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Abstract. This paper discusses the principles of bus systems simulation for real-

time applications. It uses a typical queuing model of a single bus with multiple

processors, memories and I/O devices. The major criterion used in evaluation of

real-time response is the bus access latency. An illustrative example of a VMEbus

system with two arbitration protocols, round-robin and priority-based, for typical

data acquisition workloads, is presented to document the results.

1 Introduction

Most of the modern computer systems used in real-

time applications share a common bus architecture.

There is a variety of popular bus standards: ISA,

VMEbus, Multibus I & II, PCI, Futurebus+, to

name a few [14]. The processing agents, memory,

and input/output controllers share the bus access

for data exchange.

For real-time systems, the critical issue is the tem-

poral determinism of system response. The timing

of computations in the system depends not only on

the instruction execution time and memory access,

but also on the timing of data exchange between

various system components. The latter, in addition

to the hardware characteristics, is a function of the

speci�c bus architecture and the bus access and ar-

bitration protocols. In most cases, the system has

a dedicated bus controller/arbiter { a device des-

ignated to manage the bus operation and execute

speci�c bus protocol.

The present study addresses the issue of system per-

formance related to the services requested by agents

sharing a commonmemory on a single bus, with re-

spect to the bus access protocol. The objective is

to develop an object-oriented simulation model for

a standard bus architecture and apply this model to

a case study evaluating the performance of a pop-

ular VMEbus system [2] { a leading platform for

industrial real-time market.

2 Bus System Model

Bus architectures can be modeled as a version of

a queueing system with customers, servers, and re-

sources [1]. Once an appropriate model is devel-

oped the system can be evaluated either via analyt-

ical study, using theoretical underpinning of queue-

ing theory, or by performing a simulation study

and running exhaustive computer simulation exper-

iments. The analysis route is often faster but it suf-

fers from serious limitations. Analytical models are

built under very strong simpli�cations, mostly deal-

ing with ideal distributions, steady state conditions,

etc. The simulation models are more exible, but

require lengthy development and need to be carefuly

and methodically veri�ed and validated.

There are several studies in literature modeling the

bus systems in such a way [6, 7, 9, 10, 11, 13]. The

models, however, focus either on distributed sys-

tems and describe networking applications or dis-

cuss multiple bus architectures with only limited

relevance to real-time issues.

When building the bus architecture simulation

model, we focus on the bus performance. The three

basic metrics, identifying the performance of any

bus system, are:
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� system throughput - how much data can be

transmitted per time unit,

� bus utilization - what percentage of time the

bus is busy,

� bus access latency (a part of bus response time)

- the time needed by the bus to grant ownership

to the requesting agent.

A high average system throughput is critical for soft

real-time systems in various data acquisition/data

fusion applications. Related high utilization of the

bus indicates that the margin for system upgrade is

limited. For hard real-time systems, more critical is

the determinism of system response. Therefore, in

a real-time study, one has to focus not only on an

average response time, but need closely watch the

variance and the maximal values.

The above mentioned criteria of bus performance

are determined by the following factors:

� number of active agents (processors) attached

to the bus,

� latency of the memory,

� bus access protocol and the arbitration method

used,

� physical characteristics of the bus,

� workload characteristics of the processor oper-

ation.

Selection of the workload, including the frequency

of requests and the size of packets sent over the bus

(often related to the local processor cache hit/miss

ratio), is critical to the performance analysis study.

The workload depends on the application and must

be clearly identi�ed before simulation model is de-

veloped. As for real-time systems, we focus on the

worst case scenario to determine whether or not the

system timing requirements can be met.

2.1 Bus Characteristics

In this study, we concentrate on VMEbus stan-

dard. The VMEbus architecture conforms to the

ANSI/IEEE Std 1014-1987 [2] speci�cation for high-

performance backplane buses with either single or

multiple processors. It is a global parallel intercon-

nect incorporating the following features:

� support for 8-, 16-, 24-, or 32-bit data transfers

(64-bit in VME extension),

� asynchronous and dynamically adaptive bus

protocol,

� support of up to 20 agents on its backplane,

� three di�erent arbitration algorithms.

The VMEbus signals are diveded into four func-

tional groups:

� data transfer

� arbitration

� interrupt

� utility

A non-multiplexed asynchronous protocol allows

transfers between master and slave agents. Only

one transaction can be performed on the bus at

any time. As the VMEbus solution is designed for

multiprocessor support, three issues are considered

[4, 12]:

� priority-based access by multiple masters,

� reconcilliation of di�erent data/address width,

� organization of interrupt handling and resource

partitioning.

The controller located in the �rst slot of the VME-

bus enclosure acts as the bus arbiter between com-

peting masters vying for bus access. A master (an

active agent) initiates and controls any data trans-

action accross the bus. The slave (passive agent)

can only respond to master requests. A single pro-

cessor board may house both passive and active in-

terfaces.

The VMEbus standard o�ers a high-speed asyn-

chronous parallel data transfer. After the bus mas-

ter initiates data transfer cycle, it has to wait for

the slave to respond before �nishing the cycle. The

asynchronous operation allows the slave module to

take all the time it needs to respond. In addition, no

module needs to have any explicit knowledge about

the timing requirements of other modules because

the speed of the data transfer dynamically adapts

to the speed of the two communicating modules.

The arbitration subsystem of the VMEbus has two

main responsibilities:

� prevents the simultaneous use of the bus by two

masters,

� schedules requests from multiple masters.

The VMEbus controller uses three di�erent algo-

rithms for arbitration: priority, round-robin, and

daisy-chain (single-level) arbitration. The standard

allows for use of other arbitration algorithms.



The prioritized arbitration technique assigns the

bus to a requester with highest priority. Once the

bus is assigned to the requester, the next assignment

is granted to the requester with the next highest pri-

ority. Round-robin arbitration assigns the bus on a

rotating basis (no priority mechanism is used). In

the single-level protocol, the arbitration responds

only to the highest priority line and depends on the

requester's bus grant daisy-chain to arbitrate the

requests.

2.2 Simulation Model Description

In a typical single-bus multiprocessor system the

processors share information through shared mem-

ory modules or exchange information among them-

selves. One may expect more or less bus access con-

icts requiring arbitration. In this view, the queu-

ing model of the bus system includes several easy to

identify objects: processors, caches or private mem-

ory for each processor, a global shared memory, and

a bus.

In the present study, the simplifying assumption is

to focus on interactions between the active agents

(the processors requesting the bus access) and the

bus. Once the bus request is made, the arbitration

protocol determines whether or not the access can

be granted. If the access is not granted, the re-

questing agent is waiting. If the access is granted,

the transmission commences for the packet size not

exceeding 256 bytes [2]. If the packet is larger, the

requesting processor must go again through the ar-

bitration process with the remainder of the packet.

Any arbitration requires a speci�ed constant time,

also the actual transmission time of one byte (word,

doubleword) is a constant function of physical bus

characteristics. In a round robin protocol, the mul-

tiple requests are handled in a circular fashion in

attempt to assure fair bus access. For the priority

protocol, the processor with the lower slot number

has the higher priority.

The probability of requesting the bus is based on

the frequency of processor bus requests. The situ-

ation that a processor requests the bus may either

represent the "miss" (the processor needs to fetch

instruction sequence from the global memory) or the

fact that the processor writes the data to or reads

data from memory or I/O in a data acquisition ap-

plication. In this study, we consider the scenarios

applicable to the data-acquisition type of applica-

tion, where individual processors are handling I/O

interfaces and move packets of data to memory over

the bus.

The resulting queuing model is a closed queuing

network with one server (the needed resource) and

many customers. The customers in this system obey

the handshaking protocol used by the bus. The

random distribution and parameters are represent-

ing typical workloads (request frequency, data size

and timing) determined from actual data acquisi-

tion experiments. These simulation run-time values

matching the assumed distribution and parameters

are generated using validated random number gen-

erators.

In an asynchronous packet-switched protocol, both

the memory module and the CPUs may request the

use of the bus, therefore, both can be agents on the

bus. In contrast, a synchronous, circuit-switched

protocol does not allow the memory to be an agent

and request bus services, because in this case the

memory module is only a resource object and is not

allowed to become the bus master. Each processor

has a random number of processing time units be-

tween the consecutive memory requests. The mean

memory access time must be adjusted adding the la-

tency required to read requests when data are trans-

fered using circuit-switched protocol.

3 Computer Model

From the perspective of evaluating the system per-

formance, we indenti�ed read and write services

provided by the bus to the active system agents [5].

The active agents make bus requests. The bus arbi-

tration subsystem is responsible for controlling and

granting the bus resources to the agents in a timely

and organized manner. Once an agent has control

of the bus it performs the transmission. The direc-

tion of transmissions is irrelevant in our simpli�ed

model. The read and write services spend time on

sending packets of data between the agents on the

bus. The size of data to be transmitted is the func-

tion of the workload. For the purpose of this study

we identi�ed a probability table assigning each data

size a certain probability. An example of a data-

intensive workload is as follows:

� 20% of requests 4 bytes of data (uniformly dis-

tributed)

� 20% of requests 4-100 bytes of data (uniformly

distributed)

� 20% of requests 0.1-1 kbytes of data (uniformly

distributed)

� 40% of requests 1-10 kbytes of data (uniformly

distributed)



The percentage and sizes can be changed depending

on the application under the study.

The introduced model assumes the following :

� each processor in the system has identical clock

rate,

� each processor has identical bus request fre-

quency,

� packets on VMEbus can be divided into smaller

subpackets (not exceeding 256 bytes, deter-

mined by the VMEbus hardware characteris-

tics)

� transmission of the data packet in progress is

not interrupted,

� memory access time is assumed constant,

� a processor can not be granted the bus if an-

other request is presently waiting to be serviced

by the bus (unless the priority protocol is used),

� errors due to invalid data or time-outs are

neglible to the overall performance of the sys-

tem,

� the data path for VMEbus is �xed at 32-bits (4

bytes) for all simulation experiments.

The required set of model input parameters can be

separated into two categories, the system parame-

ters and the workload parameters, as below:

� System Parameters

{ Number of processors in the system,

{ Bus transmission speed (time to send unit

of data through the bus),

{ Arbitration time (the time required to se-

lect the next bus owner),

{ Transmission unit (the maximum amount

of data transferred in a single transfer op-

eration; read/write of a byte, word, or

double word - 256 bytes for VMEbus).

� Workload Parameters

{ Interarrival time, an average time between

two consecutive bus requests from the

same processor (generated using a nega-

tive exponential distribution)

{ Packet size, the number of bytes to be sent

in the request generated using probability

table and uniform distribution

{ Protocol (priority-based or round-robin).

An object-oriented approach facilitated the de-

sign and implementation of this simpli�ed VMEbus

model. The model includes the following objects:

CPU, Bus, and Report (see Appendix I). There are

multiple instances of CPU objects. The role of CPU

is to run its operation including appropriate gena-

ration of requests and communication. A single in-

stance of the Bus object is a passive resource which

can be given when the request is made, and taken

back when the communication of the chunk of data

is complete. A single instance of the Report object

keeps record of the simulation. Each object has a

set of attributes to support its operation.

The model was implemented in MODSIM [8].

This popular simulation language supports object-

oriented discrete simulation. In particular, the

MODSIM system provides a wide variety of ready

to use objects in many application libraries sup-

porting event handling, queue and resource manage-

ment, random number generation, statistical analy-

sis and data presentation, graphic interface with an-

imated output, etc. The inheritance feature of the

system allows the developer to create new objects

inheriting properties of the existion objects. In ad-

dition, MODSIM provides various methods (ASK,

TELL, WAITFOR) supporting concurrency and al-

lowing for passing simulation time. In this study,

the Bus object was implemented as a descendant of

the MODSIM resource object. Each object has a

distinctive set of attributes representing the object

state, and methods { representing object behavior.

4 Simulation Experiments

The goal of this simulation performance evaluation

is to determine the behavior of the multiproces-

sor system under the given set of assumptions and

compute the performance metrics for a set of input

parameters. Three di�erent performance measures

were computed during simulation: the bus through-

put, bus utilization, and access time of the bus. The

factorial design was used to determine the variation

and the con�dence of the factors that a�ect perfor-

mance of the bus.

We selected three potential workloads, high,

medium, and low, each with request rate of 500 per

second. The graphs below represent the bus utiliza-

tion and bus latency (per arbitration), for two di�er-

ent arbitration protocols: round-robin and priority-

based. It is worth noting that the theoretical bus

throughput is 40 MB/sec. Utilization represents

percentage of time the bus was busy transmitting

data. The bus latency represents the time spent in

waiting for the bus access (per arbitration). Ad-

ditionaly we computed maximal latencies for each



processor. We ran ten replications for each set of

parameters. The length of simulation run was arbi-

trary 0.5 sec. A sample output of a single simulation

run produces the output presented in Appendix II.

Upon request, the program can provide a detailed

trace.
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Fig. 1. Bus Utilization vs. Number of Processors

for Priority-Based Arbitration (High, Medium, and

Low Workloads).

Figure 1 presents bus utilization versus the num-

ber of processors for three di�erent workloads (high,

medium, and low), for priority-based arbitration.

The utilization data for round-robin arbitration are

almost identical and not presented here. This graph

validates the simulation, since the results are simi-

lar to those obtained earlier [3]. In addition, if one

wants to provide su�cient margin for real-time op-

eration, it is clear from this graph that no more than

3-4 VMEbus processors can be used simultaneously

under this workload.
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Fig. 2. Bus Access Latency (milliseconds) vs. Num-

ber of Processors for Priority-Based Arbitration and

Di�erent Workloads.

Figures 2-4 present calculations of the bus access

latency time for all three workloads (high, medium,

and low) and two arbitration methods: round-robin

and priority-based. We used data for up to 5 pro-

cessors, since from Figure 1 it is clear that using

more processors, at least at a high workload, would

be inappropriate for a real-time application. Figure

2 shows that for high workloads, the bus access la-

tency almost doubles per each processor added and

may signi�cantly contribute to the overall data la-

tency for three or more processors.
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Fig. 3. Comparison of Bus Access Latency (mil-

liseconds) vs. Number of Processors for Priority-

Based (PRIO) and Round-Robin (RR) Arbitration

Schemes for Low Workload.
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Fig. 4. Comparison of Bus Access Latency (mil-

liseconds) vs. Number of Processors for Priority-

Based (PRIO) and Round-Robin (RR) Arbitration

Schemes for Medium Workload.

Figures 3 and 4 show that bus access latency re-

mains steady for round-robin arbitration. However,

when priority-based arbitration is used, the bus ac-

cess latency drops signi�cantly for the highest pri-



ority processor and may grow much above the level

typical for round-robin arbitration, for all other pro-

cessors, if higher workloads are used. Graphs in

Figures 3 and 4 con�rm that in priority-based arbi-

tration, the lowest bus access latency is guaranteed

for the highest priority processor and is at least an

order of magnitude better than in round-robin arbi-

tration. This informs the designers of real-time data

acquisition systems to what extent they can rely on

the use of proper arbitration method to meet re-

spective deadlines.

5 Conclusion

The simulation results con�rm previous results [3]

that there is not much di�erence in either bus uti-

lization or system throughput for round-robin or

priority-based protocols. There is a di�erence, how-

ever, in bus latency. In particular, for the priority-

based protocol the maximum latency is, on aver-

age, greater than for the round-robin protocol. This

is due to the fact that higher-priority tasks run

more frequently, at the cost of lower-priority tasks,

which are delayed. However, the maximum latency

of higher priority tasks is signi�cantly shortened,

which is desirable since then important tasks can

run faster. In e�ect, the use of priority-beased pro-

tocol is especially recommended for the class of real-

time applications, which have critical highest prior-

ity tasks, such as data acquisition tasks. In partic-

ular, assigning a hard real-time task to the highest-

priority processor assures that the bus operation

will be completed in a time bounded by the sum

of arbitration time and time of packet transmission.
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Appendix I

CPUObj = OBJECT

ID : INTEGER;

maxWaitTime : REAL;

random : RandomObj;

MessageLength : INTEGER;

BytesTransmitted : INTEGER;

MessageLeft : BOOLEAN;

InControl : BOOLEAN;

interarr : REAL;

access : INTEGER;

ASK METHOD SetID(IN n : INTEGER);

ASK METHOD SetAttributes(IN rnd : RandomObj; IN val : REAL);

ASK METHOD GenerateRequest(IN bus : BusObj);

WAITFOR METHOD CommunicateP(IN bus : BusObj);

WAITFOR METHOD CommunicateR(IN bus : BusObj);

TELL METHOD Run(IN ST : REAL; IN bus : BusObj; IN stat: INTEGER);

END OBJECT;

BusObj = OBJECT(ResourceObj)

Latency : StatQueueObj;

Utilization : StatQueueObj;

Throughput : REAL;

maxLatency : REAL;

status : BOOLEAN;

arbitrationTime : REAL;

terminationTime : REAL;

noAccess : INTEGER;

ByteTransmissionTime : REAL;

ASK METHOD SetStatus(IN val : BOOLEAN);

ASK METHOD SetTermination(IN val : REAL; IN mwt : REAL);

ASK METHOD AddBytes(IN byte : INTEGER);

ASK METHOD AddRequest();

ASK METHOD CheckQueue(IN cpin : CPUObj): INTEGER;

OVERRIDE

ASK METHOD Create(IN number : INTEGER);

END OBJECT;

ReportObj = OBJECT

Throughput : REAL;

Latency : REAL;

MaxLatency : REAL;

Utilization : REAL;

noAgents : INTEGER;

commRate : INTEGER;

runTime : REAL;

iteration : INTEGER;

ASK METHOD SetParameters(IN no : INTEGER; IN rate : INTEGER; IN totTime : REAL);

ASK METHOD Report(IN bus : BusObj; IN stat : BOOLEAN);

ASK METHOD ReportGlobal();

END OBJECT;

.



Appendix II

VME BUS SIMULATION: Priority/RoundRobin Case

Workload: 50%: 4 Bytes, 49%: 100-1000Bytes; 1%: 10,000-100,000Bytes

Constants: ByteTransmissionTime = 0.0001 msec; ArbitrationTime = 0.0005 msec

ENTER NO OF CPU's

10

ENTER NO OF ITERATIONS

100

ENTER SIMULATION TIME IN SECONDS (0.5-10)

1

DO YOU WANT DETAILED LONG TRACE ?? (no-1, yes-0)

1

SINGLE CPU BUS REQUEST RATE PER SECOND (1 - 200, i.e. 1,000 msec - 5 msec)

100

PRIORITY CASE

======= GLOBAL REPORT OF 100 RUNS ==========

BUS STATISTICS FOR 10 AGENTS;

COMMUNICATION RATE 100 per sec (10.000000 msec)

AVERAGE BUS UTILIZATION 8.176573 %

AVERAGE DATA TRANSMITTED 793.037539 KB in 1000.000000 msec

AVERAGE THROUGHPUT EFFECTIVE RATE 0.793038 MB/sec

AVERAGE BUS REQUEST LATENCY/CPU 7.259593 msec

MAXIMAL BUS REQUEST LATENCY 16.330634 msec

===============================================

ROUND ROBIN CASE

======= GLOBAL REPORT OF 100 RUNS ==========

BUS STATISTICS FOR 10 AGENTS;

COMMUNICATION RATE 100 per sec (10.000000 msec)

AVERAGE BUS UTILIZATION 8.208722 %

AVERAGE DATA TRANSMITTED 795.965449 KB in 1000.000000 msec

AVERAGE THROUGHPUT EFFECTIVE RATE 0.795965 MB/sec

AVERAGE BUS REQUEST LATENCY/CPU 5.382323 msec

MAXIMAL BUS REQUEST LATENCY 16.330634 msec

=============================

BUS STATISTICS FOR 10 AGENTS

TOTAL SIMULATION TIME: 499.202960 msec

MAX #AGENTS WAITING FOR ACCESS 1

MEAN #AGENTS WAITING FOR ACCESS 0.500000

BUS UTILIZATION 4.349093 %

TOTAL BUS TRANSMISSION TIME 21.710800 msec

BUS REQUEST LATENCY/CPU 0.583179 msec

MAX BUS REQUEST LATENCY 5.668664 msec

NUMBER OF TRANSMISSIONS 242 in 499.202960 msec

AGENTS TRANSMISSIONS RATE 48.477277 per sec

TOTAL DATA TRANSMITTED 210.828125 KB in 499.202960 msec

THROUGHPUT EFFECTIVE RATE 0.422329 MB/sec

THROUGHPUT PEAK RATE 9.710749 MB/sec

====================================


