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ABSTRACT: System safety is traditionally dealt with in the design phase, to make sure that there are no de-
sign flaws that would jeopardize the users or the environment during system operation. However, in real-time
safety-critical systems, where the system operation is controlled by software, as in modem aircraft or other
kinds of vehicles, it is essential to monitor system's behavior with respect to safety during its execution and
take safety related decisions while the system is running. There exist no good, if any, tools for this kind of
tasks. The objective of this work is to study the potential use of Bayesian belief networks to reason about
safety, with enhancements via rough sets for calculations of probability distributions for nodes with insuffi-
c ient or uncertain information.

I INTRODTJCTION

System safety is traditionally dealt with in the design
phase, to make sure that there are no design flaws
that would jeopardize the users or the environment
during system operation. However, in real-time
safety-critical systems, where the system operation
is controlled by software, as in modern aircraft or
other kinds of vehicles, it is essential to monitor sys-
tem's behavior with respect to safety during its exe-
cution and take safety related decisions while the
system is running. Assessing software quality in
safety-related applications of that sort has always
been a problem, due to insufficient information and
uncertainty associated with the available data.

There exist no good, if any, tools for this kind of
tasks, mostly because of a lack of long term statisti-
cal data on which the assessment can be based. In
other words, the problem is related to insufficient in-
formation and uncertainty associated with the avail-
able data. However, in the last decade, there have
been a number of publications related to the assess-
ment of various quality attributes of software for
critical applications, relying on non-statistical data,
with the use of Bayesian Belief Nefworks (BBNs)
i1-41.

While this seems to be a viable approach, it suf-
fers from the problem that in the canonical form
BBNs require extensive set of prior conditional
probabilities for each network node. Since typically
little information is available on orior svstem behav-

ior, it is difficult to initialize and keep updating the
BBN, when there is uncertaint5r in evidence.

A few promising techniques that seem to help al-
leviate this problem are: fuzzy sets, neural networks,
and rough sets. While fuzzy sets and neural net-
works are preffy well known, rough sets theory is a
relatively new technique describing quantitatively
uncertainty and vagueness [5]. The objective ofthis
work is to study the potential use of Bayesian belief
networks enhanced with rough sets for calculations
of probability distributions for nodes with insuffi-
cient or uncertain information. The idea is that
rough sets techniques have much less stringent re-
quirements on prior probability distributions and use
the outcome of the analysis to facilitate the process
of initialization and updating of the BBN.

The rest of the paper is organized as follows. In
Section 2, we present briefly the review of known
works on the application of Bayesian belief net-
works to software quality assessment. Section 3
outlines the general problem of tool assessment in
real-time safety-critical systems, and presents the
application of BBNs to numerical evaluation of such
tools. Section 4 outlines the idea of rough sets and
their use to enhance computations of BBNs. Con-
clusions ofthe sfudy are presented in Section 5.

2 SOFTWARE ASSESSMENT WITH BBN'S

A Bayesian belief network essentially relies on ap-
plying a Bayesian inference to a graphical represen-
tation of a problem in a form of a hiOrarchical net-
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work [6], with nodes representing random variabies

111..9 
i:::t.,9 arc s represintin g p.Jbab i I iiies (bel iefs)

aoo.ut the dependencies (relationships) among these
variables. Formally speaking, u n.t*ort takes therorm oI a directed acyclic graph. Each node has anumber of states, with somE piobability distribution
over the states. Each arc represents a conditional
probability reflecting dependencie. on tt," predeces_
sor nodes. In the simplest case, the states of a node
could be just true or false. In a more compl"x case,
the set of s.tates may involve several discrete states(ror example. low, medium, high, very high). and in
the most general case, the aoirain o'f .tu't.5' can becontinuous.

A BBN is intended to show the causal relation_
ships among variables and allows, fo, ,r"f., relation_
ships, to conduct inference aboui chan!", ;n proU_
ability distributions of certain' variables
(parameters), once values of some observable vari_
ables become known. In other words, based on
some.knowledge of e_v9nts (that is, evidence; ac_
gyi.:9 ar leaf nodes, which changes their proba6iHty
distribution, app-lying Bayesian'reuronin'j one can
l9gu"_t what might have caused such event-s to occur.
This is called backward reasoning, and a specific
example of a BBN is shown in Figure i foi some
evidence obtained for node D, whiclicauses changes
in probability distributions of other nodes OepenOing
on co.nditional probability distributions. One cai
also do forward reasoning, in case respective evi_
dence becomes available for the .oot nodl(r.i.

This kind of reasoning is based on Baves theo_
rem and_ is normally cumbersome and time consum_
tng, rt done by hand, but can be easily automated
with software tools that became available throughout
the 1990's. There is quite a few BBN tools to
choose from, but the most commonly applied in
:gfty-:^_qualiry related problems are; Hugin [Z],Netica [8], with which tLese diagrams have been
produced, BUGS [9], and egenaRiik ItOl.

In.building the BBN model, there are always twoquestions that have to be addressed: (l) how to or_ganize the network of nodes and links f:or a specific
problem, and (2) what probabilities assign to them.
Below, we discuss briefly how this is dJne in some
of the studies related to software assessment pub_
lished over the past decade.

2.1 Applica.tion of BBN's to software quality in
general

In one of the first studies reported Il], Neil and Fen_
ton addressed the eternal question: .tan we predict
the quality of our software before we can use it?,,,by applying BBN's to ass.ess it," a"yrrt iinsity as ameasure of software quality.. A simplified diagram
from their study is presented in Figure 2. 

-it,e 
nodes

were built based on the understariaing of life-cycle
processes, from requirements specification throush
Iestlng.

The probabilities of respective states were based
on the analysis of literatuie and common_sense as_sumptions about the relations between variables.
The node variables are shown on histograms of thepredictions obtained by execution of the"network af_ter the evidence entered (the evidence is represented
by nodes with probabilities equal to 1.0). ,{ls ,n. uu_
thors say, the advantage of iheir rnod.t is that it"provides a wly of simulating different events and
identify-ing optimum courses Jf action based on un_
certain knowledge.

Figure l. Demonstration of an
predecessor variables.

Figure 2. A simplified BBN model for assessing software den-
siry [ ] .

2.2 Use of BBN's inassessment of software safety

Dahll and Gran [2] applied BBN,s to address safefy
assessment of software for acceptance purposes, in a
more comprehensive way, using multiple informa_
tion sources, such as complexif, testing, user ex_
perience, system qualiry, eic. fh"i, gg"N nefwork
for system quality, which is only a part of the entire
model, is shown in Figure 3. It involves two root
nodes: UserExperience and Vendoreuality, and a
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number of leaf nodes, corresponding to observable
variables, of which QualityMeasures is of particular
importance. This node shows evidence about the
system quality, grouping quality aftributes, such as
readability, structuredness, etc., and can be ex-
panded further.

Other observable variables include FailureslnO-
ther Producfs, those related to the user experience
(NoOfProducts and TotalUseTime), as well as those
related to quality assurance policy. When evidence
becomes available, entering respective observation
data into these nodes and executing the network pro-
vides assessment of the variable in question, which
in this case is SystemQuality.

The authors note, however, that their example is
intended more as an illustration of the method rather
than as a real attempt to compute the quality of the
system. Their probability assignments to the node
variables were chosen somewhat ad hoc, and not
based on any deeper analysis of the problem. How-
ever, as the authors say in conclusion, the results of
the study were positive and showed "that the method
reflects the way of an assessor's thinking during the
assessment Drocess."

Figure 3. BBN fbr the system quality parameter in sal'ety as-
sessment.

2.3 BBN's in dependability/reliability assessment

Delic et al. [3] used BBNs to formalize reasoning
about software dependability to facilitate the soft-
ware assessment process. They constructed a net-
work for evaluating dependability of a software-
based safety system. It used the data associated with
two primary assumptions: the excellence in devel-
opment (called a process argument) and failure-free
statistical testing (called a product argument). The
network topology includes taking into consideration
variables such as: Test Failures, Operational Fail-
ures, Initial Faults, Faults Found, Faults Delivered,
and System PFD (Probability of Failure per De-

mand). The probabiliry distributions have been de-
rived from a sample of programs from an academic
experiment.

The authors were interested in estimating the
probabilities of failure during acceptance testing and
during the operational life of the product (repre-
sented by two variables mentioned in previous para-
graph), given the prior probabilities and observed
events. In particular, positive results of an accep-
tance test allowed deriving numerical estimates
about the PFD and operational performance of the
product.

Helminen [4] used BBN's to attack the problem
of software reliability estimation. His primary moti-
vation to apply BBN's was that they allow all possi-
ble evidence (large number of variables, different
potential sources, etc.) to be used in the analysis of
the reliability of a programmable safety-critical sys-
tem. The essential characteristic of such systems is
that they involve a significant number of variables
related to reliability, with very limited evidence.

The reliability of such systems is modeled as a
probability of failure, that is, the probability that the
programmable system fails when it is required to
operate correctly. To develop an estimate of prob-
ability of failure, the authors built a series of BBN
models, using evidence from such sources, as the
system development process, system design features,
and pre-testing, before the system is deployed. 1'his
is later enhanced by data from testing and opera-
tional experience.

The essential part of this work was building BBN
models for various operational profiles for multiple
test cycles, involving continuous probability distri-
butions. As a result, using BUGS sofiware that
combines Bayesian inference with Gibbs sampling
[9], via Markov chain Monte Carlo (MCMC) simu-
lation, it was possible to estimate, how many tests
had to be run for a single system in a particular op-
erational environment to achieve certain level of re-
liability. To decrease the huge number of necessary
tests, multiple operational profiles for the same sys-
tem were used, which required building replicated
BBN models to include other profiles' evidence. In
essence, by expanding the BBN models further, this
approach also allows reliability estimation over the
entire lifespan of the software product, but respec-
tive experiments have not been conducted in this
study.

3 PRE,LIMINARY EXPERIMENT IN
SOFTWARE ASSESSMENT

To test the applicability of BBNs in software as-
sessment, we applied this technique to evaluate the
software development tools used in real-time safety-
critical applications in avionics. The data for the
project were taken from experiments described in
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detail. elsewhere [11]. The experiments involved
applying a number of specific criteria, including: ey'
ficie-ncy of th'e generated code, to conduct foiwaiO
evaluation regarding the quality of code, and trace_
abilily, to allow backward evaluation regarding the
tool capability of maintaining the right re[uirements.
Tc evaluate the tool during its opJration'flom per_
spective of the functions it provides and the ease of
use. two additional criteria seemed to be appropriate:
functionality and usability. The exact process of
choosing criteria is described in I1 ll.

For criteria selected that way, a series of experi_
ments were conducted,. with six industry_strength
tools applied to embedded softwar" deullopmel,t.
The above mentioned criteria were quantified using
the following measures:
- Efficiency measured as code size (in LOC)- Usability measured as development eifort (in

hours)
Functionality measured via the questionnaire
a 0-5 points scale)
Traceability measured by manual hacking
number of defects).

Figure 4. High-level BBN model for software tool evaluation..

For the experimentally collected data for six
tools, nicknamed L, M, N, O, p and e, a sample tool
assessment BBN is shown in Figure 5 for a tool,
wJrich is likely to pass the qualification process with
80% confidence at the level MediumToHigh or
High.

(on

(in

Data for some measures were collected in multi_
ple aspects, for example, data involving the devel_
opment effort were divided into foui catesories:
preparation, modeling and code generation, 

-rn"ur_

urements, and postmortem (including report writ_
ing). Details of the software requireirenis and ac_
tual experimental results are discuised in Ill l.

Based on the adopted model of the tiol evalua_
tion process, and the results of experiments with the
selected evaluation criteria outlined above, our high_
level model of a BBN for tool assessment is il lus_
trated in Figure 4. Its primary assumptions are that
the tool assessment process should involve the fol_
lowing mutually interrelated factors:
- development of the tool itself (including the proc_

ess, vendor quality and reputation, thair qualiw
assessment procedures, etc.)

- the tool use (including experimental evaluation
based on predefined criteria, but also previous
user experiences with this tool, etc.)

- quality of the producrs developed with this tool,
based on product execution, stitic code analvsis-
etc.
Based on the results of this analysis and other ac_

ceptance procedures (such as, legai aspects, inde-
pendent experts opinions, etc.), thJtool qualification
process can be completed, as reflected in a BBN in
Fieure 4.-B".uur. 

of the limited data obtainable from ex-
periments, we only deal with ToolUse part of the
diagram in Figure 4. The logic of the BBN is simi_
lar to the-ones reported by Dahll and Gran [2], where
they had no real probability data, and bran and
Dahll [12], where the conditional probabiliry values
"were estimated based on judgments in a brain_
storming activity among the project participants',.

:t l P6an
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Figure 5. BBN to assess numerically quality of tool L.

4 IMPROVING THE ASESSMENT USING
ROUGH SETS

The BBN technique seems to work well for the as_
sessment projects, where, there is plenfy of experi-
mental data available and the new evidlnce can be
easily quantified. But if safety analysis needs to be
conducted continuously during syrtem operation,
there may be too many unkno*ns-or two little evi_
dence to justifo the validity of a Bayesian approach,
which relies on the confidence in conditionai prob_
abilities.



4.1 Rough sets theory

To deal with these situations, we adopt a rough sets
theory, which is a mathematical technique developed
to describe quantitatively uncertainty, imprecision,
and vagueness [5]. An important result from the
rough sets theory is that it simplifies the search for
dominating attributes leading to specific properties.
Rough sets are thus suited for the analysis of the im-
precise data, to evaluate the system's operation in
terms of risks or uncertaint5r, or to how does it ac-
complish the mission. The rough sets theory is
suitable for dealing with problems such as noise,
unknown values, or errors due to inaccurate
measuring equipment. It is a tool for handling
vagueness and uncertainty inherent to decision
processes. At the same time, the rough sets theory is
mathematically relatively simple with a promise of
fast run-time (and potential real-time)
implementation.

The idea of a rough set is that unlike a conven-
tional set, which has sharp boundaries, or a fuzzy
set, which has vague boundaries, it is described by
two approximations: the lower approximation and
the upper approximation. Assuming that U is the
domain of discourse, R is the relation of the sets
known as knowledge base, X g R is the rough set,
the lower approximation of a set, R1X, is the set of
all elements belonging to it with ceftainty, as in the
following formula:

R L X : u { Y e U l R : Y c X }

while an upper approximation of a set, RuX, is a set
of all elements that cannot be excluded from it with
cedainty:

R u X : u { Y e U l R : X + Z }

Relating this to the concept of uncertainty, one
can say that the lower approximation, R1X, repre-
sents the certainty that the system has the investi-
gated properfy, and the upper approximation, RuX,
refers to the possibilify that a system has the investi-
gated properfy. Oversimplifuing, if we are able to
represent the system properties in terms of rough
sets, taking the ratio of r : RrX/RuX would be an
"indicator" whether the system has the investigated
properry or not. The measurement process will give
us certain confidence if the value of r is close to 1.
On the other hand, if the value of r is far from 1, the
statement that the system has the studied property is
questionable.

Rough sets theory has been successfully applied
in a variety of decision-making processes ranging
from medical data analysis, to aircraft pilot
performance evaluation, to image processing, to
voice recognition [13]. The authors' past work also

involves using the concept of rough sets to evaluate
safety of the software development processes [14].

4.2 Application of rough sets

The key issue in using rough sets for enhancement
of reasoning using BBN's is to handle uncertainty.
This issue comes into play when there is no informa-
tion on certain behavior or some information orevi-
ously available becomes scarce or unavailable. Us-
ing a rough set can help filling the gap caused by
such circumstances. To illustrate this concept, we
present a simple example using the rough sets tool
named Rosetta [15].

The example concerns the determination of the
type of a fTag (Union or Confederate), based on val-
ues of some primary condition attributes of the flag
(Stars, Bars, Stripes, Hues, etc.), as illustrated in
Figure 6. Type is a decision attribute in rough sets
terminology. Taking only two attributes for consid-
eration, for example Stars and Bars, one can create
equivalence classes (called reducts, in rough sets
parlance) based on indiscernibility relation for flag
objects in Figure 6. This can lead to the rough sel
approximation of the Union flags (for details, see
[1s]  or  Is]) .

Figure 6. Example to determine the value of decision attribute
based on condition attributes [5].
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Figure 7. Equivalence classes disceming Union f lags [15].

In particular, if all the condition affribures are
used to approximate this set, then it will be ap-
proximated with perfect accuracy (the upper and
lower bounds are the same). However, one can still
find subsets of these attributes that will not alter the
equivalence classes (reducts) and approximate the
Union flag with 100% accuracy. Tbe resulting sets
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are presented in Figure 
l, wfrele support is the rough

sets term indicating the level of uc.rracy.

What this means to the BBN,s is the following.
If we treat specific variables from the gBN netwo.t
as attributes of the rough set, with one oithem beingthe decision atfribute ind all ."rnulninj-ones _ con_ditio.n attributes, then we can determirie (with somelevel of accuracy) the unavailable value of the deci_
il9n^anrtO,rte. using the reasoning just presenred
oneily and describe{ in m91e. detail by pawlak 

[5].In plain language. this would be equiualent to deriv_
rng rhe approximate value of a certain variable based
on the context information.

. This would help in making BBNs more valuable
ln case ol the lack of evidence. It becomes panicu_
larly important, when BBNs are u."a in u"i,ue safety
systems, with information being supplied to thenodes du.ring operation. because tising ihe source oflnrorrnatlon lor one of the BBN nodes impairs theinference process in the next steps. Using rough setreasoning.could help in keeping the BBT.{ in-good
:?_"dl"C, 

disregarding the losi .olr."" of information,
because new information coming to other nodes
would be- used to approximate the-value of the miss_
lng v,arrable, This logic is very similar to the use ofa Katman lrlter, when the information about the sys_
tem is updated based on its previous behavior, how-
ever, in case.of-rough sets the information does not
nave a stattstrcal nature, as in the case of Kalman fil_
tering.

. Such process can be easily automated with exist_
ing tools, since a Netica version exists that has aJava API and can read cases from a text file, and
Rosetta_ can export its tables as text files to begrabbed by Netica. With an interface software read_
ing Rosetta files and converting them to the Netica
format, the whole system looks like in Figure g.

Figure 8. An architecture of enhancing BBN,s with rough sets.

5 CONCLUSION

This study proves the applicability of Bayesian be_
lief networks (BBN,s) uju ,uppoi tool ior the nu_
merical assessment of software, d"u"loprn.ni tools in
real-time safety-critical applications. 

'They 
can be

used as a part of the tool qualification pr6""r., u,
well as. play.a slpportive role in making decisions
on certification in certain industries. In"addition, a
method of enhancing BBNs with rough sets, to de_

nve contextual information in case of uncertainty,
seems viable and beneficial and may find applica_
tion in situations when reai_tir" upiui", in'iafety
analysis are necessary.
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