecurityProcess there are two distinct

functionalities that deserve their separate components as
shown in Fig 2 captured from OSATE tool. First, there is a
need to authenticate the sender of the messages. We
introduce thus an Authentication component (thread group).
The reason for separation is that the authentication
functionality can be run on separate dedicated hardware or
on a separate processor which makes the potential
configurations more flexible. Secondly, this component can
be developed, tested and verified in isolation of the rest of
the system. If it is developed well it may even be reused for
subsequent systems. This Authentication component
interfaces to the rest of the system via event data ports.

Figure 2. SecurityProcess Thread Groups.

Conceptually, there is a message queue for each possible
input and output to the rest of the systems. An event is
triggered whenever a message appears in the queue. Having
messages in a queue structure allows messages to be
validated before being sent to the intended recipient. In

addition, to mitigate the possibility of lost or injected
messages, the system needs to monitor the time between
each subsequent message of a particular type. This implies
that specific inter-message delays should be defined in the
system specification. The actual functionality which fulfills
these requirements is implemented in the authentication
component.

The SecureCommunication component looks very similar
to the Authentication component. However, their respective
functionalities differ. The authentication thread group is
responsible for verifying the sender and the content of the
messages while the secure communication thread group is
responsible for passing the data in a secure way into the rest
of the system.

The data is received via an event data port. This implies
that the message is placed in a queue and the thread receives
notification that a message has arrived. The thread can then
process the message according to the message type. If an
invalid message is encountered, the thread rejects the
message, ensuring that the rest of the system is protected
from erroneous messages.

The more intelligence that is built into this message
verification the more secure the system will be since it will
be able to detect more erroneous messages and stop them
from entering the rest of the system. However, a trade-off
needs to be made between the complexity of the thread and
its worst case scenario execution time. The system still
needs to be able to meet its timing requirements.

Figure 3. Authentication Thread Group.

From the software perspective the components represent
groups of threads. The thread groups are further broken
down in the OSATE tool to show more detail. As an
example, the Authentication component is shown on Fig 3.
Each data channel that is to be secured is handled by a
separate threads dedicated to handling OtherCACC and
SMDC data (OtherCACCauthThread and SMDCauthThread
respectively). This is to ensure that the system will be more
easily verified to meet the timing constraints for each
channel. It also allows each thread to be scheduled
according to the period in which we receive the messages.

Similarly, SecureCommunication component consists also of
two threads dedicated to OtherCACC and SMDC data.

IV. DATA ANALYSIS

A. Data Analysis Assumptions
To determine numerical values required for further

analysis several assumptions were made. Timing of two
authentication algorithms implemented in hardware and
software was described in literature [11]. For an FPGA
processor with a frequency of 1 GHz, the average time taken
to authenticate a packet using hardware was 8µs for the size
of the packets uniformly distributed between 40 and 1500
bytes. Using software, the average time was 27 µs. The
example CACC system is using FPGA with a frequency of
1.2 GHz which implies that the execution time for the
authentication will be lower than the above results. We are
considering the worst case and therefore we can use this
value as a worst case estimate for our system. Since this is
the average estimate, we arbitrary add 50% to obtain an
estimate for the worst case execution time for the algorithm
(assuming a normal distribution).

In the original model, data from the other CACC systems
and the SMDC were received once every 100 ms each. The
security component threads were assigned two times higher
activation rate deemed sufficient to receive all the messages
(assuming that there is no flooding of messages). All CACC
message types incoming from speed and gap sensors, GPS,
brake, user interface, SMDC and other CACC equipped
vehicles were analyzed to determine their content, size,
frequency, and the inter-arrival rate. Except the user
interface and the messages incoming from other CACCs, the
messages are assumed to be periodic. The messages from
the other CACCs are transmitted periodically. However,
since there may be multiple vehicles in the surrounding area
and the vehicles’ clock times are not synchronized, these
messages may be received in a random manner. Each
vehicle broadcasts a message to other vehicles every 100ms.
Since CACC is a single lane collision avoidance system, it is
assumed that there are at most five vehicles in the
surrounding area from which messages are received. The
exponential distribution was used to model this scenario.

The worst case message processing time is the time
taken, in the worst case, by the server to receive the message
bytes, parse the message into an appropriate form and send it
to another thread. The processing time is a function of the
message size as well as the target processor.

For the purposes of this case study, it is assumed that the
worst case message processing rate for the target system is
100 bytes per millisecond on the FPGA processor. Since we
analyze the increase in utilization after adding security
functionality, the actual value is not that critical. Once the
worst case processing rate is applied to the estimated
message sizes the worst case message processing times for
each message type was determined.

Based on the above analyses, the frequency of each
message type was defined and used to specify the period for
each thread responsible for processing that message. In
order to authenticate, verify and validate the messages from

the remotely connected devices, additional effort is required
when these messages are received by the CACC System. To
estimate the impact that this additional effort would have on
the message processing functionality of the CACC System,
we model this message processing using queuing theory.

The threads in the SecureCommunication thread group
were assigned a period of 50 ms in keeping with the
Authentication threads. The frequencies of the message
arrivals were set to match the periods of the threads needed
to process them, with the exception of the user interface and
the other CACC. The period used for the user interface
thread would depend on the responsiveness required. For the
purpose of this case study, it is left at 200ms. It is more
difficult to determine the period required for the other CACC
thread. To make the scheduling of tasks more flexible, the
frequency of the CACC thread is set to 100ms with the
assumption that the thread is able to process up to five
messages in one execution. In practice, it might be infeasible
to process up to five messages within a single cycle and this
period would then need to be reduced.

Each thread within each thread group was assigned both
an execution time and a period. To obtain the execution
times for the SecurityProcess threads the cycle times of the
two processors were used. For example, the SMDC secure
communication thread has an execution time of 0.4 ms
taking 571,428 cycles on the FPGA processor with a cycle
time of 700ps. The same thread on the Intel processor with a
cycle time of 2µs, it would take 2* 571,428 µs = 1.143 ms.

TABLE I. ASSIGNED EXECUTION TIMES AND PERIODS FOR THE SECURITY
ENHANCEMENT SYSTEM THREADS

Component Thread Execution Time
FPGA

Execution Time
Intel

Authentication SMDC 0.041ms 0.117ms

Authentication OtherCACC 0.041ms 0.117ms

SecureComm SMDC 0.4ms 1.143ms

SecureComm OtherCACC 0.4-2.0ms 1.143-5.71ms

B. AADL Scheduling Analysis
The above assumptions resulted in calculation of the

approximate execution times for the Authentication and
SecureCommunication thread group as assigned to individual
threads (handling the SMDC and the OtherCACC data). The
resulting numerical values, as shown in Table I, were used in
subsequent analyses. All security related threads were
assumed to run with period of 50 ms.

OSATE Scheduling analysis was used to determine the
estimated percentage utilization of each processor in the
system. This analysis uses information about scheduling
algorithms assigned to each processor, the frequency of each
processor, the period and the execution time of each thread.

The system has five modes of operation, namely,
Initialization, Disengaged, Engaged, Error, and Off. The
analysis was done using only the Engaged mode since the
utilization of the processors will be highest in this mode. It
is possible to perform this analysis for each mode of the
system. For the original model the processor utilizations

were 67% for Intel and 51% for the FPGA. With the
SecurityProcess bounded to FPGA, the FPGA utilization
grew to 55% (a 7.8% increase). The Intel processor
utilization grew to 76% when SecurityProcess was bound to
the Intel processor (a 13.4% increase).

Since the Intel processor is slower, the percentage
increase is higher when binding the SecurityProcess to the
Intel rather than to the FPGA processor. The security
functionality would impact the performance of the system
more if it is assigned to the Intel processor. However, there
are advantages to be gained by having separate security
functionality. It is easier to modify the security component,
including the hardware. Perhaps more important is a
separation of concerns within the system.

The component responsible for monitoring the safety of
the system is bound to the Intel processor. If the security
component is also bound to Intel processor, it means that all
interfaces between the outside world and the main
functionality of the system on the FPGA processor need to
pass through the Intel processor. Thus, more effort may need
to be expended in making the monitoring processor (in this
case the Intel processor) more secure and safe without the
need for changing the rest of the system.

C. Queueing Analysis
The data used in OSATE analysis were subsequently

used to construct a queuing model in a simplistic discrete
queuing simulator [12]. The exponential distribution was
used for the process distribution of the server. The
maximum wait time was set to the same value as the average
time between arrivals.

TABLE II. SIMULATION RESULTS

Original Model Security FPGA Security Intel

Mean Std
dev Mean Std

dev Mean Std
dev

%
utilization

31.86% 0.199 33.46% 0.316 38.19% 0.813

messages 20191 16.5 19788 375.2 18705 152.7

% lost 0.54% 0.001 2.49% 0.001 8.56% 0.009

An eight hour simulation was run five times and gave the

results shown in Table II - comparing the original model
with no security component against two options of a model
with security implemented on the FPGA or the Intel
processor. Adding security component adds processing time
to both threads. The results imply that the secure system is
losing more messages unable to cope with the amount of
traffic. The simulator predicts that there will be a 5%
increase in the amount of effort needed to add security
enhancements to the message processing functionality in the
CACC system on the FPGA processor. There will be an
increase of nearly 20% in the amount of effort when the
security component is executed on the Intel processor.

D. Results
For the security component bound to the FPGA processor

the increase in processor utilization, as computed by AADL

and queuing approach, are 7.8% and 5% accordingly. The
respective increase of Intel processor utilization, with
security component assigned to Intel, were 13.4% and
19.8%.

The queuing model constructed for the security
component bound to the Intel processor was a greater
abstraction since only one processor (server) was modeled.
We would expect the results to be less accurate than the
AADL model in this case. The difference in results between
the queuing simulator and the AADL model is partly due to
the fact that AADL measures processor utilization in integral
numbers. The smallest increment OSATE can measure is
1%, which in this case equates to a 1.9% increase in effort.
This may suggest that OSATE is not the best tool to use to
measure the increase in effort when more accurate results are
required.

Computation of statistical significance (95% confidence
interval) between the original model and the models with
security enhancements, for both FPGA and Intel processor
resulted in the interval does not containing zero. We could
thus conclude that the performance of the security enhanced
system was statistically different from the original system
without security functionality.

V. CONCLUSIONS
Incorporating security into embedded systems involves

making trade-offs between the level of security achieved and
the resulting decrease in performance. This decision is more
critical in embedded system with time, space and power
constraints.

Two methods were used to estimate the additional effort
required for adding the security functionality in an embedded
system. One used the architectural model of the system,
while the other obtained results using queuing approach.
Such methods, if used early on in the development life cycle,
can provide an additional feedback for the system design.
Since the results obtained from each method are comparable,
our confidence in the obtained results has increased.
However, it should be noted that the numerical results have
been based on several assumptions due to an exploratory
nature of the case study.

A queuing simulator has the added advantage in that it
can model stochastic message arrivals, which AADL cannot
do. AADL models the functions of the internal system
architecture with limited consideration for the interface
between the system and external devices. Queuing theory
models the system in terms of the external interfaces in terms
of the response times and maximum workload. It is
interesting to note that the queuing simulator showed that the
system as modeled cannot adequately handle the messages in
the periods that were assigned. Some, albeit minor, message
loss was reported for the speed sensor, brake and gap sensor
interfaces. These are the interfaces with the highest periods.
This would suggest that the periods specified are too high or
that the message processing functionality should be assigned
to more than one processor. This is useful information to
obtain at the architecture stage of the development process.

The entire CACC system could in theory be modeled as a
network of queues since all processing is confined to two
components. This would allow more formal analysis to be
done in designing the system to handle the estimated amount
of message arrivals.

The ability to model the system and analyze it before it is
implemented aids in making more intelligent solutions at an
early stage of the system development. The validity of the
results obtained depends on the accuracy and depth of the
information provided to the analysis. If a sufficient level of
information is not available at the architectural stage, it is
possible to develop a simplistic simulation model in order to
obtain estimates of the required data. Message arrivals and
servicing could be modeled using queuing theory.
Simulators exist which help determine values such as the
server utilization and the percentage of requests not serviced.
Such approach will also assist to estimate the maximum
security that may need to be added to the system to meet the
desired performance requirements.

REFERENCES
[1] S.Zhang, N.Zhou, J.Wu, “The Fuzzy Integrated Evaluation of

Embedded System Security”, 2008 International Conference on
Embedded Software and System Security, IEEE, 2008, pp 157-162

[2] I. Sommerville, "An Integrated Approach to Dependability
Requirements Engineering," Proceedings of the 11th Safety-Critical
Systems Symposium, Bristol, 2003, pp.3-15

[3] M.Eby, J.Werner, G.Karsai, A.Ledeczi, “Integrating Security
Modeling in Embedded System Design”, Proceedings of the 14th
Annual IEEE International Conference and Workshops on the
Engineering of Computer-Based Systems, IEEE, 2007, pp 221-228

[4] P.Feiler, D.Gluch, “The Architecture Analysis and Design Language
(AADL): An Introduction”, Technical Note CMU/SEI-2006-TN-011,
2006, Software Engineering Institute.

[5] J.F.Hansson, P.Feiler, J.Morley, “Building Secure Systems Using
Model-Based Engineering and Architectural Models”, Crosstalk,
September 2008, pp 10-15

[6] K.M.Khan, J.Han, “Composing Security-Aware Software”, IEEE
Software, January 2002, pp 34-41

[7] E.Chickowski, OWASP Top 10 - 2010: The Ten Most Critical Web
Application Security Risks, (release candidate). OWASP, Retrieved
Jan 7, 2011, http://www.channelinsider.com/c/a/Security/Top-10-
Most-Critical-Web-App-Security-Risks-298234/

[8] Michigan State University, October 11, 2006, Retrieved March
3,2010, http://www.cse.msu.edu/~chengb/RE-491/Projects/cacc_msu-
ford.pdf

[9] A.Dobre, A.King, B.Langpap, W.Stevenson, “Cooperative Adaptive
Cruise Control (CACC): Team Project – Interim Report”, SE610:
Software Architecture and Design, ERAU, Fall 2009

[10] OSATE: Front-end Processing of AADL Models, Retrieved Apr 15,
2011, http://www.aadl.info/aadl/currentsite/tool/osate.html

[11] J.Deepakumara, H.M.Heys, R.Venkatesan, “Performance
Comparison of Message Authentication Code (MAC) Algorithms for
the Internet Protocol Security (IPSEC)”, Retrieved March 18, 2010,
http://www.engr.mun.ca/~howard/PAPERS/necec_2003b.pdf

[12] G.Darby, “Discrete Event Simulator”, Delphi, Original October 28,
2002, Modified May 18, 2009, Retrieved April 7, 2010,
http://www.delphiforfun.org/Programs/discrete_sim.htm

