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ABSTRACT: System safety is traditionally dealt with in the design phase, to make sure that there are no de-
sign flaws that would jeopardize the users or the environment during system operation. However, in real-time
safety-critical systems, where the system operation is controlled by software, as in modern aircraft or other
kinds of vehicles, it is essential to monitor system’s behavior with respect to safety during its execution and
take safety related decisions while the system is running. There exist no good, if any, tools for this kind of
tasks. The objective of this work is to study the potential use of Bayesian belief networks to reason about
safety, with enhancements via rough sets for calculations of probability distributions for nodes with insuffi-

cient or uncertain information.

1 INTRODUCTION

System safety is traditionally dealt with in the design
phase, to make sure that there are no design flaws
that would jeopardize the users or the environment
during system operation. However, in real-time
safety-critical systems, where the system operation
is controlled by software, as in modern aircraft or
other kinds of vehicles, it is essential to monitor sys-
tem’s behavior with respect to safety during its exe-
cution and take safety related decisions while the
system is running. Assessing software quality in
safety-related applications of that sort has always
been a problem, due to insufficient information and
uncertainty associated with the available data.

There exist no good, if any, tools for this kind of
tasks, mostly because of a lack of long term statisti-
cal data on which the assessment can be based. In
other words, the problem is related to insufficient in-
formation and uncertainty associated with the avail-
able data. However, in the last decade, there have
been a number of publications related to the assess-
ment of various quality attributes of software for
critical applications, relying on non-statistical data,
with the use of Bayesian Belief Networks (BBNs)
[1-4].

While this seems to be a viable approach, it suf-
fers from the problem that in the canonical form
BBNs require extensive set of prior conditional
probabilities for each network node. Since typically
little information is available on prior system behav-

ior, it is difficult to initialize and keep updating the
BBN, when there is uncertainty in evidence.

A few promising techniques that seem to help al-
leviate this problem are: fuzzy sets, neural networks,
and rough sets. While fuzzy sets and neural net-
works are pretty well known, rough sets theory is a
relatively new technique describing quantitatively
uncertainty and vagueness [5]. The objective of this
work is to study the potential use of Bayesian belief
networks enhanced with rough sets for calculations
of probability distributions for nodes with insuffi-
cient or uncertain information. The idea is that
rough sets techniques have much less stringent re-
quirements on prior probability distributions and use
the outcome of the analysis to facilitate the process
of initialization and updating of the BBN.

The rest of the paper is organized as follows. In
Section 2, we present briefly the review of known
works on the application of Bayesian belief net-
works to software quality assessment. Section 3
outlines the general problem of tool assessment in
real-time safety-critical systems, and presents the
application of BBNs to numerical evaluation of such
tools. Section 4 outlines the idea of rough sets and
their use to enhance computations of BBNs. Con-
clusions of the study are presented in Section 5.

2 SOFTWARE ASSESSMENT WITH BBN’S
A Bayesian belief network essentially relies on ap-

plying a Bayesian inference to a graphical represen-
tation of a problem in a form of a hierarchical net-
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work [6], with nodes representing random variables
and directed arcs representing probabilities (beliefs)
about the dependencies (relationships) among these
variables. Formally speaking, a network takes the
form of a directed acyclic graph. Each node has a
number of states, with some probability distribution
over the states. Each arc represents a conditional
probability reflecting dependencies on the predeces-
sor nodes. In the simplest case, the states of a node
could be just true or false. In a more complex case,
the set of states may involve several discrete states
(for example, low, medium, high, very high), and in
the most general case, the domain of states can be
continuous.

A BBN is intended to show the causal relation-
ships among variables and allows, for such relation-
ships, to conduct inference about changes in prob-
ability  distributions  of  certain variables
(parameters), once values of some observable vari-
ables become known. In other words, based on
some knowledge of events (that is, evidence) ac-
quired at leaf nodes, which changes their probability
distribution, applying Bayesian reasoning one can
deduct what might have caused such events to occeur.
This is called backward reasoning, and a specific
example of a BBN is shown in Figure 1 for some
evidence obtained for node D, which causes changes
in probability distributions of other nodes depending
on conditional probability distributions. One can
also do forward reasoning, in case respective evi-
dence becomes available for the root node(s).

This kind of reasoning is based on Bayes Theo-
rem and is normally cumbersome and time consum-
ing, if done by hand, but can be easily automated
with software tools that became available throughout
the 1990’s. There is quite a few BBN tools to
choose from, but the most commonly applied in
software quality related problems are- Hugin [7],
Netica [8], with which these diagrams have been
produced, BUGS [9], and AgenaRisk [10].

true 27.8
false 72.1 =

true
faise

Figure 1. Demonstration of an impact of evidence on the
predecessor variables.

In building the BBN model, there are always two
questions that have to be addressed: (1) how to or-
ganize the network of nodes and links for a specific
problem, and (2) what probabilities assign to them.
Below, we discuss briefly how this is done in some
of the studies related to software assessment pub-
lished over the past decade.

2.1 Application of BBNs to software quality in
general

In one of the first studies reported [1], Neil and Fen-
ton addressed the eternal question: “Can we predict
the quality of our software before we can use it?”,
by applying BBN’s to assess the defect density as a
measure of software quality. A simplified diagram
from their study is presented in Figure 2. The nodes
were built based on the understanding of life-cycle
processes, from requirements specification through
testing.

The probabilities of respective states were based
on the analysis of literature and common-sense as-
sumptions about the relations between variables.
The node variables are shown on histograms of the
predictions obtained by execution of the network af-
ter the evidence entered (the evidence is represented
by nodes with probabilities equal to 1.0). As the au-
thors say, the advantage of their model is that it
“provides a way of simulating different events and
identifying optimum courses of action based on un-
certain knowledge.

Figure 2. A simplified BBN model for assessing software den-
sity [1].

2.2 Use of BBN’s in assessment of software safety

Dahll and Gran [2] applied BBN’s to address safety
assessment of software for acceptance purposes, in a
more comprehensive way, using multiple informa-
tion sources, such as complexity, testing, user ex-
perience, system quality, etc. Their BBN network
for system quality, which is only a part of the entire
model, is shown in Figure 3. It involves two root
nodes: UserExperience and VendorQualiry, and a

108



number of leaf nodes, corresponding to observable
variables, of which QualityMeasures is of particular
importance. This node shows evidence about the
system quality, grouping quality attributes, such as
readability, structuredness, etc., and can be ex-
panded further.

Other observable variables include FailuresinQO-
ther Products, those related to the user experience
(NoOfProducts and TotalUseTime), as well as those
related to quality assurance policy. When evidence
becomes available, entering respective observation
data into these nodes and executing the network pro-
vides assessment of the variable in question, which
in this case is SystemQuality.

The authors note, however, that their example is
intended more as an illustration of the method rather
than as a real attempt to compute the quality of the
system. Their probability assignments to the node
variables were chosen somewhat ad hoc, and not
based on any deeper analysis of the problem. How-
ever, as the authors say in conclusion, the results of
the study were positive and showed “that the method
reflects the way of an assessor’s thinking during the
assessment process.”
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Figure 3. BBN for the system quality parameter in safety as-
sessment.

2.3 BBN'’s in dependability/reliability assessment

Delic et al. [3] used BBNs to formalize reasoning
about software dependability to facilitate the soft-
ware assessment process. They constructed a net-
work for evaluating dependability of a software-
based safety system. It used the data associated with
two primary assumptions: the excellence in devel-
opment (called a process argument) and failure-free
statistical testing (called a product argument). The
network topology includes taking into consideration
variables such as: Test Failures, Operational Fail-
ures, Initial Faults, Faults Found, Faults Delivered,
and System PFD (Probability of Failure per De-

mand). The probability distributions have been de-
rived from a sample of programs from an academic
experiment.

The authors were interested in estimating the
probabilities of failure during acceptance testing and
during the operational life of the product (repre-
sented by two variables mentioned in previous para-
graph), given the prior probabilities and observed
events. In particular, positive results of an accep-
tance test allowed deriving numerical estimates
about the PFD and operational performance of the
product.

Helminen [4] used BBN’s to attack the problem
of software reliability estimation. His primary moti-
vation to apply BBN’s was that they allow all possi-
ble evidence (large number of variables, different
potential sources, etc.) to be used in the analysis of
the reliability of a programmable safety-critical sys-
tem. The essential characteristic of such systems is
that they involve a significant number of variables
related to reliability, with very limited evidence.

The reliability of such systems is modeled as a
probability of failure, that is, the probability that the
programmable system fails when it is required to
operate correctly. To develop an estimate of prob-
ability of failure, the authors built a series of BBN
models, using evidence from such sources, as the
system development process, system design features,
and pre-testing, before the system is deployed. This
is later enhanced by data from testing and opera-
tional experience.

The essential part of this work was building BBN
models for various operational profiles for multiple
test cycles, involving continuous probability distri-
butions. As a result, using BUGS software that
combines Bayesian inference with Gibbs sampling
[9], via Markov chain Monte Carlo (MCMC) simu-
lation, it was possible to estimate, how many tests
had to be run for a single system in a particular op-
erational environment to achieve certain level of re-
liability. To decrease the huge number of necessary
tests, multiple operational profiles for the same sys-
tem were used, which required building replicated
BBN models to include other profiles’ evidence. In
essence, by expanding the BBN models further, this
approach also allows reliability estimation over the
entire lifespan of the software product, but respec-
tive experiments have not been conducted in this
study.

3 PRELIMINARY EXPERIMENT IN
SOFTWARE ASSESSMENT

To test the applicability of BBNs in software as-
sessment, we applied this technique to evaluate the
software development tools used in real-time safety-
critical applications in avionics. The data for the
project were taken from experiments described in
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detail elsewhere [11]. The experiments involved
applying a number of specific criteria, including: ef
ficiency of the generated code, to conduct forward
evaluation regarding the quality of code, and trace-
ability, to allow backward evaluation regarding the
tool capability of maintaining the right requirements.

To evaluate the tool during its operation from per-

spective of the functions it provides and the ease of

use, two additional criteria seemed to be appropriate:

Junctionality and usability. The exact process of

choosing criteria is described in [1 1].

For criteria selected that way, a series of experi-
ments were conducted, with six industry-strength
tools applied to embedded software development.
The above mentioned criteria were quantified using
the following measures:

— Efficiency measured as code size (in LOC)

— Usability measured as development effort (in
hours)

— Functionality measured via the questionnaire (on
a 0-5 points scale)

~ Traceability measured by manual tracking (in
number of defects).

Data for some measures were collected in multi-
ple aspects, for example, data involving the devel-
opment effort were divided into four categories:
preparation, modeling and code generation, meas-
urements, and postmortem (including report writ-
ing). Details of the software requirements and ac-
tual experimental results are discussed in [11].

Based on the adopted model of the tool evalua-
tion process, and the results of experiments with the
selected evaluation criteria outlined above, our high-
level model of a BBN for tool assessment is illus-
trated in Figure 4. Its primary assumptions are that
the tool assessment process should involve the fol-
lowing mutually interrelated factors:

— development of the tool itself (including the proc-
ess, vendor quality and reputation, their quality
assessment procedures, etc.)

— the tool use (including experimental evaluation
based on predefined criteria, but also previous
user experiences with this tool, etc.)

— quality of the products developed with this tool,
based on product execution, static code analysis,
etc.

Based on the results of this analysis and other ac-
ceptance procedures (such as, legal aspects, inde-
pendent experts opinions, etc.), the tool qualification
process can be completed, as reflected in a BBN in
Figure 4.

Because of the limited data obtainable from ex-
periments, we only deal with ToolUse part of the
diagram in Figure 4. The logic of the BBN is simi-
lar to the ones reported by Dahll and Gran [2], where
they had no real probability data, and Gran and
Dahll [12], where the conditional probability values
“were estimated based on judgments in a brain-
storming activity among the project participants”.

Product
Quality

Other
Acceptance
Procedures

Tool
Qualification

Figure 4. High-level BBN model for software tool evaluation..

For the experimentally collected data for six
tools, nicknamed L, M, N, O, P and Q, a sample tool
assessment BBN is shown in Figure 5 for a tool,
which is likely to pass the qualification process with
80% confidence at the level MediumToHigh or
High.

High 0.0 a1
Mediom* 50,0 ke
Low © Of

Figure 5. BBN to assess numerically quality of tool L.

4 IMPROVING THE ASESSMENT USING
ROUGH SETS

The BBN technique seems to work well for the as-
sessment projects, where there is plenty of experi-
mental data available and the new evidence can be
easily quantified. But if safety analysis needs to be
conducted continuously during system operation,
there may be too many unknowns or two little evi-
dence to justify the validity of a Bayesian approach,
which relies on the confidence in conditional prob-
abilities.



4.1 Rough sets theory

To deal with these situations, we adopt a rough sets
theory, which is a mathematical technique developed
to describe quantitatively uncertainty, imprecision,
and vagueness [5]. An important result from the
rough sets theory is that it simplifies the search for
dominating attributes leading to specific properties.
Rough sets are thus suited for the analysis of the im-
precise data, to evaluate the system’s operation in
terms of risks or uncertainty, or to how does it ac-
complish the mission. The rough sets theory is
suitable for dealing with problems such as noise,
unknown values, or errors due to inaccurate
measuring equipment. It is a tool for handling
vagueness and uncertainty inherent to decision
processes. At the same time, the rough sets theory is
mathematically relatively simple with a promise of
fast run-time (and potential real-time)
implementation.

The idea of a rough set is that unlike a conven-
tional set, which has sharp boundaries, or a fuzzy
set, which has vague boundaries, it is described by
two approximations: the lower approximation and
the upper approximation. Assuming that U is the
domain of discourse, R is the relation of the sets
known as knowledge base, X < R is the rough set,
the lower approximation of a set, R X, is the set of
all elements belonging to it with certainty, as in the
following formula:

RiX=U{Y e U|R: Y C X}

while an upper approximation of a set, RyX, is a set
of all elements that cannot be excluded from it with
certainty:

RyX :ZKJ{‘] el |I{: X ¢=Q§}

Relating this to the concept of uncertainty, one
can say that the lower approximation, Ry X, repre-
sents the certainty that the system has the investi-
gated property, and the upper approximation, RyX,
refers to the possibility that a system has the investi-
gated property. Oversimplifying, if we are able to
represent the system properties in terms of rough
sets, taking the ratio of r = RLX/RyX would be an
“indicator” whether the system has the investigated
property or not. The measurement process will give
us certain confidence if the value of r is close to 1.
On the other hand, if the value of r is far from 1, the
statement that the system has the studied property is
questionable.

Rough sets theory has been successfully applied
in a variety of decision-making processes ranging
from medical data analysis, to aircraft pilot
performance evaluation, to image processing, to
voice recognition [13]. The authors’ past work also

involves using the concept of rough sets to evaluate
safety of the software development processes [14].

4.2 Application of rough sets

The key issue in using rough sets for enhancement
of reasoning using BBN’s is to handle uncertainty.
This issue comes into play when there is no informa-
tion on certain behavior or some information previ-
ously available becomes scarce or unavailable. Us-
ing a rough set can help filling the gap caused by
such circumstances. To illustrate this concept, we
present a simple example using the rough sets tool
named Rosetta [15].

The example concerns the determination of the
type of a flag (Union or Confederate), based on val-
ues of some primary condition attributes of the ﬂag
(Stars, Bars, Strzpes Hues, etc.), as illustrated in
Figure 6. Type is a decision attribute in rough sets
terminology. Taking only two attributes for consid-
eration, for example Stars and Bars, one can create
equivalence classes (called reducts, in rough sets
parlance) based on indiscernibility relation for flag
objects in Figure 6. This can lead to the rough set
approximation of the Union flags (for details, see

[15] or [SD).
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Figure 6. Example to determine the value of decision attribute
based on condition attributes [15].
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Figure 7. Equivalence classes discerning Union flags [15].

In particular, if all the condition attributes are
used to approximate this set, then it will be ap-
proximated with perfect accuracy (the upper and
lower bounds are the same). However, one can still
find subsets of these attributes that will not alter the
equivalence classes (reducts) and approximate the
Union flag with 100% accuracy. The resulting sets
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are presented in Figure 7, where support is the rough
sets term indicating the level of accuracy.

What this means to the BBN’s is the following.
If we treat specific variables from the BBN network
as attributes of the rough set, with one of them being
the decision attribute and all remaining ones — con-
dition attributes, then we can determine (with some
level of accuracy) the unavailable value of the deci-
sion attribute, using the reasoning just presented
briefly and described in more detail by Pawlak [5].
In plain language, this would be equivalent to deriv-
ing the approximate value of a certain variable based
on the context information.

This would help in making BBNs more valuable
in case of the lack of evidence. It becomes particu-
larly important, when BBNs are used in active safety
systems, with information being supplied to the
nodes during operation, because losing the source of
information for one of the BBN nodes impairs the
inference process in the next steps. Using rough set
reasoning could help in keeping the BBN in good
standing, disregarding the lost source of information,
because new information coming to other nodes
would be used to approximate the value of the miss-
ing variable. This logic is very similar to the use of
a Kalman filter, when the information about the sys-
tem is updated based on its previous behavior, how-
ever, in case of rough sets the information does not
have a statistical nature, as in the case of Kalman fil-
tering,

Such process can be easily automated with exist-
ing tools, since a Netica version exists that has a
Java API and can read cases from a text file, and
Rosetta can export its tables as text files to be
grabbed by Netica. With an interface software read-
ing Rosetta files and converting them to the Netica
format, the whole system looks like in F igure 8.

evidence
BBN Data Rough Sets
(Netica) File (Rosetta)

Figure 8. An architecture of enhancing BBN's with rough sets.

5 CONCLUSION

This study proves the applicability of Bayesian be-
lief networks (BBN’s) as a support tool for the nu-
merical assessment of software development tools in
real-time safety-critical applications. They can be
used as a part of the tool qualification process, as
well as play a supportive role in making decisions
on certification in certain industries. In addition, a
method of enhancing BBNs with rough sets, to de-

rive contextual information in case of uncertainty,
seems viable and beneficial, and may find applica-
tion in situations when real-time updates in safety
analysis are necessary.

REFERENCES

. Neil M., N. Fenton, Predicting Software Quality Us-
ing Bayesian Belief Networks, Proc. SEW-21, An-
nual NASA Goddard Software Engineering Work-
shop, December 4-3, 1996, pp. 217-230.

2. Dahll G., B.A. Gran, The Use of Bayesian Belief
Nets in Safety Assessment of Software Based Sys-
tems, Int. Journal of General Systems, Vol. 29, No. 2,
pp. 205-229, 2000

3. DelicK.A, F. Mazzanti, L. Strigini, Formalising En-
gineering Judgement on Software Dependability via
Belief Networks, Proc. DCCA-6, 6th IFIP Int Work-
ing Conf. on Dependable Computing for Critical Ap-
Plications, M. Dal Cin, C. Meadows, W.H. Sanders,
(Eds.), IEEE Computer Society, 1998, pp. 291-305

4. Helminen A, Reliability Estimation of Safety-Critical
Software-Base Systems Using Bayesian Networks,
Report STUK-YTO-TR 178, Radiation and Nuclear
Safety Authority, Helsinki, June 2001.

5. Pawlak Z., Rough Sets: Theoretical Aspects of Rea-
soning abowt Data, Kluwer Academic Publishers,
Dordrecht, 1991

6. lJensen F.V., An Introduction to Bayesian Networks,
Springer-Verlag, New York, 1996

1. Hugin Explorer, Hugin Expert A/S, Aalborg, Den-
Inaﬂg[JRL:http://www.hugin.com/

8. Netica, Norsys Software Corporation, Vancouver,
Canada, URL: http: //www. norsys.com/

9. BUGS, MRC Biostatistics Unit, Cambridge, UK,
http://www.mrc-bsu.cam.ac.uk/bugs/
welcome.shtml

10. AgenaRisk, Agena Limited, London, UK, URL:
http://www.agena.co.uk/

11. Kornecki A., J. Zalewski, Experimental Evaluation of
Software Development Tools for Safety-Critical
Real-Time Systems. NASA Jowrnal on Innovations
in Systems and Sofiware Engineering. Vol. 1, No. 2,
pp- 176-188, September 2005

12. Gran B.A,, G. Dahll et al., Estimating Dependability
of Programmable Systems Using BBNs, Proc-SAFE-
COMP 2000, 19th Intern. Conf. on Computer Safety,
Reliability and Security, Springer-Verlag, Berlin, pp-
309-320

13. Diintsch 1., G. Gediga. Rough Set Data Analysis: A
Road to Non-invasive Knowledge Discovery. Meth-
odos Publishers, Bangor (UK), 2000

14, LE. Chen-Jimenez, A. Kornecki, J. Zalewski, Soft-
ware Safety Analysis Using Rough Sets, Proc. IEEE
SOUTHEASTCON 98, IEEE Press, 1998, pp. 15-19

15. Rosetta, The Linnaeus Centre for Bioinformatics,
Uppsala University, Sweden, URL:
http://rosetta.lcbh.uu. se/general/download



